Role of Nitrogen Fertilization and Sowing Date in Productivity and Climate Change Adaptation Forecast in Rice–Wheat Cropping System
<p>Relationships between modeled and measured rice grain yield during (<b>a</b>) DSSAT calibration, (<b>b</b>) DSSAT evaluation (<b>c</b>) APSIM calibration and (<b>d</b>) APSIM evaluation.</p> "> Figure 2
<p>Climate change impact assessment and adaptation strategies in three high-yielding rice cultivars at baseline (2017–2018 conditions), Scenario 1 (+1.5 °C with 510 ppm CO<sub>2</sub>), Scenario 2 (Scenario 1 with 10% fertilizer increase), Scenario 3 (Scenario 1 with 10 days earlier sowing) by using (<b>a</b>) DSSAT and (<b>b</b>) APSIM after calibration and evaluation. Standard error is presented as error bars.</p> "> Figure 3
<p>Climate change impact assessment and adaptation strategies in three high-yielding wheat cultivars at baseline (2017–2018 conditions), Scenario 1 (+1.5 °C with 510 ppm CO<sub>2</sub>), Scenario 2 (Scenario 1 with 10% fertilizer increase), Scenario 3 (Scenario 1 with 15 days earlier transplanting) by using (<b>a</b>) DSSAT and (<b>b</b>) APSIM after calibration and evaluation. Standard error is presented as error bars.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Description
2.2. Treatments and Data Measurements
2.3. Model Data Set, Calibration, and Evaluation
2.4. Climate Change Impact Assessment and Adaptation Scenarios
2.5. Statistical Analysis
3. Results
3.1. Impact of Nitrogen Levels and Transplanting Dates on Rice Grain and Biological Yield (kg ha−1)
3.2. Impact of Nitrogen Levels and Sowing Dates on Wheat Grain and Biological Yield
3.3. Models Calibration and Evaluation
3.4. Climate Change Impact Assessment and Adaptation Strategies in Rice
3.5. Climate Change Impact Assessment and Adaptation Strategies in Wheat
4. Discussion
4.1. Impact of Nitrogen Fertilization and Transplanting Dates on Rice Yield
4.2. Impact of Nitrogen Fertilization and Sowing Dates on Wheat Yield
4.3. Models Performance
4.4. Climate Change Impact Assessment in Rice–Wheat Cropping System
4.5. Climate Change Adaptation Strategies for Rice–Wheat Cropping System
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McLennan, M. The Global Risks Report, 17th ed.; World Economic Forum: Cologny/Geneva, Switzerland, 2022; 116p. [Google Scholar]
- Dinar, A.; Mendelsohn, R.; Williams, L. The Distributional Impact of Climate Change on Rich and Poor Countries. Environment and Development Economics. Environ. Dev. Econ. 2006, 11, 159–178. [Google Scholar]
- Kurukulasuriya, P.; Mendelsohn, R.; Hassan, R.; Benhin, J.; Deressa, T.; Diop, M.; Eid, H.M.; Fosu, K.Y.; Gbetibouo, G.; Jain, S.; et al. Will African Agriculture Survive Climate Change? World Bank Econ. Rev. 2006, 20, 367–388. [Google Scholar] [CrossRef]
- Seo, S.N.; Mendelsohn, R. An Analysis of Crop Choice: Adapting to Climate Change in South American Farms. Ecol. Econ. 2008, 67, 109–116. [Google Scholar] [CrossRef]
- Kabir, M.; Habiba, U.E.; Khan, W.; Shah, A.; Rahim, S.; Rios-Escalante, P.R.D.l.; Farooqi, Z.U.R.; Ali, L. Climate Change Due to Increasing Concentration of Carbon Dioxide and Its Impacts on Environment in 21st Century; a Mini Review. J. King Saud. Univ. Sci. 2023, 35, 102693. [Google Scholar] [CrossRef]
