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Abstract: Vertex models have become essential tools for understanding tissue morphogenesis by
simulating the mechanical and geometric properties of cells in various biological systems. These
models represent cells as polygons or polyhedra, capturing cellular interactions such as adhesion,
tension, and force generation. This review explores the ongoing evolution of computational vertex
models, highlighting their application to complex tissue dynamics, including organoid development,
wound healing, and cancer metastasis. We examine different energy formulations used in vertex
models, which account for mechanical forces such as surface tension, volume conservation, and
intercellular adhesion. Additionally, this review discusses the challenges of expanding traditional
2D models to 3D structures, which require the inclusion of factors like mechanical polarisation
and topological transitions. We also introduce recent advancements in modelling techniques that
allow for more flexible and dynamic cell shapes, addressing limitations in earlier frameworks.
Mechanochemical feedback and its role in tissue behaviour are explored, along with cutting-edge
approaches like self-propelled Voronoi models. Finally, the review highlights the importance of
parameter inference in these models, particularly through Bayesian methods, to improve accuracy
and predictive power. By integrating these new insights, vertex models continue to provide powerful
frameworks for exploring the complexities of tissue morphogenesis.

Keywords: tissue modelling; vertex models; tissue dynamics; cell mechanics; morphogenesis;
wound healing

1. Introduction

One of the primary challenges in the field of theoretical biology is constructing mecha-
nistic models that can accurately predict how individual cellular behaviours lead to the
emergence of complex, collective tissue properties. This is especially critical in tissue mod-
elling, where individual cell dynamics, such as adhesion, migration, and division, combine
to create highly intricate tissue-level behaviour, tackling problems as diverse-and societally
relevant-as embryonic development, wound healing, and cancer metastasis. The ability to
model and simulate these processes computationally has transformed our understanding
of biological systems [1].

Successful computational tissue models must strike the right balance of complexity.
Models that are too detailed can be challenging to parametrise, obscuring the identification
of key mechanisms that control specific processes. Similarly, an overly detailed description
results in computationally demanding simulations that may render the models impractical
for hypothesis testing. Conversely, too simplistic models may fail to predict accurately non-
linear emergent behaviours, making them ineffective. Hence, the key challenge in building
effective tissue models is identifying the minimal set of mechanochemical components
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needed to describe biological processes accurately while maintaining flexibility to test
different hypotheses.

Modelling choices not only require an evaluation of the level of detail incorporated
but also which biological aspects of tissue behaviour are prioritized for understanding.
Different mathematical formulations allow us to focus on specific features, such as cell mor-
phology or motility, while treating other aspects as secondary. These secondary behaviours
are not excluded but rather become an inherent structural feature of the model. Hence,
every modelling assumption must be scrutinized carefully to ensure that no spurious effects
arise. As our understanding of tissue biology deepens, models evolve to integrate these
insights, leading to more comprehensive and precise descriptions of the biochemical and
mechanical interactions driving tissue development.

Among the various approaches developed in the last years, vertex models have
emerged as a recurrent framework model. In these models, cells are represented as polygons
or polyhedra, where vertices are governed by rules that encapsulate the forces driving
cellular interactions. Part of the success of the vertex model lies in the computational
simplicity of the description in which the complicated evolution of the morphology of
a cell is reduced to the dynamics of a limited set of points, the vertices. These models
are particularly useful for simulating epithelial tissue processes, where cells form tight,
continuous layers [2,3], while including cell rearrangement, division, and migration [4–7].
In particular, vertex models offer flexibility in describing the energy landscape of cellular
configurations, enabling us to understand how cellular forces—such as surface tension,
adhesion, and contractility—contribute to tissue dynamics. It is not surprising that new
computational implementations of vertex models have emerged in recent years, focusing
less on complex mechanisms and more on creating accessible, streamlined code that the
scientific community can easily adapt to address specific variations in different research
problems [8–10].

Early vertex models to simulate tissue mechanics date back to 1980 when Honda and
Eguchi [11] demonstrated that a collection of packed convex polygons could effectively
represent the contraction of cell boundaries in epithelial tissues with no gaps or overlaps.
In 2001, the vertex model was consolidated by Nagai and Honda [12], who studied the de-
formation of a monolayer planar tissue by adding interfacial tension on the cell boundaries
and resistance to deformation on the vertices of the model. These apical vertex models
have been applied to describe the arrangement and organisation of cells within epithelial
tissues [4,13], predicting tissue behaviour [14] and modelling tissue growth. Particularly,
remodelling at the tissue level has been explored in terms of tissue homeostasis deviations
observed in pathological and mutant conditions [15]. Similarly, wound healing processes
and how they are influenced by the viscoelastic properties of tissues and cytoskeleton
dynamics have also been studied [16,17].

The flexibility in the formulation of vertex models has led to the development of
an ensemble of approaches and variations, each tailored to address specific biological
questions. This review will focus on the ongoing evolution of vertex models, exploring their
applications in a wide range of biological contexts. We will highlight recent advancements
in vertex-based frameworks, particularly in moving from two-dimensional (2D) to three-
dimensional (3D) models [6,18]. Additionally, we will discuss how new insights into
cellular mechanics lead to more refined and flexible modelling approaches. In addition,
we will explore alternative mechanistic models for tissue modelling, such as cell-centred
descriptions, which offer dynamic approaches to tissue mechanics [19,20].

