Adsorption on Fractal Surfaces: A Non Linear Modeling Approach of a Fractional Behavior
<p>Vicsek fractal (<b>left</b>), Sierpinski triangle (<b>middle</b>) and Sierpinski carpet (<b>right</b>).</p> "> Figure 2
<p>Densities of adsorbed disks on Vicsek fractal (<b>left</b>), Sierpinski triangle (<b>middle</b>) and Sierpinski carpet (<b>right</b>).</p> "> Figure 3
<p>High regime coverage behavior of RSA on Vicsek fractal (<b>left</b>), Sierpinski triangle (<b>middle</b>) and Sierpinski carpet (<b>right</b>).</p> "> Figure 4
<p>Solution <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>u</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>α</mi> <mspace width="-0.166667em"/> <mo>∈</mo> <mspace width="-0.166667em"/> <mo>{</mo> <mn>0.1</mn> <mo>,</mo> <mn>0.2</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mn>0.5</mn> <mo>}</mo> </mrow> </semantics></math> (<b>left</b>) and <math display="inline"><semantics> <mrow> <mi>α</mi> <mspace width="-0.166667em"/> <mo>∈</mo> <mspace width="-0.166667em"/> <mo>{</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo>−</mo> <mn>0.9</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mo>−</mo> <mn>0.1</mn> <mo>}</mo> </mrow> </semantics></math> (<b>right</b>).</p> "> Figure 5
<p>Solution <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>u</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>α</mi> <mspace width="-0.166667em"/> <mo>∈</mo> <mspace width="-0.166667em"/> <mo>{</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo>−</mo> <mn>0.9</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mo>−</mo> <mn>0.1</mn> <mo>}</mo> </mrow> </semantics></math> seen as an impulse response.</p> "> Figure 6
<p>Comparison of RSA density data with model (<a href="#FD3-fractalfract-05-00065" class="html-disp-formula">3</a>) response with criterion <math display="inline"><semantics> <mi>ε</mi> </semantics></math>.</p> "> Figure 7
<p>Comparison of RSA density data with model (<a href="#FD3-fractalfract-05-00065" class="html-disp-formula">3</a>) response optimized with criterion <math display="inline"><semantics> <msub> <mi>ε</mi> <mrow> <mi>L</mi> <mi>T</mi> </mrow> </msub> </semantics></math> (<b>left</b>) and with criterion <math display="inline"><semantics> <mi>ε</mi> </semantics></math> (<b>right</b>).</p> "> Figure 8
<p>Approximation of the derivative of <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> (red) and function <span class="html-italic">f</span> evaluated in <math display="inline"><semantics> <mi>θ</mi> </semantics></math> after optimization (blue).</p> "> Figure 9
<p>Block diagram for simulation of model (<a href="#FD8-fractalfract-05-00065" class="html-disp-formula">8</a>).</p> "> Figure 10
<p>Comparison between the RSA density data (red) and the model (<a href="#FD8-fractalfract-05-00065" class="html-disp-formula">8</a>) (blue).</p> "> Figure 11
<p>Comparison between the RSA density data (red) and the model (<a href="#FD8-fractalfract-05-00065" class="html-disp-formula">8</a>) (blue) for Sierpinsky triangle fractal.</p> "> Figure 12
<p>Comparison between the RSA density data (red) and the model (<a href="#FD8-fractalfract-05-00065" class="html-disp-formula">8</a>) (blue) for Sierpinsky carpet fractal.</p> ">
Abstract
:1. Introduction
2. Evidence of the Fractional Asymptotic Behavior of Some Fractal Surfaces
Algorithm 1 Random Sequential Adsorption |
A random point of the fractal is selected at each iteration of the process. A disc of radius R and center c will fix on the surface if:
|
3. Power-Law Non Linear Dynamical Modeling
3.1. Detailed Modeling Approach on the Vicsek Fractal
3.2. Result for the Other Fractals
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Awad, A.M.; Jalab, R.; Benamor, A.; Nasser, M.S.; Ba-Abbad, M.M.; El-Naas, M.; Mohammad, A.W. Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview. J. Mol. Liq. 2020, 301, 112335. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Adeniyi, A.G. Adsorption of pollutants by plant bark derived adsorbents: An empirical review. J. Water Process. Eng. 2020, 35, 101228. [Google Scholar] [CrossRef]
