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Abstract: Built-up areas are the main gathering place for human activities. The widespread availability
of various satellite sensors provides a rich data source for mapping built-up areas. Deep learning
can automatically learn multi-level features of targets from sample data in an end-to-end manner,
overcoming the limitations of traditional methods based on handcrafted features. However, existing
deep-learning-based methods rely on the quantity and distribution of sample data, and the trained
models often exhibit limited generalization ability when faced with image data from novel scenarios.
To effectively tackle this issue, this study proposes an unsupervised domain adaptive transfer learning
method based on adversarial machine learning. This method aims to utilize the feature information
of the source domain to train a classifier suitable for target domain feature discrimination without
requiring a target domain label, and achieve built-up area extraction of different sensor images.
The model comprises a feature extraction module, a label classification module, and a domain
discrimination module. Through adversarial training, the feature knowledge from the source domain
is transferred to the target domain, achieving feature alignment and efficient discrimination of built-
up areas. The Gaofen-2 (GF-2) and Sentinel-2 datasets were employed for experimental evaluation.
The results show that the proposed method, trained on the GF-2 image dataset (source domain), can
be transferred unsupervised to the Sentinel-2 image dataset (target domain), demonstrating robust
detection performance. Further comparative experiments have also demonstrated the superiority of
our method in extracting built-up areas through transfer learning.

Keywords: high-resolution sensors; built-up area; block-based processing; transfer learning

1. Introduction

The spatial distribution information of urban built-up areas is pivotal for urban
planning, land use analysis, and environmental monitoring. Satellite remote sensing,
with its macroscopic and periodic observation capabilities, offers invaluable data sources
for dynamic monitoring of built-up areas. Consequently, the extraction and mapping of
built-up areas from satellite imagery have emerged as a topic of significant interest. Recent
advancements in deep learning have markedly enhanced the delineation of urban built-up
areas, excelling in learning intricate patterns from voluminous datasets and achieving
fine-grained detection of complex spatial patterns in urban built-up areas, significantly
improving the accuracy in built-up area extraction [1,2].

In the endeavor to extract built-up areas, tasks often necessitate cross-image and
cross-regional operations. Yet, within the same geographic area, the stylistic characteristics
of built-up areas can vary significantly when imaged by different sensors. While deep
learning methods have improved accuracy, constructing separate label datasets for each
image from various sensors or regions is laborious and expensive [3,4]. Therefore, transfer
learning has gained prominence [5], as it facilitates the transfer of knowledge from one
domain to another, expanding the applicability of the trained network [6].
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A widely attractive technique of transfer learning is domain adaptation, which can be
achieved through data transformation to harmonize styles across different
domains [7,8]. To overcome the limitations of early methods, an unsupervised domain
adaptation technique based on adversarial training has been developed. This technique
narrows the gap between source and target domains by computing and minimizing their
statistical distance. Common strategies involve employing Maximum Mean Discrepancy
(MMD) [9] or CORAL LOSS [10] as loss functions, or implementing domain obfuscation
through adversarial-based domain discriminators [11,12].

In this study, we incorporate unsupervised domain adaptation technology to achieve
migration extraction of built-up areas from satellite images of different sensors or regions.
Our objective is to eliminate reliance on target domain labels, enabling efficient knowledge
transfer between source and target domains at minimal cost, and improving the model’s
adaptability to target domain data distributions. This innovation paves the way for the
automated, high-precision identification of urban built-up areas.

2. Methodology
2.1. Model Architecture

The proposed domain adaptive model, outlined in Figure 1, employs adversarial
training to align source and target domain features, enhancing the detection of built-
up areas in target images. It consists of three core modules: feature extraction, label
classification, and domain discrimination. The feature extraction module leverages our
previously proposed LMSFF-CNN model [13], which excels in extracting multi-scale fused
features from both the source and target domain images. The extracted features are
subsequently channeled into dual parallel branches. One branch is dedicated to label
classification, tasked with discerning whether the image segment represents a built-up
or non-built-up area. Concurrently, the other branch focuses on domain discrimination,
identifying the origin of the features as either belonging to the source or target domain.
Throughout the training phase, the efficacy of domain alignment is gauged by a domain
discriminator in conjunction with a loss function, which quantifies the divergence between
the feature distributions of the two domains.
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Figure 1. Proposed framework.

2.1.1. Feature Extraction Module

Feature extraction is pivotal for facilitating domain adaptive transfer learning. To
attain effective knowledge transfer, it is imperative to extract comparable features—such as
spectrum and texture—from both the source and target domains to enable feature alignment
and domain confusion. Extracting single-level features can exacerbate the disparity between
domains, hindering alignment efforts. Consequently, this study employs the LMSFF-CNN
model for the feature extraction module, capable of fusing multi-scale features, thereby
preparing them for subsequent processing stages aimed at feature alignment.
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2.1.2. Label Classification Module

The label classification module constitutes a pivotal component dedicated to discrim-
inating between the labels of features produced by the feature extraction module. Its
primary function is to ascertain whether the image represents a built-up area or a non-built-
up area. Initially, a global average pooling layer is utilized to transform input features
into a one-dimensional feature, thereby diminishing the parameter count while computing
output features across each dimension of the feature map. Subsequently, a dropout layer is
appended to the global average pooling layer to mitigate overfitting by probabilistically
neglecting certain features—a strategy particularly advantageous when confronted with
scanty target domain data. Ultimately, a classification layer is constructed utilizing fully
connected layers coupled with a sigmoid activation function to convert input features into
output predictions, effectively discriminating between built-up and non-built-up areas.