We will examine recent advances in capturing complexities of multicellular dynamics
arising from interactions among different cell types and how mechanosensing and tissue
rheology can modulate cellular behaviour as well as the challenges of inferring biologically
relevant parameters from vertex models. Some of the frameworks discussed in this review
are summarized and compared in Table 1 at the end of the manucsript.
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2. Energetic Descriptions of Cell Interactions

In vertex models, the evolution of the morphology of each cell—and by extension,
the tissue—is described through the dynamics of a set of vertices defining the contour of a
cell. In classical descriptions, vertex models were designed to describe confluent tissues as
2D cellular tessellations. Vertices describe the junctions where three or more neighbouring
cells meet, resulting in a set of straight lines defining the edge of a cell. The dynamics of
this network are specified by an overdamped equation of motion for each individual vertex,
ri, depending on the effective force applied at each vertex, Fi,

µ
dri
dt

= Fi(t), (1)

where µ denotes a viscosity parameter which is constant for all vertices in the system.
In addition to the equation of motion (Equation (1)), the other ingredient of a vertex
formulation consists of a set of rules that inform topological transitions by which edges
appear in the tissue (cell division), disappear (cell extrusion or apoptosis, commonly
associated to T2 transitions), or exchange of vertex connections (i.e., exchange of cell
neighbours, essential for tissue fluidization). Biological processes such as cell migration and
proliferation have been shown to induce changes in tissue patterns and shape regularity due
to jamming transitions in confluent tissues [4,19]. Variations in vertex model parameters
have revealed the presence of a phase transition between liquid-like and solid-like states in
biological tissues, such as the asthmatic airway epithelium [21]. This shift demonstrates
how tissues can reorganize between highly ordered honeycomb-like structures and more
disordered irregular configurations.

The force Fi contains the biophysical properties of the cells and is commonly derived
as the relaxation of an energy function along the system’s degrees of freedom, specifically
as the gradient of the energy with respect to the position of each vertex in the system.

Fi = − ∂E
∂ri

. (2)

The energy function, E, encapsulates the biomechanical interactions that govern
cell behaviour in a tissue, and it plays a fundamental role in determining cell shape,
arrangement, and tissue dynamics during morphogenesis. The formulation of this energy
term can vary depending on the biological context, incorporating elements such as surface
tension, adhesion, volume constraints, and cytoskeletal forces. While in some scenarios the
tissue can be studied as the resulting equilibrium formulation Fi = 0 (energy minimum),
active phenomena such as cell proliferation keep the system out of equilibrium requiring
the full temporal evolution given by Equation (1) to describe the tissue.

One of the most widely used formulations of the potential energy is based on surface
and line tensions between cells described as 2D apical packing. In these models, the total
energy E of the system is given by [4]:

E = ∑
α

Kα

2
(Aα − A0)2 + ∑

α

Γα

2
L2

α + ∑
i,j

Λijlij, (3)

where α is an index running over each cell in the tissue and the indices i, j run over each
pair of connected vertices (see Figure 1a). The first term in Equation (3) typically represents
the surface elasticity of the cells, reflecting the cell’s resistance to deviations from a target
area A0 set by cytoplasmic or osmotic forces, with Kα as the elastic coefficient. Similarly,
the second term introduces elastic energy depending on the cell perimeter Lα, usually
associated with actomyosin-mediated cortical contractility, where Γα is the contractility
coefficient of the cell. Finally, the third term describes the interfacial tension or adhesion
between cells, with Λij being a line tension coefficient specific to the interaction between
these two cells. The magnitude and sign of Λij can change depending on the interaction
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at the cell–cell interface, introducing forces that either increase or decrease the length of
shared cell boundaries.

(a) (b) (c)

Apical

Apical

Basal
G1 S G2 MBasal

Figure 1. Different mechanical and geometrical approaches in 2D vertex models. (a) Schematic of a
2D vertex model showing key mechanical parameters: area elasticity Kα, area contractility Γα, and
line tension at cell interfaces Λij. (b) Lateral vertex model representing the planar cross-section of an
epithelium. (c) Pseudo three-dimensional vertex model where the target apical cell size is determined
by the position of the nucleus within each cell. The nucleus position is dependent on the stage of the
cell cycle, influencing cell geometry. Although the model is 2D, it simulates 3D biological aspects by
relating nuclear positioning to cell morphology.

This energy function can also represent tissues from an apicobasal perspective, depict-
ing the planar cross-section of an epithelium, known as lateral vertex models [22,23]. Here,
cells are represented by quadrilaterals spanning from the apical to basal sides of the cell
(Figure 1b).

Following similar ideas, the vertex model has also been extended to three-dimensional
vertex representations. In three dimensions, volume conservation becomes essential, in-
troduced by an energetic term to maintain a preferred cell volume, as outlined in [6,24,25].
A generalized energy function for this class of models is given by

E = ∑
α

KA(Aα − A0)
2 + ∑

α

KV(Vα − V0)
2, (4)

where the first term quantifies the energetic cost associated with deviations of the cell
surface area Aα from its preferred area A0, reflecting the balance between surface ten-
sion and adhesion forces, where KA modulates the elastic response of cell-cell interfaces.
The second term, where Vα is the volume of each cell, represents the cell’s resistance to
maintain a characteristic volume V0 with a volumetric modulus KV , thereby enforcing
volume conservation within the three-dimensional model.

Other complexities can also be incorporated in three dimensions, such as heterotypic
interfacial tension, which accounts for both the tension and interfacial area between differ-
ent cell types [24] or an additional surface tension to represent cell faces that interact at the
boundary with the surrounding medium [25].

Modern variations of vertex models incorporate modifications of the energy function
(Equation (3)) to capture additional biophysical properties required to describe particular
tissue types. For instance, in tissues such as the neural tube pseudostratified epithelium,
cells undergo interkinetic nuclear migration (IKNM), where the nucleus migrates along
the apical–basal axis of the cell in synchrony with the cell cycle. As a result of this, cells
close to the mitotic phase present a larger apical surface than cells closer to the S phase.
Guerrero et al. [26] proposed a time-dependent target area term A0(t) that captures these
dynamics, where A0(t) depends on the cell cycle phase (Figure 1c). Thus, instead of
defaulting to a more complex 3D description of the tissue, traditional 2D vertex models
can still be employed, in this case introducing the dynamic area expression extracted from
experimental observations

A0(t) =
1
2
((t − t0)gα + 1)

(
1 + (rα(t − t0))

2
)

. (5)
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Here, t0 is the time at which the cell was born, gα is the growth rate of the cell,
and rα(t − t0) is an autonomous function describing the apicobasal position of the nucleus
during the different phases of the cell cycle. This formulation accounts for the variation in
the apical area as the nucleus migrates between the apical and basal surfaces during IKNM.