- Bonilla-Petriciolet, A.; Mendoza-Castillo, D.I.; Reynel-Ávila, H.E. Adsorption Processes for Water Treatment and Purification; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Halil, H.; Menini, P.; Aubert, H. Novel microwave gas sensor using dielectric resonator with SnO2 sensitive layer. Procedia Chem. 2009, 1, 935–938. [Google Scholar] [CrossRef]
- Nikolaou, I.; Hallil, H.; Conédéra, V.; Deligeorgis, G.; Dejous, C.; Rebiere, D. Inkjet-printed graphene oxide thin layers on love wave devices for humidity and vapor detection. IEEE Sens. J. 2016, 16, 7620–7627. [Google Scholar] [CrossRef]
- Swendsen, R.H. Dynamics of random sequential adsorption. Phys. Rev. A 1981, 24, 504–508. [Google Scholar] [CrossRef]
- Cieśla, M.; Ziff, R.M. Boundary conditions in random sequential adsorption. J. Stat. Mech. Theory Exp. 2018, 2018, 043302. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Torquato, S. Precise algorithm to generate random sequential addition of hard hyperspheres at saturation. Phys. Rev. E 2013, 88, 053312. [Google Scholar] [CrossRef] [Green Version]
- Feder, J.; Giaever, I. Adsorption of ferritin. J. Colloid Interface Sci. 1980, 78, 144–154. [Google Scholar] [CrossRef]
- Viot, P.; Tarjus, G.; Ricci, S.; Talbot, J. Random sequential adsorption of anisotropic particles. I. Jamming limit and asymptotic behavior. J. Chem. Phys. 1992, 97, 5212–5218. [Google Scholar] [CrossRef] [Green Version]
- Bashiri, H.; Shajari, A. Theoretical Study of Fractal-Like Kinetics of Adsorption. Adsorpt. Sci. Technol. 2014, 32, 623–634. [Google Scholar] [CrossRef]
- Lagergren, S. About the Theory of So-Called Adsorption of Soluble Substances. K. Sven. Vetenskapsakademiens Handl. 1898, 24, 1–39. [Google Scholar]
- Kopelman, R. Fractal Reaction Kinetics. Science 1988, 241, 1620–1626. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S.; Mckay, G. The Kinetics of Sorption of Divalent Metal Ions Onto Sphagnum Moss Peat. Water Res. 2000, 34, 735–742. [Google Scholar] [CrossRef]
- Brouers, F.; Sotolongo-Costa, O. Generalized Fractal Kinetics in Complex Systems (Application to Biophysics and Biotechnology). Phys. A Stat. Mech. Its Appl. 2006, 368, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Haerifar, M.; Azizian, S. Fractal-Like Adsorption Kinetics at the Solid/Solution Interface. J. Phys. Chem. C 2012, 116, 13111–13119. [Google Scholar] [CrossRef]
- Tartaglione, V.; Farges, C.; Sabatier, J. Non linear dynamical modeling of adsorption and desorption processes with power-law kinetics: Application to CO2 capture. Phys. Rev. E 2020, 102, 052102. [Google Scholar] [CrossRef]
- Ciesla, M.; Barbasz, J. Random Sequential Adsorption on Fractals. J. Chem. Phys. 2012, 137, 044706. [Google Scholar] [CrossRef] [Green Version]
- Le Mehaute, A.; Crepy, G. Introduction to transfer and motion in fractal media: The geometry of kinetics. Solid State Ion. 1983, 9–10, 17–30. [Google Scholar] [CrossRef]
- Sapoval, B. Universalités et Fractales: Jeux d’enfant ou délits d’initié? Editions Flammarion: Paris, France, 1997. [Google Scholar]
- Krapivsky, P.L.; Redner, S.; Ben-Naim, E. A Kinetic View of Statistical Physics; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef] [Green Version]
- Qi, H.; Ma, J.; Wong, P.Z. Adsorption isotherms of fractal surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2002, 206, 401–407. [Google Scholar] [CrossRef]
- Watt-Smith, M.; Edler, K.; Rigby, S. An experimental study of gas adsorption on fractal surfaces. Langmuir 2005, 21, 2281–2292. [Google Scholar] [CrossRef]
- Lv, X.; Liang, X.; Xu, P.; Chen, L. A numerical study on oxygen adsorption in porous media of coal rock based on fractal geometry. R. Soc. Open Sci. 2020, 7, 191337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, C.; Joanny, J. Adsorption of semi-dilute polymer solutions on fractal colloidal grains. J. Phys. Fr. 1988, 49, 1103–1109. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.K. The Roughness of Aerosol Particles: Surface Fractal Dimension Measured Using Nitrogen Adsorption. Aerosol Sci. Technol. 1996, 25, 392–398. [Google Scholar] [CrossRef]