2.1.3. Domain Discrimination Module

The main task of the domain discrimination module is to distinguish whether the
input features stem from the source domain or the target domain. This module adopts a con-
figuration akin to the label classification module, with the critical distinction residing in the
utilization of a full connection layer and a softmax function in the terminal layer. Through
cleverly designed training methods, the domain discrimination module can achieve feature
alignment and domain obfuscation, ensuring a more consistent representation of features
from both source and target domains. This approach can significantly improve the model’s
robustness and adaptability, enhancing its performance on new target domains. Adding
the domain discrimination module helps the model adjust to different data distributions,
leading to better results in practical applications.

2.2. Training and Prediction

The annotated dataset within the source domain is represented as { (x5, y5) }ZN:Sl, where
x; denotes the input data from the source domain and y; represents the corresponding

N
labels. The unannotated dataset in the target domain is designated as {xt} oy where x!
]:

] ]
refers to the input data from the target domain. Throughout the training phase, the feature
extraction module Mg, the label classification module M;, and domain discrimination
module Mp are concurrently optimized. The objective is to harmonize the characteristics of
the source and target domains and diminish their disparities through the minimization of
the loss function. The loss function governing the training process is delineated as follows:

L =L+AL;
Ns
= Zi?;ll/thl(ML(MF(xf))fyf) t (1)
+/\Zizs1/]‘t:1Ld (Mp(MF (x,s'//j )),1/0)

In Formula (1), Ns; and N; denote the sample quantities of the source and target
domains, respectively. L; signifies the binary cross-entropy loss function of the label
classification module M;. This loss function measures the classification error based on
the source domain labels. L; refers to the categorical cross-entropy loss function used in
the domain discriminator module Mp, which uses the loss function to assess its ability to
distinguish between samples from the source and target domains:

Ns
L= =5 2, (ilog My (Mp(x9)) + (1 = )log(1 ~ My (Mg (x7)))} ?
Ld = Ld(Ds/1)+Ld(Dt’0)
Ns
= _Nisi§1(}/s = 1)log(Mp(Mp(x3))) 3)
N

+(—N%].§1(y’t = 0)log(Mp(Me(x}))))
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During the model training phase, the initial focus is on training the label classification
module utilizing the source domain data. Subsequently, the training process for the
domain discrimination module is divided into two steps. Initially, domain labels are
attributed to both the target and source domain datasets, followed by freezing the label
classification module while the feature extraction module is trained. In the subsequent step,
the domain labels assigned in the preliminary stage are inverted; the label classification
module remains frozen as the feature extraction module undergoes further training. By
employing adversarial domain training, the model facilitates feature alignment, effectively
mitigating the disparity between the domains and enhancing its proficiency in executing
cross-domain tasks.

3. Experiments and Analysis
3.1. Study Area and Dataset

To verify the effectiveness of the proposed method, this study selected three typical
cities in southeastern China, namely, Shenzhen, Fu’an, and Fuqing. Shenzhen
(113°43'~114°38' E, 22°24/~22°52" N) is located in the southern part of Guangdong Province,
with dense urban construction. The terrain features are mainly plains and hills, and the
building styles are diverse and dense. Fu’an (119°38'~119°59" E, 26°41'~27°24’ N) is located
in the northeast of Fujian Province, with diverse terrain. The built-up areas are mainly
concentrated in plains and river valleys, and there is a large amount of agricultural land
and forest land around it. Fuqing (119°23'~119°49’ E, 25°18'~25°52' N) is located along the
southern coast of Fujian Province, with a terrain dominated by plains and hills. The city is
densely built, with both industry and agriculture coexisting, exhibiting typical urban—rural
integration characteristics.

Our dataset consists of two domains, the source domain and the target domain.
The source domain data comes from GF-2 satellite imagery in Shenzhen, with a spatial
resolution of 1 m. We randomly selected 300 annotated sample images covering as diverse
scenes as possible, including 150 images of built-up areas and 150 images of non-built-up
areas. The target domain data comes from Sentinel-2 images with a resolution of 10 m, and
300 unlabeled images were selected as the training data for the target domain. To better
evaluate the performance of the model, in addition to the training data in the target domain,
we annotated 70 images as the test set for the target domain.

3.2. Experimental Setup

The experiment was conducted on a high-performance computing platform, with the
following specific configuration: a Dell workstation (manufactured by Dell Inc., Round
Rock, TX, USA) equipped with an Intel Xeon E5-2620 v3 CPU, 32 GB of memory, and
NVIDIA Quadro K620 graphics card, ensuring computing speed and data processing
capabilities. The software environment includes the Windows operating system, Python
3.6 programming language, integrated deep learning frameworks TensorFlow 1.4, and
Keras 2.3.1.