Adhesion dynamics also play a critical role in vertex models, particularly during pro-
cesses like cell neighbour exchange and tissue remodelling. The Apposed-Cortex Adhesion
Model (ACAM), developed by Nestor-Bergmann et al. [27], incorporates adhesion turnover
to describe how cells slip past one another during neighbour exchanges. The energy
associated with adhesion can be modelled as follows:

Eadh = ∑
junctions

(
kadh

2
(d − d0)

2
)

, (6)

where kadh represents the adhesion stiffness, d is the distance between opposed cortices,
and d0 is the equilibrium adhesion distance. Here, each vertex is defined as a geometric
point where three or more cells connect via adhesions, rather than a simple material point.
Traditional models often represent each cell junction individually, whereas ACAM treats the
apical cortex as the primary mechanical driver of cell behaviour, described as a continuous,
viscoelastic loop. ACAM also accounts for forces from adhesion complexes and shows that
resistance to slippage between cortices regulates cell rearrangement and complex tissue
structures during morphogenesis. This approach reflects the cortex’s physical properties
more accurately, enabling a more nuanced response to mechanical forces across the cell
network. Adhesion turnover affects the rate of cell junction deformation, as well as the
formation of rosettes and other complex cell arrangements during morphogenesis [27].

Overall, while traditional models, like those by Farhadifar et al. [4], rely on static as-
sumptions for the energetic formulation, newer models, such as those by Guerrero et al. [26]
and Nestor-Bergmann et al. [27], explore how dynamically changing cell mechanical pa-
rameters may fundamentally alter tissue morphology and behaviour. Recent work has also
shown that these biophysical dynamic mechanisms, introduce new time scales that need to
be calibrated properly against the friction coefficient µ in Equation (3). Traditionally, µ has
occupied a secondary role; nevertheless, recent work [28] shows that the choice of friction
impacts tissue growth rates, cell morphology, and topological transitions in vertex models
where the timescale of progression of cell cycle interacts with the relaxation timescale of
the potential energy.

Moreover, additional relaxation timescales may arise if other degrees of freedom
are considered beyond the vertices. This occurs, for instance, when the apical surface
described is part of a spatially expandable or curved tissue with geometrical degrees of
freedom that affect the energy terms. For instance, in the neural tube, the apical structure
can be considered as a cylindrical curved sheet that grows radially as neural progenitors
proliferate, resulting in an equation for the evolution of the tube radius R,

µR
dR
dt

=
∂E
∂R

= − 1
R ∑

i
ri

∂E
ri

, (7)

where µR is the drag coefficient for the dynamics of the radius of the tube and is different
from µ and needs to be calibrated against the rest of the dynamical scales of the system
(see [26]). The third term in Equation (7) simply provides an alternative mathematical
expression of the second term, using vertex positions as the variables showing how these
new degrees of freedom seamlessly integrate within the vertex model framework. This
principle was recently applied to the growth of the zebrafish heart [29], exploring how
changes in cell mechanical state can drive tissue-wide stretch.

Another example that incorporates accurate biological considerations of tissue
timescales can be found in a study by Erdemci-Tandogan and Manning [30]. This study
further explored the role of cellular rearrangement time delays on the rheology of vertex
models, integrating T1 delay times into their simulations to mimic molecular processes
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during T1 transitions. This modification allows for a more accurate representation of tissue
mechanics, capturing the delay in cellular rearrangements due to molecular processes and
its effect on tissue elasticity and morphology.

Extensions to the energy function can include additional energy terms related to other
biophysical processes such as cell polarity. For instance, in [14], cells establish a directional
distribution of polarity proteins across the tissue plane. To represent protein densities
in the model, values can be assigned to the edges of the cells, allowing tissue dynamics
to influence the reorientation of planar cell polarity. Alternatively, in [31], the authors
integrated directional stress components aligned with cellular polarity fields. It also enables
the simulation of tissues under non-uniform stress conditions, which are common during
various developmental processes. These updated vertex models can simulate more realistic
tissue behaviours during morphogenesis, such as directional elongation and differential
growth by modelling how cells generate and respond to mechanical stresses anisotropically.
This is a significant step toward linking genetic regulation and mechanical properties in
developing tissues.

In all the energetic descriptions discussed in this section, the tissue dynamics result
from an energy minimization framework, where energy is constantly dissipated as a result
of the relaxation along the degrees of freedom of the model, which do not coincide exactly
with the biophysical degrees of freedom of the system, e.g., vertex positions vs. mem-
brane movement. While this simplification facilitates computational efficiency and model
tractability, it will need additional revision including more accurate energetic descriptions
of elastic storage and dissipation of energy. For instance, neglecting additional energy
dissipation may lead to underestimation of the timescales required for cellular rearrange-
ments or biased predictions of force distributions during processes like wound healing or
cancer invasion. These enhancements aim to provide a more realistic representation of the
non-equilibrium dynamics governing cellular interactions, improving the interpretative
power of simulation results in scenarios where dissipation significantly impacts tissue
behaviour.

