
Citation: Riesgo, J.M.R.; Cabrera

Fernández, J.L. Reservoir Neural

Network Computing for Time Series

Forecasting in Aerospace: Potential

Applications to Predictive

Maintenance. Eng. Proc. 2024, 68, 17.

https://doi.org/10.3390/

engproc2024068017

Academic Editors: Olga Valenzuela,

Fernando Rojas, Luis Javier Herrera,

Hector Pomares and Ignacio Rojas

Published: 4 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Reservoir Neural Network Computing for Time Series
Forecasting in Aerospace: Potential Applications to
Predictive Maintenance †

Juan Manuel Rodríguez Riesgo and Juan Luis Cabrera Fernández *

Departamento de Física Aplicada, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza.
Cardenal Cisneros 3, 28040 Madrid, Spain; juan.rriesgo@alumnos.upm.es
* Correspondence: juanluis.cabrera@upm.es
† Presented at the 10th International Conference on Time Series and Forecasting, Gran Canaria, Spain,

15–17 July 2024.

Abstract: Coupling a reservoir neural network and a Grey Wolf optimization algorithm the system
hyperparameters space is explored to find the configuration best suited to forecast the input sensor
from the NASA CMAPSS dataset. In such a framework, the application to the problem of predictive
maintenance is considered. The necessary requirements for the system to generate satisfactory
predictions are established, with specific suggestions as to how a forecast can be improved through
reservoir computing. The obtained results are used to determine certain common rules that improve
the quality of the predictions and focus the optimization towards hyperparameter solutions that
may allow for a faster approach to predictive maintenance. This research is a starting point to
develop methods that could inform accurately on the remaining useful life of a component in
aerospace systems.

Keywords: reservoir computing; grey wolf optimizer; aerospace; time series forecasting

1. Introduction

Experience is the foundation for any modern maintenance process. Thus all prognos-
tics on complicated systems are either model-based or data-driven. The former depends on
the use of physics-based models of the degradation processes and are typically applied to
safety-critical and slow-degrading equipment whose degradation mechanisms have been
extensively studied. The latter, only used when no accurate physics model is available,
requires enormous amounts of data for training, only being applied to non-safety critical
systems with short mean time to failure [1].

Model-based prognostics have been the preferred choice during the last century,
resting the required actions to be taken as much from the physical knowledge behind the
model as from the experience of the engineers tasked to maintain it. At the dawn of this
millennia though, new technologies originated providing a far more powerful process to
predict failure of a mechanical system given enough data on it. The advent of Machine
Learning brought a whole new set of tools to predict, simulate and diagnose events that
would be catastrophic if occurring on a real-life scenario, allowing an increase in reliability
across all modern industrial fields.

Data-driven models are therefore gaining significant traction in the engineering land-
scape, specially in Aerospace, as even reduced improvements through computing-intensive
simulations can yield millions through efficiency savings on the long run. Not only Ma-
chine Learning is being used extensively, but digital models are being widely employed
so as to combine both technologies and speed up greatly project development. Industrial
applicability of data-driven frameworks [2] have been prominently favored by causes as:
the increase in data availability; high performance computing; improved data storage and
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sensor technologies and a greater academic focus on algorithms and applied mathematics;
not to mention a flood of investment.

Predictive maintenance is also gaining traction through the combination of increased
capabilities in sensor networks as well as computational power. The ability to pour through
high dimensional and multivariate data and classify its internal relationships is key to
determine the potential failures bound to happen [3].

The advantages of using Reservoir Neural Networks Computing (RC from now on) for
predictive maintenance in aerospace have been explored before, especially on components
with easy to acquire data, e.g.,: to predict medium and long-term fluctuations on avionic
modules with an Echo State Network (ESN) [4], allowing for preventive maintenance in case it
strides off from its nominal value; or using an ESN to predict the Remaining Useful Life from
the operational data of several turbofan engines, analysing operational settings and sensor
information to determine how many cycles are left before catastrophic failure [5].

Accurate signal prediction opens up the door for efficient and safe control, automati-
cally adjusting and correcting any kind of output sensor whether the operational settings
(OP) of an engine, the flight-path of a drone, the coordination of a bipedal robot or human
controlled situations [6]. If fully integrated into a system, it will prevent from failures
caused by sluggish control algorithms that simply react once the action has happened,
rather than adjusting the system to prevent it.