In terms of experimental parameter settings, the learning rate is initialized to 0.001 to
promote rapid convergence of the model, the training epochs are set to 50, and the sample
size for each batch is set to 10 to balance training speed and model update frequency,
achieving efficient iterative optimization.

3.3. Performance Comparison of Different Methods

To evaluate the performance of the proposed method, we compared it with four
alternative approaches: direct prediction using only the source domain dataset (Baselinel),
a fine-tuned transfer learning method (Baseline2), and domain adaptive methods utilizing
CORAL-LOSS (Baseline3) and MMD-LOSS (Baseline4) for feature alignment, respectively.
The results are shown in Table 1. The direct prediction strategy, relying exclusively on
source domain data to forecast target domain images, yielded unsatisfactory results. For
example, the F1-Score for Shenzhenl plummeted to a mere 0.2827. This indicates that



Proceedings 2024, 110, 10

50f 8

although the source domain and target domain data come from the same region, the data
characteristics of different sensors are quite different. The fine-tuned transfer learning
approach exhibited enhanced performance yet fell short of achieving the ideal precision.

Table 1. Accuracy Evaluation Results of Different Transfer Learning Methods.

Study Area Method P R F1-Score IoU
Baselinel 0.5926 0.6162 0.6042 0.4329
Baseline2 0.5921 0.8802 0.7080 0.5480
Fu’an Baseline3 0.9207 0.5180 0.6630 0.4959
Baseline4 0.8274 0.6447 0.7247 0.5683
Proposed 0.8712 0.8109 0.8399 0.7241
Baselinel 0.6042 0.8090 0.6917 0.5288
Baseline2 0.5898 0.9143 0.7171 0.5590
Fugqing Baseline3 0.8743 0.7064 0.7814 0.6413
Baseline4 0.8283 0.7399 0.7816 0.6415
Proposed 0.7677 0.9249 0.8390 0.7227
Baselinel 0.8511 0.1570 0.2652 0.1528
Baseline2 0.8813 0.4891 0.6291 0.4589
Shenzhen 1 Baseline3 0.8929 0.7600 0.8211 0.6965
Baseline4 0.9042 0.9138 0.9090 0.8332
Proposed 0.9412 0.8930 0.9165 0.8458
Baselinel 0.6437 0.7517 0.6935 0.5309
Baseline2 0.5997 0.9609 0.7385 0.5855
Shenzhen 2 Baseline3 0.7189 0.9374 0.8137 0.6859
Baseline4 0.7773 0.9570 0.8578 0.7511
Proposed 0.8690 0.8978 0.8832 0.7908

By contrast, the proposed domain adaptive method showcased distinct advantages
across the majority of the test images. Remarkably, the F1-Score for a specific image within
Shenzhen soared to 0.9193, underscoring its robust consistency. However, the utilization of
CORAL-LOSS and MMD-LOSS for feature alignment engendered results that fluctuated
considerably, lacking the requisite stability. Figure 2 illustrates the extraction results of
built-up areas using different methods. The proposed method achieves more complete and
accurate extraction, highlighting its effectiveness.

Overall, the proposed domain adaptation method performed the best in experiments
and has significant advantages over traditional transfer learning methods, especially in the
absence of annotated samples, enhancing its robustness and applicability.

3.4. Generalized Application of the Model

To further validate the feasibility of the proposed domain adaptive method for extract-
ing built-up areas in a large area, we selected Sentinel-2 satellite image data covering three
major cities, Shenzhen, Zhuhai, and Xiamen, for experimental evaluation. As depicted in
Figures 3-5, the spatial distribution of built-up areas within these municipalities is hetero-
geneous, and the building types exhibit considerable variability. Despite these challenges,
the resultant maps for each region accurately displayed the location and extent of built-up
areas, thereby demonstrating the effectiveness of the proposed method.

Although the delineation of urban areas is predominantly precise, discrepancies are
observed in non-built-up areas due to significant disparities between source and target
domain characteristics. This observation underscores the necessity for refining the domain
adaptive techniques to mitigate such inaccuracies.
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(8)

Figure 2. Extraction results of different methods: (a) The test images from left to right are Fu’an,
Fuqing, Shenzhenl, and Shenzhen?2; (b) Ground truths; (c) Baselinel; (d) Baseline2; (e) Baseline3;
(f) Baseline4; (g) Proposed method.
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Figure 5. Sentinel-2 image and extraction results in Xiamen City.

4. Conclusions

For the task of transfer learning in remote sensing images from different sensors, this
study introduces an unsupervised domain adaptive method. The method proves effective
in addressing the complexities associated with identifying built-up areas across varying
images and geographical locales without necessitating a lot of annotation work from
the target domain, thereby markedly reducing the labor cost. A comparative evaluation
against four prevailing transfer learning methods reveals that the proposed technique
excels in terms of both stability and accuracy, especially in image prediction of large-scale
areas such as Shenzhen and Zhuhai. This showcases the method’s strong generalization
ability. Prospective research endeavors will concentrate on enhancing this technique and
broadening its application in remote sensing analyses to facilitate urban planning and
environmental management.
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