3. 2D or Not 2D

Vertex models have traditionally been developed in two dimensions. In these two-
dimensional vertex models, cells are typically assumed to exist within a single monolayer,
where their movement is governed by interactions confined to the apical 2D plane. In this
approximation, external forces out of the 2D plane, such as those from the extracellular
matrix or the environment, can be usually projected into the cell vertices. Additionally,
any changes in the third dimension, like apicobasal fluctuations, can be mapped onto the
2D plane. Since the foundational work of Nagai and Honda [12] in 2001, two-dimensional
vertex models have been extensively applied to study various morphogenetic and biolog-
ical processes. These include mechanical effects in epithelial tissues, such as contractile
forces generated by the actomyosin ring [4], jamming transitions [19], wound healing [17],
the representation of planar cell polarity pathways [14] or the modelisation of growing
epithelia [13,32], among many others. Some examples have already been introduced in
Section 2 (see Equations (5) and (7)), introducing pseudo-3D descriptions that keep the
numeric simplicity of traditional vertex models. Similarly, the same formulation can be
easily used to study other geometrical projections of the tissue. For instance, a variant
of two-dimensional vertex models consists in representing the planar cross-section of an
epithelium, known as lateral vertex models. In this approach, cells are represented by
quadrilaterals that depict the apicobasal surface of the tissue (Figure 1b). Naturally mod-
elling the mechanical bending properties of the tissue, this model has been utilised to study
phenomena such as Drosophila mesoderm invagination [23] and locally tubular epithelial
folding [22].

Also, to model epithelial folding, another variant of the vertex model uses a 2D
manifold of non-flat polygons with curvature to represent the epithelial surfaces. This
approach has been applied to study phenomena such as the buckling of flat epithelia
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under compression [33] and the morphogenesis of respiratory appendages on Drosophila
eggshells [34].

Nevertheless, there are scenarios in which 2D descriptions are insufficient for ac-
curately modelling complex biological systems such as organoid development, tumour
growth, or 3D cellular aggregates, where a three-dimensional approach is essential [18].
Extending vertex models to three dimensions presents several challenges. To describe tissue
behaviour accurately, it is necessary to account for the mechanical polarisation of cells
along the apicobasal axis, which requires defining distinct interactions at the apical, basal,
and lateral surfaces, as well as the influence of the extracellular matrix. Also, computational
complexity increases when simulating key processes that shape tissues, such as cell growth,
division, apicobasal intercalation, and extrusion or apoptosis.

Honda et al. [6] introduced the first 3D vertex model to simulate cell aggregates,
where cells are represented as space-filling polyhedra with vertices where four cells meet,
connected by edges that form the polygonal faces of the cell boundaries (Figure 2). Like
2D models, the main objective is to study how cells deform and rearrange under external
forces by minimising the total free energy. However, in the 3D model, the focus expands
from conserving the area or perimeter of cells to conserving their volume, as noted in
Equation (4). The strengths and limitations of the 3D vertex model compared to the 2D are
highlighted in Table 1.

(b) (c)(a)

Figure 2. Different geometrical and mechanical approaches in 3D vertex models. (a) Representation
of a scutoid, a geometrical shape that appears in epithelial tissue organisation when cells have
different neighbours in the apical and basal surfaces. (b) Representation of apical tissue surface as a
2D manifold in a 3D space used to model folding epithelia. Also known as a 3D apical vertex model.
(c) Three-dimensional Vertex models can be used as well to represent non-epithelial configurations of
confluent biological tissues [6,24].

The distinction between apical and basal surfaces in the three-dimensional model
allows for the consideration of cell polarisation by accounting for mechanical interactions at
both surfaces and along the lateral interfaces and with the extracellular matrix. Polarisation
plays a critical role in epithelial morphogenesis, leading to the formation of structures such
as follicles, tubes, and branching networks. This distinction also helps define neighbour
relationships: in traditional 2D models, two cells are considered connected basally if they
are also connected apically. However, recent studies [35,36] have shown that cells can
have different neighbours on the apical and basal surfaces, leading to the discovery of
a new geometric shape—the scutoid, which accommodates these variations in cellular
organisation (Figure 2a).

When modelling tissue morphogenesis, three-dimensional vertex models allow for
the accurate capture of cell reorganisation in 3D space and the interactions with their neigh-
bours and the extracellular matrix (ECM), as well as the mechanical properties of the tissue.
For instance, viscosity has been demonstrated to play a crucial role in tissue formation and
development. The morphology of epithelial cysts is highly sensitive to the viscosity of the
surrounding extracellular matrix: low viscosity results in straight tube formation, interme-
diate viscosity induces buckling and branching, while high viscosity leads to thickened
and undulated tubes [37]. In addition, different 3D descriptions result in different strain
properties of the tissue, such as the Young’s modulus and Poisson ratio, required to recover
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specific buckling properties of epithelial monolayers [38]. Similarly, forces along tissue
surfaces, such as apical contractility, contribute to maintaining homogeneous curvature
in epithelial sheets despite mechanical disturbances from cell division [39] (Figure 2b).
These fundamental aspects of morphogenesis can provide insights into tumourigenesis,
as disruptions in these normal mechanical and biochemical processes can lead to abnormal
cellular behaviours and tumour formation. For instance, the morphology of epithelial
tumours in the pancreas is influenced by the interplay between these parameters and the
existing tubular geometry, which results in distinct growth patterns shaped by duct size
and underlying mechanical forces [40]. Also, a recent study has provided the first evidence
that defective cell–cell linkages, abnormal interactions with the extracellular matrix, and a
favourable three-dimensional tissue structure can drive cancer invasion [41,42].

Biological processes during morphogenesis are driven by the regulatory activities of
proteins and other cellular components. In three-dimensional vertex models, the intercel-
lular transport of molecules is represented through the integration of reaction-diffusion
systems within the cellular framework. This approach allows for the coupling of pattern
formation dynamics with the chemical states of individual cells, facilitating a deeper un-
derstanding of the biochemical and mechanical processes that lead to tissue deformation
and epithelial growth, including the study of Turing patterns that emerge from these
interactions [43,44].

Three-dimensional vertex models are particularly useful for studying how cells within
an organoid interact, rearrange, and respond to mechanical forces. An organoid is a three-
dimensional miniaturised, simplified version of an organ that is grown in vitro from stem
cells. These organoids mimic the key structural and functional characteristics of their
corresponding in vivo organs. They have emerged as an important tool in personalised
medicine, drug discovery, and regenerative medicine, enabling insights into how organs
develop, how diseases progress, and how therapies can be optimised [45].