2. Materials and Methods
2.1. RC-GWO System

In this work we report the construction of an hybrid system involving the coupling
of a reservoir neural network and a Grey Wolf optimization algorithm which we will call
the Reservoir Computing-Grey Wolf Optimizer system (RC-GWO from now on). Such a
system receives an input composed by sensor signals and explores the hyperparameter
space to find the configuration best suited for a specific prediction. Once the system finds
the optimal settings for a reservoir it is not necessary to run it again for generating new
predictions of an updated dataset. For instance, let us consider the example of the power
consumption of a device during three years, the training data could be selected to be
all available data apart form the last two months and the validation data those last two
months. When the appropriate reservoir hyperparameters configuration has been found,
new results could be quickly generated bimonthly without having to optimize the neural
network. This can be repeated until the normalizedmean square error of the predictions
differs from a given tolerance and the process begins anew. To optimize the reservoir
certain hyperparameters must be defined. Ref. [7] serves as a foundation for defining the
optimal configuration vector which the wolves will try to hunt down.

2.1.1. Reservoir Computing

RC is a specific type of Recurrent Neural Network (RNN) consisting of two compo-
nents: a nonlinear dynamical system that accepts an input signal (the reservoir) and one
trainable layer (called the readout layer) producing the output. If the reservoir is complex
enough, in principle, any computation can be achieved by just training the readout layer
to achieve a desired functionality [8]. This approach was first introduced in [9,10], using
the terms Echo State Networks (ESN) and Liquid State Machines (LSM) but nowadays
it is better known by the general term reservoir computing (RC), to stress the role of the
reservoir but also to make a difference with Liquid Neural Nets (LNNs) [11]. RC has been
shown to be particularly useful to handle chaotic time-series prediction and other complex
tasks effectively [12].

A reservoir can be composed by a random combination of activation functions that
is capable of encoding the original dynamics into higher dimensions. Any system can be
considered a reservoir given an input, an output and an interpretation layer transforming
the output into readable information. Take for instance the use of Brain Organoids—brain-
like 3D in vitro cultures—as a reservoir due to its capacity for nonlinear dynamics and
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fading memory properties [13]. In the case of RC the relationships between the elements
of the reservoir (neurons characterized by an activation function) define a graph given by
an adjacency matrix. Given an input the resulting state of an activation function promote
specific paths for the propagation of the stimulus. Training a reservoir is nothing but
observing during enough time how it reacts to a given set of information and making a
linear correlation with a desired output, not delving in the complex dynamics that develops
inside and only skimming the surface reaction for answers.

The reservoir employed on the RC-GWO system is based on the ESN, which estab-
lishes the required mathematical properties of a valid reservoir through the Echo State
Property (ESP). A good reservoir is one that is able to separate inputs; different external
inputs should drive the system to different regions of the configuration space. This is
called the separability condition [14], which relates asymptotic properties of the excited
reservoir dynamics to the driving signal. Intuitively, the ESP states that the reservoir will
asymptotically wash out any information from initial conditions. The ESP is guaranteed for
additive-sigmoid neuron reservoirs, if the reservoir weight matrix (and the leaking rates)
satisfy certain algebraic conditions in terms of singular values. For such reservoirs with a
tanh sigmoid, the ESP is violated for zero input if the spectral radius of the reservoir weight
matrix is larger than unity. Conversely, it is empirically observed that the ESP is granted
for any input if this spectral radius is smaller than unity. This has led to a far-spread but
erroneous identification of the ESP with a spectral radius below 1. Specifically, the larger
the input amplitude, the further above unity the spectral radius may be while still obtaining
the ESP [15]. For a reservoir to hold the ESP it must resonate information of all the inputs
through the consequent internal states.

Given an N neurons reservoir, their links strength (weights) are represented by an
N × N matrix, W, with values selected from an uniform random distribution in the interval
[−1, 1]. Therefore the reservoir is described by W ∈ ℜN×N . Let’s consider an input vector
containing the sensor time series, u(t) ∈ ℜM with t = 1, . . . , T. This input sensor data
is introduced into the reservoir by means of an input-reservoir coupler, i.e., a randomly
generated matrix, Win ∈ ℜN×(1+M), whose elements are drawn from an uniform random
distribution in the interval [−1, 1]− {0}, i.e., it is generated as in the case for W, but all
elements of Win should be non-zero, additionally, Win does not require normalization.