- Janjua, P.Z.; Samad, G.; Khan, N. Climate Change and Wheat Production in Pakistan: An Autoregressive Distributed Lag Approach. NJAS Wagening. J. Life Sci. 2014, 68, 13–19. [Google Scholar] [CrossRef]
- Bokhari, S.A.A.; Rasul, G.; Ruane, A.C.; Hoogenboom, G.; Ahmad, A. The Past and Future Changes in Climate of the Rice-Wheat Cropping Zone in Punjab, Pakistan. Pak. J. Meteorol. 2017, 13, 20210014021. [Google Scholar]
- Jehangir, W.A.; Masih, I.; Ahmed, S.; Gill, M.A.; Ahmad, M.; Mann, R.A.; Chaudhary, M.R.; Qureshi, A.S.; Turral, H. Sustaining Crop Water Productivity in Rice-Wheat Systems of South Asia: A Case Study from the Punjab, Pakistan; IWMI: Colombo, Sri Lanka, 2007; Volume 115. [Google Scholar]
- Valone, T.F. Linear Global Temperature Correlation to Carbon Dioxide Level, Sea Level, and Innovative Solutions to a Projected 6 C Warming by 2100. J. Geosci. Environ. Prot. 2021, 9, 84. [Google Scholar] [CrossRef]
- World Bank. Climate Risk Country Profile: Pakistan: The World Bank Group and the Asian Development Bank 2021; World Bank: Washington, DC, USA, 2021. [Google Scholar]
- Iqbal, M.M. Climate change impacts on agriculture and building resilience in Pakistan. In APO Workshop on Developing Farming Systems for Climate Change Mitigation; IWMI: Colombo, Sri Lanka, 2013. [Google Scholar]
- Krishnan, P.; Ramakrishnan, B.; Reddy, K.R.; Reddy, V.R. High-Temperature Effects on Rice Growth, Yield, and Grain Quality. Adv. Agron. 2011, 111, 87–206. [Google Scholar]
- Hossain, A.; Sarker, M.; Hakim, M.; Lozovskaya, M.; Zvolinsky, V. Effect of Temperature on Yield and Some Agronomic Characters of Spring Wheat (Triticum aestivum L.) Genotypes. Intern. J. Agric. Res. Innov. Technol. 2013, 1, 44–54. [Google Scholar] [CrossRef]
- Anser, K.M.; Hina, T.; Hameed, S.; Hamid Nasir, M.; Ahmad, I.; Ur Rehman Naseer, M.A. Modeling Adaptation Strategies against Climate Change Impacts in Integrated Rice-Wheat Agricultural Production System of Pakistan. Int. J. Environ. Res. Public. Health 2020, 17, 2522. [Google Scholar] [CrossRef]
- Grigorieva, E.; Livenets, A.; Stelmakh, E. Adaptation of Agriculture to Climate Change: A Scoping Review. Climate 2023, 11, 202. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L.; Cocq, K.L.; Chang, C.; Li, Z.; Chen, F.; Liu, Y.; Wu, L. Climate Change and Environmental Impacts on and Adaptation Strategies for Production in Wheat-Rice Rotations in Southern China. Agric. For. Meteorol. 2020, 292–293, 108136. [Google Scholar] [CrossRef]
- Yadav, M.R.; Kumar, S.; Lal, M.K.; Kumar, D.; Kumar, R.; Yadav, R.K.; Kumar, S.; Nanda, G.; Singh, J.; Udawat, P.; et al. Mechanistic Understanding of Leakage and Consequences and Recent Technological Advances in Improving Nitrogen Use Efficiency in Cereals. Agronomy 2023, 13, 527. [Google Scholar] [CrossRef]
- Wajid, A.; Hussain, K.; Ilyas, A.; Habib-Ur-rahman, M.; Shakil, Q.; Hoogenboom, G. Crop Models: Important Tools in Decision Support System to Manage Wheat Production under Vulnerable Environments. Agriculture 2021, 11, 1166. [Google Scholar] [CrossRef]
