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Abstract: The suspension parameters of heavy-duty freight trains can deviate from their initial
design values due to material aging and performance degradation. While traditional multibody
dynamics simulation models are usually designed for fixed working conditions, it is difficult for
them to adequately analyze the safety status of the vehicle–line system in actual operation. To
address this issue, this research provides a suspension parameter estimation technique based on
CNN-GRU. Firstly, a prototype C80 train was utilized to build a simulation model for multibody
dynamics. Secondly, six key suspension parameters for wheel–rail force were selected using the
Sobol global sensitivity analysis method. Then, a CNN-GRU proxy model was constructed, with the
actually measured wheel–rail forces as a reference. By combining this approach with NSGA-II (Non-
dominated Sorting Genetic Algorithm II), the key suspension parameters were calculated. Finally,
the estimated parameter values were applied into the vehicle–line coupled multibody dynamical
model and validated. The results show that, with the corrected dynamical model, the relative errors
of the simulated wheel–rail force are reduced from 9.28%, 6.24% and 18.11% to 7%, 4.52% and 10.44%,
corresponding to straight, curve, and long and steep uphill conditions, respectively. The wheel–rail
force simulation’s precision is increased, indicating that the proposed method is effective in estimating
the suspension parameters for heavy-duty freight trains.

Keywords: deep learning; heavy-duty freight trains; machine learning; CNN-GRU model; parameter
estimation

1. Introduction

As demand for the transportation of heavy-duty freight trains increases, trains are
operating with higher loads under complex and changing line conditions. The effectiveness
and safety of the overall transportation system are closely correlated with the operational
safety and stability of trains [1,2]. The suspension system is the core structural component
supporting the stable running of heavy-duty freight trains. Therefore, the design and
adjustment of its parameters are particularly important. However, during long service,
the parameters of suspension systems for heavy-duty freight trains can deviate from their
initial design values due to material aging and performance degradation, resulting in
a decrease in vehicle dynamics performance [3,4]. As traditional multibody dynamics
simulation models are usually designed for fixed working conditions, it is difficult for them
to fully and accurately assess the status of the vehicle–line system. For this reason, it is
crucial to use advanced machine learning techniques and data-driven methods to estimate
and optimize suspension parameters.

In the field of track–vehicle system identification and parameter estimation, the re-
search can be broadly classified into two directions, i.e., numerical estimation methods
based on track–vehicle dynamics simulation modeling [5,6] and methods based on machine
learning [7–9]. Among them, as one of the machine learning methods [10,11], the proxy
model, combined with a deep learning model, can effectively capture comprehensive dy-
namic characteristics of trains during operation, simplify the original complex model and
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derive accurate results faster, such that the safety and reliability of the transportation system
can be improved. Mohamed et al. [12] sought to optimize a passive vehicle suspension
system by using the HHO (Harris Hawk Optimization) algorithm. Qing et al. [13] discussed
an approximate Bayesian method to accurately estimate the suspension characteristics
of high-speed trains in operation. Zou [14] used a surrogate model to replace the high-
precision dynamical model, for the purpose of developing a quick optimization technique
for suspension parameters under various circumstances. Pan et al. [15] comprehensively
studied various machine learning methods in the field of estimating suspension parameters.

To achieve the accurate estimation of suspension parameters for heavy-duty freight
trains, this paper utilizes actual values of wheel–rail force measurements from heavy-duty
freight trains, constructs a proxy model based on CNN-GRU, and combines sensitivity
analysis and an optimization algorithm. Figure 1 depicts the overall procedure, and the
primary contributions of the method are as follows:

(1) A database of wheel–track interaction force values recorded by the force measuring
system is established, including wheel–track interaction force data under three typical
working conditions, i.e., straight, curve, and long and heavy uphill conditions. This
provides reliable data for the training of the proxy model;

(2) A suspension parameter estimation method is proposed. It is data-driven and based
on the mechanism model. Using a proxy model and an optimization algorithm, it
estimates the suspension parameters, providing a new approach to accurately evaluate
the safety state of heavy-duty freight trains;

(3) The proposed method’s usefulness is demonstrated through comparative trials, re-
sulting in a new approach for ensuring vehicle safety and stability.
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Figure 1. Overall block diagram of CNN-GRU parameter estimation algorithm. Figure 1. Overall block diagram of CNN-GRU parameter estimation algorithm.



Big Data Cogn. Comput. 2024, 8, 181 3 of 18

2. Establishment of a Multibody Dynamic Model for the Vehicle–Line and
Determination of Key Parameters

In this section, a multibody dynamics model of vehicle and track interaction is estab-
lished. The model’s complexity is then reduced by performing a sensitivity analysis to
discover which parameters have a greater influence on its wheel–rail force output.