Once Win and W have been set up, the internal states for each of the inputs are
harvested. Typically the neurons used for this reservoir are discrete-time leaky-integrate
units, ruled by the update equations:

x̂(t) = tanh(Win · [1; u(t)] + W · x(t − 1)), (1)

x(t) = (1 − α)x(t − 1) + αx̂(t). (2)

where, x(t) ∈ ℜN is the vector with the internal states of neurons in the reservoir, x̂(t) ∈ ℜN

is its update vector for new inputs, all at time step t, α ∈ (0, 1] is the leaking rate and [1; u(t)]
is the vertically concatenated unitary value with the input at time step t. Then the network
output, y(t), is given by:

y(t) = Wout · x(t). (3)

The computation of Wout is a linear equation system. It is fixed by means of a ridge-
regression, also known as Tikhonov regularization:

Ytarget = Wout · X, (4)

Wout = Ytarget · XT
(

X · XT + βI
)−1

. (5)

where, X ∈ ℜN×T , is the internal states matrix in which the columns are state vectors x(t),
for t = 1, . . . , T; Ytarget ∈ ℜM×T is the output objective used for training, Wout ∈ ℜM×N is
the output weight matrix needed to interpret the internal states back to a usable output, I is
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the identity matrix and β is the regularization coefficient. Once the training is finished, the
internal states have been harvested and the ridge-regression applied, the prediction phase
runs on Equations (1)–(3), where the input u(t) is the predicted output of the preceding
step y(t − ∆t).

2.1.2. Grey Wolf Optimizer

The Grey Wolf Optimizer (GWO) is a meta-heuristic method proposed by
Mirjalili et al. [16], based on the hunting patterns of grey wolves, mimicking their lead-
ership hierarchy and hunting procedures. It is based on the fact that wolves have a rigid
social structure, with a lead individual, known as alpha, making the decisions. It comes
followed by the beta wolf, which enforces the alphas’ decisions and gives feedback. The
omega wolf is the lowliest of all, being the last to eat and basically acting as an scapegoat to
prevent infighting.

The main phases of grey wolf hunting are: tracking, chasing and approaching prey;
pursuing, encircling and harassing the prey until it stops moving; and attacking towards
the prey. A mathematical model of this collective behaviour is what drives the optimization
algorithm, candidates sharing information about the drive space, assisting in avoiding
locally optimal solutions and exploring the objective space.

The first step is to establish that the fittest solution is the α wolf, followed respectively
by the β and δ. Whatever remains of the population at that point are considered ω wolves,
and follow the three lead wolves. The motion of wolves is described as:

D = |C · Xp(t)− X(t)|, (6)

X(t + 1) = Xp(t)− A · D. (7)

Here, t, is the discrete iteration, A and C random vectors, Xp the position of the prey
and X the position of the wolves, and:

A = 2a.r1 − a, (8)

C = 2r2, (9)

a = a0(1 − t/T). (10)

with, a decreasing linearly from a0 to 0 over the course of the iterations until the maximum
number of them, T, is reached. As in the original algorithm only its initial and final value
are specified, for the sake of simplicity it is usual to set a0 to a scalar, e.g., a0 = 2 so that a
decrease linearly from 2 to 0. r1, and r2 are random vectors uniformly distributed in [0, 1],
and are of a dimension matching that of the wolves position vectors.

To hunt for the prey we need the location of the optimum, unfortunately this is an
unknown. To simulate the hunting behaviour [16], the α, β and δ wolves are believed to
have the most information on where that optimum is. Whenever a new population needs to
be spawned, the three lead wolves are taken as a reference and the rest are forced to update
their positions accordingly. In this process the distance between the α, β and δ wolves and
the prey is modeled as:

Dα = |C1 · Xα − X|, (11)

Dβ = |C2 · Xβ − X|, (12)

Dδ = |C3 · Xδ − X|, (13)

where Xα, Xβ and Xδ are the locations of leading wolves; C1, C2 and C3 represent random
vectors, and X specifies the location of the present solution. The estimation of the distances
allows for the update rules:
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X1 = Xα − A1 · Dα, (14)

X2 = Xβ − A2 · Dβ, (15)

X3 = Xδ − A3 · Dδ, (16)

and,

X(t + 1) =
X1 + X2 + X3

3
, (17)

where A1, A2 and A3 are random vectors and t is the recent iteration. The parameter a
as given by (10) is modelled to signify the end of the hunt once the prey stops moving.
The norm of A fluctuates in the interval [−2a, 2a], where the elements of a are linearly
decreased from 2 to 0. To promote exploration A may take different values; |A| < 1—as
just mentioned—focuses the wolves on the hunt, |A| > 1, drives them to diverge from the
prey and to find a better solution. The random vector C also plays part in the optimization
exploration phase [16]: when |C| > 1, it encourages exploration while for |C| < 1, de-
emphasizes it. In particular, the exploitation trend improves for |A| < 1 and |C| < 1. Thus,
C provides random weights for the prey term in order to stochastically promote (C > 1) or
impede (C < 1) the effect of prey in defining the distance in (6); opposite to A, C does not
linearly decrease with a in order to always enforce exploration.