- Moghaddam, H.; Oveisi, M.; Mehr, M.K.; Bazrafshan, J.; Naeimi, M.H.; Kaleibar, B.P.; Müller-Schärer, H. Earlier Sowing Combined with Nitrogen Fertilization to Adapt to Climate Change Effects on Yield of Winter Wheat in Arid Environments: Results from a Field and Modeling Study. Eur. J. Agron. 2023, 146, 126825. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, W.; Zhuang, Q.; Luo, Y. Adaptation of Paddy Rice in China to Climate Change: The Effects of Shifting Sowing Date on Yield and Irrigation Water Requirement. Agric. Water Manag. 2020, 228, 105890. [Google Scholar] [CrossRef]
- Loague, K.; Green, R.E. Statistical and Graphical Methods for Evaluating Solute Transport Models: Overview and Application. J. Contam. Hydrol. 1991, 7, 51–73. [Google Scholar] [CrossRef]
- Fageria, N.K.; Carvalho, M.C.S.; dos Santos, F.C. Response of Upland Rice Genotypes to Nitrogen Fertilization. Commun. Soil. Sci. Plant Anal. 2014, 45, 2058–2066. [Google Scholar] [CrossRef]
- Muhammad, N.; Zheng, Y.; Nabi, F.; Yang, G.; Sajid, S.; Hakeem, A.; Wang, X.; Peng, Y.; Khan, Z.; Hu, Y. Responses of Nitrogen Accumulation and Translocation in Five Cytoplasmic Hybrid Rice Cultivars. Plant Soil Environ. 2022, 68, 73–81. [Google Scholar] [CrossRef]
- Sarkar, S.; Sarkar, M.; Islam, N.; Paul, S. Yield and Quality of Aromatic Fine Rice as Affected by Variety and Nutrient Management. J. Bangla Agric. Univ. 2016, 12, 279–284. [Google Scholar] [CrossRef]
- Singh, A.K.; Chandra, N.; Bharti, R.C. Effects of Genotype and Planting Time on Phenology and Performance of Rice (Oryza sativa L.). Vegetos 2012, 25, 151–156. [Google Scholar]
- Ali, M. Stability Analysis of Bread Wheat Genotypes under Different Nitrogen Fertilizer Levels. J. Plant Product. 2017, 8, 261–275. [Google Scholar] [CrossRef]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of Fertilizer Nitrogen in Cereal Production: Retrospects and Prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar]
- Liu, J.; He, Q.; Zhou, G.; Song, Y.; Guan, Y.; Xiao, X.; Sun, W.; Shi, Y.; Zhou, K.; Zhou, S.; et al. Effects of Sowing Date Variation on Winter Wheat Yield: Conclusions for Suitable Sowing Dates for High and Stable Yield. Agronomy 2023, 13, 991. [Google Scholar] [CrossRef]
- Walker, A.P.; Mutuo, P.K.; Van Noordwijk, M.; Albrecht, A.; Cadisch, G. Modelling of Planted Legume Fallows in Western Kenya Using WaNuLCAS. (I) Model Calibration and Validation. Agroforest Syst. 2007, 70, 197–209. [Google Scholar] [CrossRef]
- Hussain, K.; Wongleecharoen, C.; Hilger, T.; Ahmad, A.; Kongkaew, T.; Cadisch, G. Modelling Resource Competition and Its Mitigation at the Crop-Soil-Hedge Interface Using WaNuLCAS. Agroforest Syst. 2016, 90, 1025–1044. [Google Scholar] [CrossRef]
- Hussain, K.; Ilyas, A.; Wajid, A.; Ahmad, A.; Mahmood, N.; Hilger, T.; Kongkaew, T. Alley Cropping Simulation: An Opportunity for Sustainable Crop Production on Tropical Uplands. Pak. J. Agric. Sci. 2019, 56, 109–112. [Google Scholar]
- Peng, S.; Huang, J.; Sheehy, J.E.; Laza, R.C.; Visperas, R.M.; Zhong, X.; Centeno, G.S.; Khush, G.S.; Cassman, K.G. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA 2004, 101, 9971–9975. [Google Scholar] [CrossRef] [PubMed]