Recent studies have advanced the understanding of organoid development through
various approaches. For instance, in [46], researchers developed a mechanistic theory of
epithelial shells that resemble small organoid morphologies derived from invaginated
structures and in [47], three-dimensional cellular forces are mapped in mouse intestinal
organoids grown on soft hydrogels, revealing a non-monotonic stress distribution that
delineates mechanical and functional compartments within these structures. Moreover,
the flexibility of a human colon epithelium monolayer is studied in [48] using a combination
of vertex modelling and finite element methods (FEM) and very recently, topological defects
such as cysts and intestinal organoids have been explored in spherical epithelia [38].

Additionally, in modelling non-epithelial confluent biological tissues, 3D vertex mod-
els effectively represent the behaviour of heterotypic interfaces between different cell
types [24]. This approach aligns closely with experimental observations of cellular be-
haviour at tissue boundaries, such as those in the Xenopus gastrula.

In summary, transitioning from two-dimensional to three-dimensional vertex models
marks a critical step forward in understanding tissue morphogenesis. Research progresses
towards more precise and sophisticated three-dimensional vertex models, bringing us
closer to fully capturing the intricate processes of tissue dynamics.

4. How Many Sides Does a Cell Have Anyway?

Traditional vertex models assume that the apical surfaces of cells can be described
by polygonal packing in confluent tissues. However, this imposes a rigidity on cell shape
and movement that does not align with the more fluid behaviour observed in some cell
communities, where dynamic, non-linear cell boundaries are present. Inspired by active
foam models, vertex descriptions overcoming these limitations have arisen relaxing two of
the basic assumptions of traditional vertex models [49,50]: (1) each cell can be described by
more vertices than its tricellular junctions [49], and (2) internal vertices can belong exclu-
sively to a single cell. As a result, cells can be described as polygons with a high number of
sides, increasing at the same time the resolution and the computational complexity of the
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system. These descriptions also allow for a more nuanced mechanical description of local
cortical tensions and pressures at a cell intrinsic level which impacts the deformation and
motility of these cells resulting from the stress relaxation in the tissue.

For instance, in [51], cell populations are described by a mixture of cells and extra-
cellular spaces, all of them with an arbitrary number of vertices. Extracellular spaces
are described as a cell type of their own, with specific physical properties. To allow for
sufficient freedom in the evolution of cell shapes and spaces, cell perimeter constraints
(typically based on cortical actomyosin ring dynamics, as in Equation (3)) are replaced with
local tensions at each vertex, along with cellular and extracellular pressures. This removes
the convex polygonal signature often required for traditional vertex models and allows for
tissue fluidisation (Figure 3b).

(a) (b) (c)

Figure 3. Finer discretisation of cell edges allows for more flexible and fluid polygonal representa-
tions. (a) In the conventional vertex model, vertices are positioned at tricellular junctions or tissue
boundaries. (b) Additional discretisation of cellular edges, as presented in [51], enables the inclusion
of extracellular spaces and local cortical tensions. (c) A further level of discretisation is achieved by
assigning each cell its own set of vertices, as in PolyHoop, allowing for more detailed local cell–cell
interactions [10].

An even more flexible approach is introduced in PolyHoop [10], where each individual
cell is described by a customisable number of vertices. Hence, this model allows for
the formulation of interaction potentials that account explicitly for cell–cell interaction,
enabling the incorporation of complex cellular contact dynamics between adjacent cell
boundaries that are not captured by traditional vertex models (Figure 3c). In addition,
the increased resolution allows the introduction of bending energies that regulate cell
deformation beyond the classical elastic dilations of area and perimeter.

The additional flexibility of these models also introduces more nuanced descriptions
of topological transitions. In the case of [51], through the merging of extracellular vertices
due to cell–cell contact. On the other hand, in PolyHoop, topological changes are related to
changes in the number of polygons due to excision or merging events.

While these descriptions introduce a natural way of studying fluidity, confluence,
or non-straightness of boundaries; these properties are not exclusive of highly sided
descriptions, and can also be obtained by self-propelled Voronoi models [19], as it is
discussed in the next section.

5. Out of the Vertex

An alternative way to formulate the mechanics of tissues is the self-propelled Voronoi
model (SPV) [19], sometimes also called the active vertex model [52]. As opposed to tradi-
tional vertex models, cells are described by the location of their centres. Here, the geometry
of a polygonal tissue is parameterised by the Voronoi tessellation of the (circum) centres of
each of the cells. Dynamics progress with overdamped kinetics of the cell centres minimis-
ing an energy function, which is typically identical in nature to traditional vertex models
(see Equation (3)). Additionally, cells can undergo migration or self-propulsion, where an
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active velocity with constant speed (v0) is applied to each cell. Thus, for each cell centre xi
of a cell i, its velocity is given by

dxi
dt

= −µ
∂E
∂xi

+ v0n̂i, (8)

where n̂i describes the propulsion orientation of each cell and E is the corresponding energy
function. This propulsion could in principle be purely Brownian, yet given cell migration
is typically persistent in nature, some studies propose other functional forms. For instance,
in [19], the random normal vector n̂i has an angle θ following the Langevin (SDE) equations:

dθi
dt

= ηi, (t) (9)

⟨ηi(t), ηj(t′)⟩ = 2 D δ(t − t′) δij, (10)

introducing a persistence timescale on the motion, 1/D.
In SPV, topological transitions are automatic, without requiring rules for T1 transitions.

This is because the cell neighbourhoods are generated by Voronoi tessellation: if two
cells become close enough, the neighbourhood will be established by the tessellation.
For vertex models (either traditional or SPV), the prevalence of T1 transitions is determined
by the mechanical description of the tissue, becoming energetically disfavoured easily
in ‘solid’ parameter regimes, a common disadvantage of vertex models. Self-propulsion
(see Equation (8)) allows cells to overcome small enough energy barriers, fluidizing the
tissue with increasing propulsion speeds, or increasing persistence time-scales [19].