The algorithm has been altered with respect to [16], as in our case some parameter
bounds need to be established during the exploration phase. When a new population
is generated their location are required to be within bounds. If wolves are not within
bounds, the generation is repeated again and again until they are. Testing has proven that
in some edge situations, a new population is always out of bounds. When that happens a
countdown is activated, and once a wolf has been repopulated a certain amount of times
the out of bounds coordinates in the exploration space are changed by a random value
within the space defined by the three lead wolves. Such a procedure allows for exploration
while guaranteeing wolves will not remain stuck in an out of bounds position.

2.1.3. System Architecture

The RC-GWO system, receives an input signal and runs through the hyperparameter
space to find the best suited configuration for an specific prediction. Once the system
finds optimal settings for a reservoir it is not needed to run it again to generate new
predictions for an updated dataset. To optimize the configuration of a reservoir a set of
hyperparameters must be defined. Ref. [7] serves as a foundation for defining the optimal
configuration. Once W, and Win, are generated—as explained above—the following
reservoir parameters are needed: (1) The size of the reservoir, N. It is fundamental to
appropriately capture the inherent complexity of the input sensor time series. As a rule of
thumb, the more challenging the task the bigger the reservoir should be. Some limitations
should be established to avoid overfitting and to avoid unnecessary computations. (2) The
leak rate, α. It represents the speed of the reservoir update dynamics discretized in time.
The closer to 1 the more it will forget about the previous internal states the reservoir went
through. (3) The input matrix column scaling factor, aWin. It needs to be as many as
different inputs are ingested in the reservoir, always being at least two for the present
ensemble. Each of the scaling factors apply to a specific column of the input weight matrix,
with the first always being the one for the unitary value that accompanies the input and
from the second onward for the input itself. In case the input sensor data is more than a
single time series it is recommended to group them and apply the same factor for those
that contribute differently to the task. (4) The sparsity of the reservoir, c. It represents the
connectivity among the neurons in the reservoir. In [7] it is stated that when connecting
each reservoir node to a small number of other nodes (e.g., 10) on average, irrespective of
the reservoir size, computation speeds up. Sparse matrix representations are recommended
as they give slightly better performance, but in general this hyperparameter does not affect
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much the quality of the prediction. As indicated in [15], some authors have developed
fully connected reservoirs which work as well as sparsely connected ones. (5) The spectral
radius scaling factor, Kρ. It is used to enforce the echo state property through establishing
the maximal absolute eigenvalue of the internal weight matrix, W. Once a random sparse
matrix is generated, its spectral radius, ρ(W), is computed. Then W is divided by the
spectral radius to yield a matrix with unitary spectral radius and scaled with Kρ to adapt
to the specific input ingested in the reservoir, i.e.,

Wscaled = Winitial
Kρ

ρ(Winitial)
. (18)

(6) The last hyperparameter to be tuned is the Tikhonov regularization coefficient, β, which
serves to obtain the output layer through ridge-regression. A Wout matrix with high values
is an indication of a very sensitive and unstable solution.

Once the ensemble is initialized it will determine autonomously the best suited set of
hyperparameters for a given input sensor data with minor tweaking necessary. Figure 1
shows the system workflow. The GWO algorithm is called and then the reservoir runs for
evaluating the wolves. Once the data is ingested the normalized sensor data is calculated,

xnorm(t) =
x(t)− µ

σ
, (19)

where x(t) is the sensor data at t, and µ and σ are the mean and standard deviation. The
data needs is normalized, to guarantee the outliers do not “squash out” the rest of the data
when applied to the activation function.

Figure 1. RC-GWO system flowchart. The sensor data enters as an input for pre-processing and
hyperparameters optimization to find a compatible reservoir to generate the prediction upon.