- Brockett, R.W. Control Theory and Singular Riemannian Geometry. In New Directions in Applied Mathematics: Papers Presented April 25/26, 1980, on the Occasion of the Case Centennial Celebration; Hilton, P.J., Young, G.S., Eds.; Springer: New York, NY, USA, 1982; pp. 11–27. [Google Scholar] [CrossRef]
- Bloch, A.M. Nonholonomic Mechanics and Control; Springer: New York, NY, USA, 2003; pp. 11–27. [Google Scholar]
- M’Closkey, R.; Murray, R. Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans. Autom. Control 1997, 42, 614–628. [Google Scholar] [CrossRef]
- Wen, J.; Jung, S. Nonlinear model predictive control based on predicted state error convergence. In Proceedings of the IEEE 2004 American Control Conference, Boston, MA, USA, 30 June–2 July 2004; Volume 3, pp. 2227–2232. [Google Scholar] [CrossRef]
- Ricci, S.M.; Talbot, J.; Tarjus, G.; Viot, P. Random sequential adsorption of anisotropic particles. II. Low coverage kinetics. J. Chem. Phys. 1992, 97, 5219–5228. [Google Scholar] [CrossRef] [Green Version]
- Adamczyk, Z.; Barbasz, J.; Cieśla, M. Kinetics of Fibrinogen Adsorption on Hydrophilic Substrates. Langmuir 2010, 26, 11934–11945. [Google Scholar] [CrossRef]
- Ciesla, M.; Barbasz, J. Modeling of interacting dimer adsorption. Surf. Sci. 2013, 612, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Sabatier, J. Fractional Order Models Are Doubly Infinite Dimensional Models and thus of Infinite Memory: Consequences on Initialization and Some Solutions. Symmetry 2021, 13, 1099. [Google Scholar] [CrossRef]
- Sabatier, J.; Farges, C.; Tartaglione, V. Some Alternative Solutions to Fractional Models for Modelling Power Law Type Long Memory Behaviours. Mathematics 2020, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- Sabatier, J. Fractional-Order Derivatives Defined by Continuous Kernels: Are They Really Too Restrictive? Fractal Fract. 2020, 4, 40. [Google Scholar] [CrossRef]
- Sabatier, J. Power Law Type Long Memory Behaviors Modeled with Distributed Time Delay Systems. Fractal Fract. 2020, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Sabatier, J. Beyond the particular case of circuits with geometrically distributed components for approximation of fractional order models: Application to a new class of model for power law type long memory behaviour modelling. J. Adv. Res. 2020, 25, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Sabatier, J. Non-Singular Kernels for Modelling Power Law Type Long Memory Behaviours and Beyond. Cybern. Syst. 2020, 51, 383–401. [Google Scholar] [CrossRef]
- Sabatier, J. Fractional State Space Description: A Particular Case of the Volterra Equations. Fractal Fract. 2020, 4, 23. [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M.; Jang, H.W.; Zakharova, N.V.; Shokouhimehr, M. Comparison of fractal dimensions from nitrogen adsorption data in shale via different models. R. Soc. Chem. Adv. 2021, 11, 2298–2306. [Google Scholar]
Fractal | Final Value |
---|---|
Vicsek | ∼0.68 |
Sierpinski triangle | ∼0.62 |
Sierpinski carpet | ∼0.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tartaglione, V.; Sabatier, J.; Farges, C. Adsorption on Fractal Surfaces: A Non Linear Modeling Approach of a Fractional Behavior. Fractal Fract. 2021, 5, 65. https://doi.org/10.3390/fractalfract5030065
Tartaglione V, Sabatier J, Farges C. Adsorption on Fractal Surfaces: A Non Linear Modeling Approach of a Fractional Behavior. Fractal and Fractional. 2021; 5(3):65. https://doi.org/10.3390/fractalfract5030065
Chicago/Turabian StyleTartaglione, Vincent, Jocelyn Sabatier, and Christophe Farges. 2021. "Adsorption on Fractal Surfaces: A Non Linear Modeling Approach of a Fractional Behavior" Fractal and Fractional 5, no. 3: 65. https://doi.org/10.3390/fractalfract5030065
APA StyleTartaglione, V., Sabatier, J., & Farges, C. (2021). Adsorption on Fractal Surfaces: A Non Linear Modeling Approach of a Fractional Behavior. Fractal and Fractional, 5(3), 65. https://doi.org/10.3390/fractalfract5030065