The self-propelled Voronoi model can thus be viewed as an active variant of the
traditional vertex model, with half the number of degrees of freedom. This constrains
cells to a specific geometric space. Assuming that cell geometries evolve in time through
continuous force balance over medium time-scales—a proposal for which there is some
empirical support [20] and is the founding principle of force inference [53]—the true
geometric space that cells explore will have 3Ncell/2 degrees of freedom, more restricted
than the vertex model (2Ncell) and less restricted than the Voronoi model (Ncell). Future
work matching this geometric constraint by extending the Voronoi model towards Dirichlet
cell complexes [20] could allow researchers to marry the computational and physical
benefits of the vertex model with the more geometric realism of the traditional vertex model.

6. Mechanochemical Feedback in Heterogeneous Populations

Many of the complexities of multicellular dynamics—both in development and
disease—arise from interactions between distinct cell types. These mechanical or chemical
interactions can occur over different length scales. Indeed, the interplay between physical
interactions, cell and tissue geometry, intercellular signalling, and cell fate can facilitate
emergent properties of multicellular collectives that cannot be reduced to its comprising
components [54]. Consequently, integrative modelling frameworks that can combine these
multifarious contributions to the emergence of order in development, or its modification
and erosion in disease, are starting to act as important test-beds to understand the necessary
components for sets of multicellular behaviours and establish experimental predictions to
distinguish between alternative mechanochemical mechanisms.

Given their cell-centred nature, vertex models and their derivatives are ideal computa-
tional frameworks to simulate emergent multicellular dynamics due to mechanochemical
feedback. One can define distinct mechanical parameters for each individual cell, or indeed
sets of cells falling into one or more cell type. For example, multi-state vertex models,
simulating differential interfacial tension between different cell types, has been shown to
mediate lineage segregation boundary integrity [55], cell elimination and cyst formation
in Drosophila imaginal discs [56] (Figure 4). These concepts were further extended to dis-
cern the distinct morphological modes of tumourigenesis in different carcinomas, where
mutant and neighbouring wild-type cells were modelled to have different mechanical
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properties, allowing the researchers to establish a morphospace of multi-layered tumours
and map these onto driver mutations [57]. Likewise, a 3D vertex model of zebrafish
heart morphogenesis has been used to explain how a gradual change in the frequency of
cells that relax their junctional tension can result in a sudden, dramatic increase in heart
size [29]. Beyond ‘steady-state’ cell-type specific mechanical properties, the vertex model,
being a dynamic model, has the potential to unpack how cell-state-dependent mechanical
fluctuations can modulate the emergence of order. Using 2D and 3D vertex modelling
coupled to dynamic measurements, a recent study has proposed that the segregation of the
extraembryonic primitive endoderm from the embryonic epiblast in the mouse blastocyst
occurs by enhanced cell surface fluctuations in the former tissue [58].

Mechanical
properties

Cellular
state

Inter-cellular
signals

B
cell type A

cell type B

Low interfacial 
tension

High interfacial 
tension

Figure 4. Heterogeneity and feedback. Vertex and SPV models allow for distinct ascriptions of
mechanical parameters for each cell. In practice, this allows for cell-type specific mechanical regimes
here schematised with different colours. When setting the line-tension for heterotypic interfaces
to be higher than that of homotypic interfaces (centre panels), cell types are able to sort, forming
a straight interface. This is consistent with in vivo examples of boundaries of lineage segregation.
More generally, cell-type-specific parameters can also be allowed to vary as a function of the local
mechanical or signalling environment (right diagram). This allows for mechanochemical feedback
among cells. In principle, feedback between signals, state, and mechanics allows the modelling of
new emergent behaviours that go beyond the confines of homogeneous vertex models, or continuum
descriptions of chemical cellular interactions.

Mechanosensation allows tissues to close the feedback loop between mechanical
properties and cellular state. Cell-centred modelling frameworks are natural simulation
frameworks that analyse these interactions. Including a cell decision layer on top of the
traditional vertex model that modulates cell-cycle status or the probability of apoptosis as a
function of a cell’s adhesion status, shape and local density, can result in emergent, self-
organising patterns of proliferation and tissue growth control [59]. Similarly, the coupling
between tissue mechanics and cell shape has been used to analyse how cell geometry and
stress influence the orientation of planar cell divisions [60].

Coupling can also be achieved at the tissue scale by the modulation of tissue rheologi-
cal properties. For example, the self-propelled Voronoi (SPV) model was recently used to
analyse the interplay between ERK-signalling, tissue rheology, cell density, and cell migra-
tion, identifying how the relative contributions of each regulate a dynamical transition from
static ‘glassy’ behaviour to spatiotemporal oscillations [61]. Global transitions in tissue
rheology can also shape physiological response to injury: a recent work studying coupling
measurements of clone fragmentation with in vivo lineage tracing with 2D the (SPV) model
established that changes in local cell density upon cell ablation promote the transition from
a ‘solid’ to a ‘fluid’ tissue state, which in turn activates stem-cell renewal to restore the
tissue to homeostasis [62].

To generalise cell-centred modelling frameworks beyond purely mechanically me-
diated feedbacks, modelling efforts must connect cell shape and state with intercellular
chemical signalling. Signalling may be contact dependent, as in Notch signalling, where
vertex models have proved useful to understand the interplay between contact area, signal
transduction and resultant patterning [63]. Signalling may alternatively be longer range via
the establishment of morphogen gradients [44]. However, connecting the self-organisation
of tissue morphology with its patterning remains challenging and incomplete in general,
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and yet is the key to understanding the elaboration of order during embryonic devel-
opment, both natural and, through the use of organoids and embryos (stem-cell based
embryo models), synthetic. Future work must build on the above successes to establish
integrative computational frameworks to model cell state, mechanics and signalling in an
integrative manner that is efficient enough to characterise its dynamical modes exhaus-
tively with morphospaces and, importantly, constrain it to data to help devise and test
mechanistic hypotheses.