Training and testing data selection follows the traditional optimal relation: 70% is
devoted to training and 30% to testing. Another important aspect is establishing the initial
transient to be discarded during training, as stated in [7] the initial internal states are
affected by the fact that the first internal state is null. How much of those initial internal
states is discarded falls under the “find out” doctrine, as sometimes with short sequences
not much can be discarded without nothing being left. In our case the initial transient for
the training to ignore has been fixed at 10% of the total input data, so that the reservoir may
forget the unnatural states that are not often activated, while keeping the “warmed-up”
states that hold better information on the dynamics of the system.
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Once the GWO has been initialized, a starting population of wolves is created by
randomly assigning hyperparameters values in the allowed bounded set. This favors an
increased coverage of the configuration space. Now the process of optimization begins,
wolves are run through the hyperparameter space and ranked according to the normalized
Root Mean Square Error (nRMSE) calculated along the length of the testing phase, ntest,

δi ≡ yi − Ytarget
i (20)

∆i ≡
δi

max |δi|
(21)

nRMSE =

√
1

ntest

ntest

∑
i=1

∆2
i . (22)

The process continues until reaching T. The production of a new wolf population after
discarding those out of bounds occurs mainly at the latest stages of the optimization, where
most out of bounds wolves are generated, as those that try to explore the configuration
space further from the prey begin probing the limits set to the configuration. Once T has
been reached, the GWO provides the hyperparameter configuration best suited to the input
sensor data and it is run once more. When more forecasts on updated data are required, the
GWO is not needed anymore and the reservoir is able to generate new predictions based
on the obtained reservoir with the optimal hyperparameters configuration.

2.2. Experimental Data

The Commercial Modular Aeropropulsion System Simulation (CMAPSS) dataset, was
developed by Saxena et al. [17] as part of the NASA’s Prognostic Center of Excellence
Data Repository [18]. This dataset contains sensor information from a turbofan engine
obtained from a thermodynamical simulation model. Several runs are contained in this
dataset, each considered to be different turbofan engines of the same make and model with
different initial degradation levels in their components. This degradation will affect how
the engines behave over time, as damage and backlash can severely impact performance.
These time series are measured in cycles, C, an unspecified unit of time that does not defeat
the purpose of the investigation as the state on the previous time-step affects the next.

For the simulations three operational settings determine the turbofan behaviour:
altitude, Mach and the Throttle Resolver Angle (TRA). Altitude provides the environmental
conditions of the flow coming into the engine as also does the flight Mach, while the
TRA is the fraction from maximum amount of fuel injection into the combustion chamber.
Twenty-one sensors comprise the output for the CMAPSS simulation, in which data such as
temperatures and pressures, both dynamic and total, are registered at different stages of the
turbofan. Each of the sensors is identified by a “Dataset ID” as can be observed on Table 1.

In the CMAPSS dataset the 21 output sensors are directly affected by each other,
with the operational settings determining the conditions under which the turbofan engine
is working. Predicting how the system is going to react under certain conditions, and
specially how each of the components behave, can assist in detecting a specific failure in
the engine when certain sensors are off from their nominal values. The time series under
study belongs to Unit 49 in the “Test 1” file, focusing on the first two operational settings
and two compressor sensors as seen in Figure 2. This has been the selected data for the
available length, as it provides enough information for the reservoir to parse through and
learn on the behaviour of the turbofan engine.
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Table 1. Operational settings and output Sensors for the CMAPSS dataset [17].

Symbol Description Units Dataset ID

A Flight cruise altitude ft Operational Setting 1
M Flight Mach number - Operational Setting 2

TRA Throttle Resolver Angle % Operational Setting 3
T2 Total temperature at fan inlet º R Sensor 1
T24 Total temperature at LPC outlet º R Sensor 2
T30 Total temperature at HPC outlet º R Sensor 3
T50 Total temperature at LPT outlet º R Sensor 4
P2 Pressure at fan inlet psia Sensor 5
P15 Total pressure in bypass-duct psia Sensor 6
P30 Total pressure at HPC outlet psia Sensor 7
Nf Physical fan speed rpm Sensor 8
Nc Physical core speed rpm Sensor 9

EPR Engine Pressure Ratio (P50/P2) - Sensor 10
Ps30 Static pressure at HPC outlet psia Sensor 11