- Horie, T.; Baker, J.T.; Nakagawa, H.; Matsui, T.; Kim HanYong, K.H. Crop Ecosystem Responses to Climatic Change: Rice. In Climate Change and Global Crop Productivity; CABI: Wallingford, UK, 2000; pp. 81–106. [Google Scholar]
- Prasad, P.V.V.; Boote, K.J.; Allen, L.H.; Sheehy, J.E.; Thomas, J.M.G. Species, Ecotype and Cultivar Differences in Spikelet Fertility and Harvest Index of Rice in Response to High Temperature Stress. Field Crops Res. 2006, 95, 398–411. [Google Scholar] [CrossRef]
- Mohammed, A.R. Effects of High Nighttime Temperature and Role of Plant Growth Regulators on Growth, Development and Physiology of Rice Plants; Texas A&M. University: College Station, TX, USA, 2009. [Google Scholar]
- Asseng, S.; Foster, I.A.N.; Turner, N.C. The Impact of Temperature Variability on Wheat Yields. Glob. Chang. Biol. 2011, 17, 997–1012. [Google Scholar] [CrossRef]
- Turner, A.G.; Annamalai, H. Climate Change and the South Asian Summer Monsoon. Nat. Clim. Chang. 2012, 2, 587–595. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, X.; Li, J.; Xin, C. Effects of Seedling Age and Cultivation Density on Agronomic Characteristics and Grain Yield of Mechanically Transplanted Rice. Sci. Rep. 2017, 7, 14072. [Google Scholar] [CrossRef]
- Solomon, S.; Plattner, G.K.; Knutti, R.; Friedlingstein, P. Irreversible Climate Change Due to Carbon Dioxide Emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S. Impact of Climate Change on Soil Fertility. In Climate Change and the Microbiome; Choudhary, D.K., Mishra, A., Varma, A., Eds.; Soil Biology; Springer: Cham, Switzerland, 2021; Volume 63, pp. 551–569. [Google Scholar] [CrossRef]
- Liu, M.; Xu, X.; Jiang, Y.; Huang, Q.; Huo, Z.; Liu, L.; Huang, G. Responses of Crop Growth and Water Productivity to Climate Change and Agricultural Water-Saving in Arid Region. Sci. Total Environ. 2020, 703, 134621. [Google Scholar] [CrossRef]
- Pequeno, D.N.L.; Hernández-Ochoa, I.M.; Reynolds, M.; Sonder, K.; Moleromilan, A.; Robertson, R.D.; Lopes, M.S.; Xiong, W.; Kropff, M.; Asseng, S. Climate Impact and Adaptation to Heat and Drought Stress of Regional and Global Wheat Production. Environ. Res. Lett. 2021, 16, 054070. [Google Scholar] [CrossRef]
- Sultana, H.; Ali, N.; Iqbal, M.M.; Khan, A.M. Vulnerability and Adaptability of Wheat Production in Different Climatic Zones of Pakistan under Climate Change Scenarios. Clim. Chang. 2009, 94, 123–142. [Google Scholar] [CrossRef]
- Gul, F.; Ahmed, I.; Ashfaq, M.; Jan, D.; Fahad, S.; Li, X.; Wang, D.; Fahad, M.; Fayyaz, M.; Shah, S.A. Use of Crop Growth Model to Simulate the Impact of Climate Change on Yield of Various Wheat Cultivars under Different Agro-Environmental Conditions in Khyber Pakhtunkhwa, Pakistan. Arab. J. Geosci. 2020, 13, 112. [Google Scholar] [CrossRef]
- Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R. Global Crop Yield Response to Extreme Heat Stress under Multiple Climate Change Futures. Environ. Res. Lett. 2014, 9, 034011. [Google Scholar] [CrossRef]