7. Inference Makes the Difference

Inference of biologically relevant simulation parameters from measurements is a key
quantitative application of vertex models and has led to considerable biological insight [26].
Nevertheless, these efforts are often hindered by the need to associate equivalent parameters
in the model and experimental data, the considerable parametric degeneracy in simulation
outputs, and non-identifiability in some specifications of vertex models. In this section,
we describe recent progress in these areas, including how more accurate descriptions of
physical effects, such as those described in previous sections, lead to more robust inference,
and how advances in Bayesian inference provide a natural framework for extracting
quantitative insights.

The task, as in any inference framework, is to provide information of the set of
parameters θ compatible given a specific tissue observation—the data D. For instance,
for the energy function (Equation (3)) we would typically have θ = {A0, K, Γ, Λ}, and the
data D as an image of a tissue. In Bayesian inference, our knowledge of the true values
of specific sets of parameters is formally quantified as a posterior credibility distribution
p(θ) [64]. These are also traditionally referred to as probability distributions. Nevertheless,
the parameters that need to be inferred are deterministic: the distributions only reflect
quantitatively our uncertainty on this deterministic value. Therefore, the distributions are
not directly related to any randomness in the values of the parameters. For this reason, we
avoid the term probability in favour of the term credibility, as advocated by Kruschke [64].
These distributions give more weight to parameter regions that are more likely (have
more evidence) to match a specific observation. The distributions p(θ) follow the same
rules as classical probability distributions, unlocking the toolkit from probability theory.
In particular, we can update our distributions given a dataset D using Bayes’ theorem,

p(θ|D) = N p(D|θ) p(θ), (11)

where p(θ) represents the prior distribution of the simulation parameters before the ob-
servation of the data, and p(θ|D) is the posterior distribution containing the updated
knowledge provided by the data D. They are related by the normalization constant N and
the likelihood p(D|θ). The normalization constant N = p(D) =

∫
p(D|θ) dθ is in general

hard to calculate but is in practice unnecessary as we usually rely on relative credibilities for
hypothesis testing. On the other hand, the likelihood p(D|θ) states how likely would be to
observe the data for different hypothetical values of θ. This likelihood has no closed-form
expression, so evaluating Equation (11) as it stands is intractable. However, we can use
vertex model simulations to generate instances of the data from the simulation for given
sampled parameter sets from the prior distribution θ∗ ∼ p(θ), keeping parameter sets θ
that are compatible with the observed data, allowing us to use Equation (11) to update our
credibility distributions.

In practice, the inference process also requires us to compare observed and generated
datasets which are inherently stochastic, i.e., the same parameter will result in different
specific positions of the cells. Therefore, we need to define some metric dθ to compare
quantitatively the resulting datasets. This is usually performed by computing summary
statistics, which capture the key features of both real and simulated data. We can then
calculate the distance between the summary statistics of real and simulated data, providing
a measure of how close the simulated samples are to the true data (and therefore also the
posterior distribution of the simulation parameters). This is the idea that underlies approxi-
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mate Bayesian computation (ABC), where posterior samples are approximated by selecting
parameters that minimize the distance metric (Figure 5). Here, there are still several open
questions relating to which summary statistics sufficiently discriminate good and poor
matches to the real data [65], the distance metrics to use [66], and the convergence proper-
ties of the ABC algorithm itself. These are in addition to problems common to all Bayesian
inference tasks, such as the selection of reasonable prior distributions. In simulation-based
inference tasks, this is complicated by the unknown relationship between the simulation
parameters and the effective likelihood, so selection based on intuition alone is difficult [67].
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Figure 5. Schematic description of the principles underlying approximate Bayesian computation.
Here, univariate summary statistics si are computed for both the simulated and real experimental
data, and the distances between these dictate whether samples from the parameter distributions are
accepted as likely originating from the true posterior. The sampling step is repeated until the desired
number of samples is obtained using the successful parameters to generate the posterior distribution.

The ABC method has proven particularly useful when determining underlying bi-
ological parameters in vitro by comparison to experimental data [68–70]. Furthermore,
the approaches presented here can also actively inform experimental design, optimising
the informational content of an experiment relative to both the biological model in question
and the inference method [71].

In addition to the simple rejection ABC formulation described above, there are a
number of modifications that can be made to improve the efficiency of the sampling step.
It is often difficult, particularly initially, to obtain samples from p(D|θ) that are close to the
target dataset D. In ABC-MCMC [72], proposal samples are generated with an additional
Markov chain Monte Carlo step along the prior distribution, p(θ), in a form analogous to
the classic Metropolis-Hastings algorithm. Here, samples are first drawn from a proposal
distribution centred on the previous value and are then accepted according to the distance
metric dθ , as in rejection ABC. Sequential Monte Carlo (ABC-SMC) [73], an alternative
sampling strategy, utilises a variable value of the distance dθ threshold, ε. At the start
of the sampling, ε is large and is reduced sequentially. Each evaluation of the distance
for a specific dataset requires a full vertex model simulation. Nevertheless, as there is no
dependence between the evaluated parameter sets, θ, sampling and evaluation can proceed
in parallel, making the inference process computationally efficient.

Whilst Bayesian inference provides an automatic way to update quantitatively our
beliefs in specific parameter sets, it can be computationally demanding. Recent advances
in the field attempt to accelerate this inference process by developing neural networks
to sequentially estimate approximations to the full posterior density, such as sequential
neural posterior estimation [74], or to the likelihood, such as sequential neural likelihood
estimation [75]. These can be viewed as the logical endpoint of the kind of improvements
exhibited by adding sequential updates to standard rejection ABC. Instead of approximating
the posterior distribution by an n-ball in distance space, a neural network is employed
to use the samples to sequentially refine a more complex representation of the posterior
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density. An additional advantage of these methods is that they are constructed to learn a
posterior independent of the specific dataset they are initially trained on. This amortised
strategy means that posterior probabilities of related experiments can be inferred without
full re-optimisation of the model, and moreover, can be used to improve the estimate of
the posterior.