ϕ Ratio of fuel flow to Ps30 pps/psi Sensor 12
NRf Corrected fan speed rpm Sensor 13
NRc Corrected core speed rpm Sensor 14
BPR Bypass Ratio - Sensor 15
farB Burner fuel-air ratio - Sensor 16

htBleed Bleed Enthalpy - Sensor 17
Nf_dmd Demanded fan speed rpm Sensor 18

PCNfR_dmd Demanded corrected fan speed rpm Sensor 19
W31 HPT coolant bleed lbm/s Sensor 20
W32 LPT coolant bleed lbm/s Sensor 21

In Table 2 the hyperparameters bounds are shown. These values depend mainly on
the size and the complexity of the time series. The selection of these values have followed
the standard criteria. In particular, as already said, the size of the reservoir, N, should be
high enough to capture the dynamics of the sensor without compromising computational
costs. It is usual for N to be at least equal to the estimate of independent real values the
reservoir has to remember from the input to solve its task [7]. Thus a reasonable lower
estimate is at least N = 50 nodes. Arbitrarily, we established 10 times that quantity, i.e.,
N = 500, as an upper bound. About the input matrix scaling factor, aWin, it needs to be
threefold for this dataset. The first factor is for the unitary value appended to the input, the
second is for the OPs and the third is for the output sensors. The establishment of bounds
followed, [19] allowing the scaling factors to vary wildly between them so the inputs that
are more relevant to the reservoir dynamics are present the most. The rest of the bounds
have been established arbitrarily.

Table 2. Upper and lower bounds for the hyperparameter optimization of the CMAPSS dataset.

N α aWin(1) aWin(2) aWin(3) c Kρ β

Lower bound 50 0.01 0.01 0.01 0.01 0.001 0.01 1 × 10−8

Upper bound 500 0.6 100 100 100 0.3 0.9 100
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Figure 2. CMAPSS dataset Test 1, Unit 49 (from top to bottom): OS 1: Altitude, OS 2: Mach Number,
Sensor 2: Total temperature at LPC outlet, Sensor 7: Total pressure at HPC outlet. Time units are in
operating cycles.

3. Results

The CMAPSS dataset grants the option to analyse and minimize the impact of having
a limited amount of data, only about three hundred discrete values for each signal. The
system has been run for 300 iterations with a population of 50 at each one. The 24 predicted
signals (OPs + sensors) differ from the originals, as the reduced amount of training data
affects the capacity of the reservoir to track the precise behaviour of the turbofan engine.
Nevertheless, some signals are better predicted than others, providing insights into the
turbofan engine.
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Several runs have been set up for the dataset, to minimize the effect of chance on
finding the optimum configuration. From these runs five main sets are of particular notice
(shown in Table 3), as most results gravitate towards the viccinity of their hyperparameter
sets. The averaged nRMSE over all considered signals is the collective error from the 3 OPs
and the 21 sensors, as all are jointly fed to the reservoir and a prediction is generated
simultaneously for the 24 time series.

Table 3. RC-GWO Ensemble optimized hyperparameter sets for the CMAPSS dataset. The nRMSE is
averaged over the 24 signals.

Set N α aWin(1) aWin(2) aWin(3) c Kρ β Average nRMSE

1 51 0.43 75.76 73.00 71.65 0.08 0.61 0.92 0.36
2 481 0.39 89.33 91.69 82.83 0.13 0.59 0.39 0.37
3 489 0.36 0.86 7.93 7.79 0.23 0.73 0.89 0.39
4 105 0.40 0.49 8.39 1.89 0.25 0.51 0.89 0.36
5 166 0.57 0.91 7.96 9.30 0.29 0.74 0.42 0.42

Sets 1 and 2 (S1 and S2) generated the predictions with smaller nRMSE. The stark
difference resides in the input scaling factors which is over an order of magnitude higher
than in other sets. For S1, with the smallest reservoir size, the three folded scaling factors
have similar values, meaning the activation functions will give the unitary, OPs and sensor
inputs approximately the same weight towards the calculation of the internal states. Not
only the aWin’s have the same importance, but actually they take high values forcing the
activation functions to behave like binary switches. A similar behaviour has been detected
for S2, which even with a greater size still suffers from too high input scaling factors which
is detrimental to its predictive capabilities.