- Powell, J.P.; Reinhard, S. Measuring the Effects of Extreme Weather Events on Yields. Weather Clim. Extrem. 2015, 12, 69–79. [Google Scholar] [CrossRef]
- Trnka, M.; Rötter, R.P.; Ruiz-Ramos, M.; Kersebaum, K.C.; Olesen, J.E.; Žalud, Z.; Semenov, M.A. Adverse Weather Conditions for European Wheat Production Will Become More Frequent with Climate Change. Nat. Clim. Chang. 2014, 4, 637–643. [Google Scholar] [CrossRef]
Scenarios | Description |
---|---|
Baseline for rice and wheat productivity | |
Baseline * | Average grain yield (kg ha−1) measured from field experiments of rice transplanted on 15 July under recommended fertilizer application and wheat planted on 15 November under recommended fertilizer application were used as baseline. |
Forecasting increased temperature and CO2 impacts on rice and wheat productivity | |
Scenario 1 +1.5 °C, 510 ppm level of CO2 | 1.5 °C was added in the experimental year mean temperature with 510 ppm level of CO2 (this was carried out in the environmental modification facility of models) |
Climate change adaptation strategies for rice under changing climate scenario | |
Scenario 2 10% increase in nitrogen fertilization (132 kg N ha−1) | Models were run with a 10% increase in recommended fertilization (120 kg N ha−1) under climate change conditions (+1.5 °C, 510 ppm level of CO2) |
Scenario 3 15 days earlier transplanting of rice | Models were run with a 1 July transplanting date under climate change conditions (+1.5 °C, 510 ppm level of CO2) |
Climate change adaptation strategies for wheat under changing climate scenario | |
Scenario 2 10% increase in fertilization (154 kg N ha−1) | Models were run with a 10% increase in standard fertilization (140 kg N ha−1) under climate change conditions (+1.5 °C, 510 ppm level of CO2) |
Scenario 3 10 days earlier planting of wheat | Models were run with 10 days earlier planting of wheat (5 November) under climate change conditions (+1.5 °C, 510 ppm level of CO2) |
2018 | ||||||
Nitrogen Levels (kg ha−1) | Basmati Super | Basmati-515 | Kissan Basmati | |||
GY | BY | GY | BY | GY | BY | |
0 | 980 d | 2401 c | 1001 d | 2510 d | 1012 d | 2439 d |
60 | 2510 c | 6782 b | 2409 c | 6830 c | 2501 c | 6799 c |
120 | 4453 a | 11,553 a | 4512 a | 11,005 a | 4482 a | 11,174 a |
180 | 3938 b | 10,190 a | 4001 b | 10,211 b | 3919 b | 10,111 b |
LSD value | 453 | 532 | 405 | 554 | 434 | 498 |
2019 | ||||||
Nitrogen Levels (kg ha−1) | Basmati Super | Basmati-515 | Kissan Basmati | |||
GY | BY | GY | BY | GY | BY | |
0 | 1008 d | 2640 d | 1099 d | 2709 d | 1102 d | 2707 d |
60 | 2810 c | 6978 c | 2710 c | 6976 c | 2854 c | 6890 c |
120 | 4686 a | 11,690 a | 4656 a | 11,650 a | 4671 a | 11,670 a |
180 | 4055 b | 10,344 b | 4050 b | 10,373 b | 4043 b | 10,281 b |
LSD value | 389 | 620 | 390 | 590 | 423 | 510 |
2018 | ||||||
Transplanting date | Basmati Super | Basmati-515 | Kissan Basmati | |||
GY | BY | GY | BY | GY | BY | |
1 July | 4106 b | 10,543 b | 4171 b | 10,645 b | 4138 b | 10,689 a |
15 July | 4453 a | 11,553 a | 4512 a | 11,005 a | 4482 a | 11,174 a |
30 July | 3591 c | 10,243 c | 3796 c | 10,207 c | 3693 c | 10,225 b |
LSD value | 215 | 235 | 280 | 302 | 256 | 222 |