Common summary statistics include ‘primary’ statistics specific to individual cells,
such as cell elongation and cell area ratios, and ‘secondary’ statistics that are bulk prop-
erties of the simulated tissue, such as the number of neighbours and their area. For the
relative area and perimeter terms, regardless of which individual statistic is chosen, it is
difficult to determine uniquely the value of either, as the posterior distributions are highly
correlated [67]. However, combinations of statistics constrain the parameter space better,
and estimates improve with increasing dataset size, indicating that this is not an inherent
degeneracy of the model. Nevertheless, the difficulty of inference of energetic parameters
in classical energetic descriptions (Equation (3)) implies that reformulating the model may
be an avenue to more efficient inference with ABC.

The exact specification of the model and inference procedure can also significantly
influence results [76]. In particular, misspecification of the model for a particular regime can
result in spurious correlations, leading to incorrect conclusions regarding parameter values
and their relative importance to the system. For example, as noted in [28], the addition
of an explicit friction parameter can affect static and dynamical properties of the model,
features that otherwise would be implicitly and incorrectly associated with other terms.
On the other hand, a model theoretically and empirically well motivated, such as those
described in the previous sections, can be impossible to fully determine in practice. In [67],
the authors performed a ‘closure’ test, where data generated from a model is fitted using
the same model in order to probe practical issues of parameter identifiability. With a range
of standard summary statistics, and with a small dataset, it is not possible to uniquely
recover parameters from a model that the data was generated with. However, with the
aforementioned ‘secondary‘ statistics and larger datasets, parameters are rendered identi-
fiable. This underscores the importance of performing tests for parameter recoverability
and indicates that more work still remains to optimally specify vertex models and their
associated summary statistics. Similarly, constructing accurate likelihood functions that
account for artefacts and noise in specific experimental datasets is paramount for achieving
unbiased mechanistic inference of the biophysical mechanisms governing tissue dynamics.

8. Discussion

The continued evolution of vertex models reflects both the growing complexity of
biological questions and the expanding computational capabilities available to researchers.
While early models succeeded in capturing key mechanical aspects of tissue dynamics,
modern approaches are now capable of addressing more intricate questions. Some of the
main modelling strategies identified are summarized in Table 1.

One of the primary challenges is the balance between model complexity and computa-
tional efficiency. As our understanding of tissue dynamics improves, the desire to include
more detailed mechanistic insights, such as cell cycle dynamics, intercellular signalling,
and anisotropic stresses, increases. While such details are critical for accurately simulating
real biological processes, they come at the cost of computational complexity, which can
limit the scalability of the models. This is especially true for 3D vertex models, where
accounting for the intricate interactions at apical, basal, and lateral surfaces significantly
increases the number of parameters and the computational resources required. Moreover,
the introduction of 3D models presents new geometric and physical challenges. The discov-
ery of scutoids as a geometric solution for packing in 3D epithelia illustrates the limitations
of classical 2D descriptions in representing realistic tissue behaviours [35].

To address some of the limitations of traditional vertex models without the requirement
of a taxing 3D description, new 2D frameworks have been developed in the last years, such
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as those allowing cells to have more vertices than just those corresponding to the tissue
boundary and its junctions [10,51] or cell-centred models such as the SPV.

Another major area of focus in the last years has been increasing the mechanochemical
feedback, which plays a pivotal role in tissue morphogenesis. Understanding how mechan-
ical forces and biochemical signals interact to influence cell fate and behaviour is critical for
simulating complex developmental processes.

Together with the development of a more complex modelling framework, recent
works have focused on the inference process, addressing the merging of models and
data and improving our ability to explore parameter spaces. These studies revealed that
many models still suffer from non-identifiability and parameter degeneracy, limiting their
predictive power. Ultimately, these results highlight the path forward in the future of vertex
models that need to evolve together with their inference capabilities.

In conclusion, while vertex models have made tremendous strides in recent years, there
are still substantial challenges to overcome. Future work should focus on improving the
balance between model detail and computational feasibility, refining parameter inference
techniques, and developing integrated frameworks that combine mechanical, biochemical,
and signalling dynamics.

In addition, we identified a significant lack of benchmarking studies comparing vari-
ous vertex model approaches. Conducting such studies could provide valuable insights into
the efficiency and limitations of different implementations, guiding future advancements
in the field.

As these challenges are addressed, vertex models will continue to be indispensable
tools for understanding the complexities of tissue morphogenesis and cellular dynamics.

Table 1. Different vertex model (VM) implementation strategies.

Model Strengths Limitations Refs.

Traditional 2D

- Computational simplicity/speed
- Extensively studied with robust,

efficient implementations across
diverse contexts

- Unable to represent complex cell
morphologies

- Unable to model 3D processes
(e.g., organoids)

[4,9,12,14,17,19]

Pseudo-3D VM

- Describes 3D effects without
requiring additional
computational complexity

- Can incorporate extra degrees of
freedom such as nuclear
apicobasal nuclear position

- Careful parameter tuning for
accuracy

- Unable to incorporate complex 3D
dynamics

[26,30]

3D VM

- Realistic representation of 3D
morphogenesis

- Captures apicobasal interactions
and interactions with the
extracellular matrix

- Not limited to epithelial
monolayers

- High computational complexity
- Requires additional

parametrisation of tension,
adhesion and volume
conservation.

- Difficult calibration of parameters
with experimental data

[6,24,25,37,39,40,44]

High resolution VM

- Improved resolution of local
cell–cell interaction dynamics.

- Captures local tensions and
pressures in greater detail

- Precise representation of cell
deformations and motility

- Higher computational complexity
- Lack of benchmarking [10,51]

SPV

- Simpler handling of topological
transitions

- Fewer degrees of freedom than
traditional models

- Inaccurate to represent complex
cell geometries.

- Loss of local mechanical
descriptions due to geometric
constraints.

[19,20,52,53]
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