Thus, in spite S1 and S2 show smaller averaged nRMSE their reservoir internal states
does not guarantee a better individual prediction as, for both of these sets the reservoir
internal states are saturated, i.e., most of the neurons yield extreme |1| values (Figure 3 top),
instead of being distributed around 0 (Figure 3 bottom). As a consequence the network
looses the advantages of the separability granted by the ESP. Reservoir saturation is an
aspect that warrants a discussion of its own as it is a phenomenon that severely impacts
performance. Saturation is present when the internal states of the reservoir loose scope of
the input signal features, which in turn lead to a reduction of its learning capacity. In order
to mitigate the chances of this behaviour it is necessary to increase the amount of neurons
in the reservoir and limit the input scaling factors to a lesser order of magnitude.

Sets S3, S4 and S5 suggest that reservoir size is not the main hyperparameter acting
on the average nRMSE as even though S3 is nearly ten times the size of S1—and due to the
sparsity ten times the computational cost [7]—the error does not reduce proportionately.
Due to data shortness increasing the quantity of neurons does not report a decrease in
nRMSE, therefore other hyperparameters must be at play to contribute to the prediction
error. The leak rate plays the biggest role when generating predictions on limited data. As
can be seen on S3 to S5 a higher value may drive the reservoir into forgetting too quickly
the original features as the previous internal states are not as influential when updating.

The input scaling factors are similar, or the same order, for S3–S5, as the main takeaway
is the necessity to attenuate extreme |1| values and augment the actual signals, thus making
them the primary drivers of activation. Sparsity does not affect the quality of the predictions
as the echo state property can be achieved with fully connected reservoirs. It is known that
the only advantage found is the linear increase in computation costs rather than quadratic
when increasing the reservoir size.
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Figure 3. Internal states of a reservoir. Left: Internal states for each the neuron. Right: histogram for
the internal states. Results obtained at an arbitrary step during training. Top: A saturated reservoir.
Bottom: an unsaturated reservoir.

The spectral radius scaling factor is used to enforce the echo state property through
establishing the maximal eigenvalue of the internal weight matrix. Even though it can still
be achieved with values greater than 1 it is simpler to keep it bounded below it, taking
into consideration that it should be greater in tasks that require longer memory. Therefore
the scaling factors of S3–S5 serve as a support to the leak rate, improving the reservoir
capacity to retain the time series features given the limited data. As for the regularization
coefficient no clear effect has been found and has only served to ensure stability and prevent
overfitting.

The generated predictions for S3 are shown in Figure 4. It is observed that the overall
qualitative behavior of the predicted signal follows the trends of the original signal. In
particular, the prediction is bounded between the actual data showing no divergences.
The first operational setting at Figure 4 (top) yields an nRMSE of 0.44. Even with such
an error, the target initial trend are followed closely up to 10 cycles. It is also noticeable
the reservoir capacity to follow the drop at 60 cycles. The Mach signal prediction, shown
at Figure 4 (bellow top), has an average nRMSE of 0.31. This results shows the reservoir
capacity to approximately mimic the target data with such a limited training. During
the initial 20 cycles the predicted signal closely follows the target, staying within the
bounds of the original series. Similar coincidences are observed at the 50 cycles mark and
between 60 and 80 cycles. As for the last two signals, Sensor 2 at Figure 4 (above bottom)
and Sensor 7 at Figure 4 (bottom), the distance between the prediction and the target grows
in an apparently linear fashion as time goes, and as the nRMSE values at Table 4 show.
Sensor 2 prediction holds close to the original signal during the first 20 cycles but then
undershoots, while Sensor 7 overshoots at the first 10 cycles. Both these predictions miss
the mark at replicating the trends of the target. The particular set of hyperparameters for
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S3 generates an stable and feature-rich prediction that can serve as a baseline for future
developments. The behavior of the forecasted signal during the first 10 cycles is shown in
Figure 5. In the OS 1, OS 2 and Sensor 2 data the predicted signal approximately follows
the target with a small delay. However, sensor 7 data forecast clearly differs from the target.
For these four situations the calculated nRMSE are 0.52, 0.47, 0.41 and 0.56, respectively.

Figure 4. CMAPSS dataset Test 1, Unit 49 time series prediction for Set 3 (from top to bottom): OS 1:
Altitude, OS 2: Mach Number, Sensor 2: Total temperature at LPC outlet and, Sensor 7: total pressure
at HPC outlet. Time units are in operating cycles. Green: target signal; Blue: predicted signal. Results
for the additional sets are available as Supplementary Materials.
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Figure 5. Zoom detail of the forecasting along the 10 initial cycles. Details are the same as in Figure 4.

Table 4. RC-GWO System nRMSE values for the predicted signal values of each of the sets. OS 3 and
Signals 1, 5, 10, 16, 17, 18 and 19 remain at a constant value throughout the length of the dataset.