2019 | ||||||
Transplanting date | Basmati Super | Basmati-515 | Kissan Basmati | |||
GY | BY | GY | BY | GY | BY | |
1 July | 4066 b | 10,947 b | 4143 b | 10,945 b | 4105 b | 11,394 b |
15 July | 4686 a | 11,690 a | 4656 a | 11,650 a | 4671 a | 11,670 a |
30 July | 3852 b | 10,573 c | 4003 b | 10,534 c | 3928 c | 11,004 c |
LSD value | 245 | 282 | 202 | 186 | 190 | 204 |
2017–2018 | ||||||
Nitrogen Levels (kg ha−1) | Galaxy-13 | Ujala-2016 | Anaj-2017 | |||
GY | BY | GY | BY | GY | BY | |
0 | 1849 d | 6005 c | 1817 d | 6656 d | 1861 d | 6923 d |
70 | 3678 c | 10,301 b | 3633 c | 10,205 c | 4262 c | 10,161 c |
140 | 5420 a | 12,749 a | 5290 a | 12,386 a | 5534 a | 12,540 a |
210 | 5039 b | 10,730 b | 5034 b | 10,897 b | 5012 b | 10,912 b |
LSD value | 266 | 622 | 430 | 566 | 389 | 539 |
2018–2019 | ||||||
Nitrogen Levels (kg ha−1) | Galaxy-13 | Ujala-2016 | Anaj-2017 | |||
GY | BY | GY | BY | GY | BY | |
0 | 1422 d | 5210 d | 1536 d | 5305 d | 1667 d | 5323 d |
70 | 3231 c | 10,022 c | 3422 c | 10,010 c | 3255 c | 10,001 c |
140 | 4698 a | 11,449 a | 4893 a | 11,820 a | 5469 a | 11,561 a |
210 | 4022 b | 10,640 b | 4021 b | 10,643 b | 4109 b | 10,709 b |
LSD value | 338 | 520 | 300 | 590 | 376 | 501 |
2017–2018 | ||||||
Sowing Dates | Galaxy-13 | Ujala-2016 | Anaj-2017 | |||
GY | BY | GY | BY | GY | BY | |
1 November | 5054 b | 11,991 b | 5023 a | 11,799 b | 5080 b | 11,692 b |
15 November | 5420 a | 12,749 a | 5290 a | 12,386 a | 5534 a | 12,540 a |
1 December | 4435 c | 11,382 c | 4521 b | 11,081 c | 4612 c | 11,091 c |
LSD value | 382 | 504 | 253 | 533 | 423 | 412 |
2018–2019 | ||||||
Sowing Dates | Galaxy-13 | Ujala-2016 | Anaj-2017 | |||
GY | BY | GY | BY | GY | BY | |
1 November | 4009 b | 10,630 b | 4034 b | 10,980 b | 5387 b | 11,072 b |
15 November | 4698 a | 11,449 a | 4893 a | 11,820 a | 5469 a | 11,561 a |
1 December | 3702 c | 10,001 c | 3865 c | 10,121 c | 4439 c | 10,982 c |
LSD value | 203 | 520 | 311 | 620 | 389 | 587 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, K.; Hakki, E.E.; Ilyas, A.; Gezgin, S.; Kamran, M.A. Role of Nitrogen Fertilization and Sowing Date in Productivity and Climate Change Adaptation Forecast in Rice–Wheat Cropping System. Nitrogen 2024, 5, 977-991. https://doi.org/10.3390/nitrogen5040062
Hussain K, Hakki EE, Ilyas A, Gezgin S, Kamran MA. Role of Nitrogen Fertilization and Sowing Date in Productivity and Climate Change Adaptation Forecast in Rice–Wheat Cropping System. Nitrogen. 2024; 5(4):977-991. https://doi.org/10.3390/nitrogen5040062
Chicago/Turabian StyleHussain, Khalid, Erdoğan Eşref Hakki, Ayesha Ilyas, Sait Gezgin, and Muhammad Asif Kamran. 2024. "Role of Nitrogen Fertilization and Sowing Date in Productivity and Climate Change Adaptation Forecast in Rice–Wheat Cropping System" Nitrogen 5, no. 4: 977-991. https://doi.org/10.3390/nitrogen5040062
APA StyleHussain, K., Hakki, E. E., Ilyas, A., Gezgin, S., & Kamran, M. A. (2024). Role of Nitrogen Fertilization and Sowing Date in Productivity and Climate Change Adaptation Forecast in Rice–Wheat Cropping System. Nitrogen, 5(4), 977-991. https://doi.org/10.3390/nitrogen5040062