Dataset ID Set 1 Set 2 Set 3 Set 4 Set 5 Mean

Operational Setting 1 0.35 0.33 0.44 0.39 0.42 0.39
Operational Setting 2 0.48 0.36 0.31 0.34 0.36 0.37
Operational Setting 3 0.00 0.00 0.00 0.00 0.00 0.00

Sensor 1 0.50 0.32 0.43 0.50 0.56 0.46
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Table 4. Cont.

Dataset ID Set 1 Set 2 Set 3 Set 4 Set 5 Mean

Sensor 2 0.40 0.48 0.47 0.40 0.51 0.45
Sensor 3 0.36 0.46 0.36 0.38 0.43 0.40
Sensor 4 0.39 0.48 0.52 0.34 0.47 0.44
Sensor 5 0.50 0.32 0.43 0.50 0.56 0.46
Sensor 6 0.36 0.37 0.35 0.38 0.42 0.38
Sensor 7 0.43 0.43 0.53 0.36 0.52 0.45
Sensor 8 0.43 0.47 0.52 0.36 0.54 0.46
Sensor 9 0.41 0.47 0.39 0.38 0.41 0.41

Sensor 10 0.50 0.32 0.43 0.50 0.56 0.46
Sensor 11 0.44 0.44 0.47 0.38 0.52 0.45
Sensor 12 0.39 0.51 0.52 0.42 0.53 0.48
Sensor 13 0.38 0.49 0.53 0.46 0.48 0.47
Sensor 14 0.36 0.44 0.45 0.42 0.47 0.43
Sensor 15 0.34 0.48 0.44 0.43 0.46 0.43
Sensor 16 0.50 0.32 0.43 0.50 0.56 0.46
Sensor 17 0.40 0.43 0.37 0.36 0.50 0.41
Sensor 18 0.00 0.00 0.00 0.00 0.00 0.00
Sensor 19 0.00 0.00 0.00 0.00 0.00 0.00
Sensor 20 0.30 0.47 0.48 0.38 0.42 0.41
Sensor 21 0.40 0.40 0.42 0.37 0.43 0.40

4. Conclusions

The optimized hyperparameter sets show promise for generating predictions on a
complicated system such as a turbofan engine. Emulating simultaneously the behaviour
of 24 signals on a small reservoir can lead to computationally effective and quick results,
generating forecasts with the data at hand. The hyperparameters that configure the reser-
voir need to be finely tuned and understood. Establishing valid bounds for such a task
grants the RC-GWO system a greater chance at finding an stable optimum for the time
series under study. The sets are capable of generating stable predictions fluctuating at the
same range of values of the target. Notoriously, in contrast to works devoted to chaotic
dynamical systems that pay attention to the detailed forecasted signal target tracking [20],
the few number of works committed to engineering systems usually summarize their
finding using the RMSE or similar measures, without reporting tracking results. In our
opinion, the actual tracking capabilities of the forecasted signal must be shown not to mask
spurious results.

It should be emphasized that the present approach uses the simplest random reservoir.
Improvements could allow to detect out of ordinary doings indicating the need for mainte-
nance. Given the complex behavior of the turbofan engine it is expected that a reservoir
tuned in a critical state shall improve the predictive capabilities, as criticality has been
shown to be optimal for such complex situations [21]. Future works will consider simple
networks configurations where criticality is easily achieved [22].

These early stages aim at developing a tool for a comprehensive evaluation of the
entire process. It may help to avoid the black-box characteristics of most Machine Learning
solutions so the predictions could be understood, evaluated and accepted minimizing
the fear of failure that may well pose a safety risk to people, workers and companies.
Transparency in the field of Artificial Intelligence is a requirement for the general well-
being, assuring users and authorities that these systems are reliable tools rather than cheap
shortcuts with special consideration to the specific necessities of the Aerospace industry.
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Supplementary Materials: The following material are available online at https://github.com/
JMRRiesgo/RC-GWO-System-Data, Figure S1: CMAPSS dataset Test 1, Unit 49 time series prediction
for Set 1; Figure S2: CMAPSS dataset Test 1, Unit 49 time series prediction for Set 2; Figure S3: CMAPSS
dataset Test 1, Unit 49 time series prediction for Set 4; Figure S4: CMAPSS dataset Test 1, Unit 49 time
series prediction for Set 5.
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