2.1. Multibody Dynamics Model of Vehicle and Track Interaction

With the data of a Chinese C80 heavy-haul freight train taken as the primary modeling
parameters, as presented in Table 1 [16], a vehicle–line coupling multibody dynamic model
was constructed by adopting SIMPACK 2018. The car body is represented using K6 bogie,
and the rigid parts such as the wheelset, axle box and frame relate to each other by force
elements. The primary spring and the primary vertical shock absorber are constructed from
linear force elements and nonlinear viscoelastic force elements, respectively. The wheelset
and the frame are linked via the primary suspension system, and the secondary suspension
consists of the secondary lateral shock absorber, an anti-yaw shock absorber, etc. The frame
and the car body are connected through the secondary suspension system [17,18]. The
contact at the interface of the track and wheelset was examined using Hertz contact theory.
The wheelset thread is considered as an LMA worn tread, and wheel–track rolling contact
modeling was carried out using the FASTSIM algorithm. The track irregularity excitation
was calculated using the American Class V track spectrum.

Table 1. Core parameters of the vehicle–track coupled system model.

Dynamical Parameter Symbol Initial Value

Wheelset weight/(kg) X1 1200
Wheelset rolling moment of inertia (relative to center of mass)/(kg·m2) X2 800

Wheelset pitching moment of inertia (relative to center of mass)/(kg·m2) X3 110
Wheelset yawing moment of inertia (relative to center of mass)/(kg·m2) X4 800

Load-bearing saddle weight/(kg) X5 27
Load-bearing saddle rolling moment of inertia (relative to center of mass)/(kg·m2) X6 0.4

Load-bearing saddle pitching moment of inertia (relative to center of mass)/(kg·m2) X7 0.2
Load-bearing saddle yawing moment of inertia (relative to center of mass)/(kg·m2) X8 0.4

Longitudinal span of cross rod pin hole/(m) X9 1
Horizontal span of cross rod pin hole/(m) X10 1.981
Lateral span of resilient side bearing/(m) X11 1.52

Stop clearance/(mm) X12 12
Primary suspension longitudinal stiffness/(MN·m−1) X13 14

Primary suspension lateral stiffness/(MN·m−1) X14 10
Primary suspension vertical stiffness/(MN·m−1) X15 170

Secondary suspension longitudinal stiffness/(MN·m−1) X16 1.8
Secondary suspension lateral stiffness/(MN·m−1) X17 1.8

Secondary suspension lateral shock absorber damping/(MN·s·m−1) X18 50
Swing arm node longitudinal/vertical stiffness/(MN·m−1) X19 30,000

Primary spring longitudinal/lateral stiffness/(MN·m−1) X20 1000

2.2. Determination of Key Parameters of Train-Line Coupling Multibody Dynamic Model

According to relevant experience and expert knowledge, the 10 suspension param-
eters X11~X20 shown in Table 1 have important impacts on the vehicle suspension sys-
tem [13,19,20]; therefore, they are defined as the main suspension parameters. To simplify
the structure of the proxy model, a sensitivity analysis method is further adopted to screen
the most critical influencing parameters out of these main suspension parameters. The
process is as follows:

(1) Taking wheel–rail force as the optimization target, 1000 samples of each of these
10 suspension parameters were taken randomly using the LHS (Latin hypercube sampling)
method [21] within their respective parameter ranges. The specific sampling range is shown
in Table 2.
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Table 2. Suspension parameter design values.

Dynamical Parameter Minimum Maximum

X11 0.76 2.28
X12 6 18
X13 7 21
X14 5 15
X15 85 255
X16 0.9 2.7
X17 0.9 2.7
X18 25 75
X19 15,000 45,000
X20 500 1500

(2) The Sobol global sensitivity analysis method was used [22,23] to assess how input
parameters affect the model’s output. It can assess the impact of the input dynamical
parameters on the variation of wheel–track forces. Based on the values of 10 suspension
parameters sampled using the Latin hypercube method and the corresponding forces
acting vertically and laterally on the wheels and rails, the global sensitivity coefficients St
of parameters X11–X20 to wheel–rail forces were calculated, and the sensitivity analysis
results are shown in Figure 2.
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The larger the sensitivity coefficient, the greater the influence of the parameter on
the target; conversely, the lower the coefficient, the smaller the impact of the parameter
on the target. As shown in Figure 2, parameters X14, X15, X16 and X18 have greater effects
on wheel–track lateral interaction force, while X13, X15 and X17 have a greater effect on
wheel–track vertical interaction force. Based on the above results, these six parameters
were defined as key suspension parameters.

3. Construction of the CNN-GRU Proxy Model

With the advancement of deep learning technologies, neural network models are
widely used in various fields, showing great performance, especially in processing time-
series data. As a feedforward neural network, the Convolutional Neural Network [24]
is particularly suitable for image recognition and signal processing tasks. It captures the
spatial structural characteristics of input data through local connections and weight sharing
mechanisms. CNN can be used to extract spatiotemporal characteristics of the vehicle
movement data, for instance, wheel–track interaction forces, acceleration values, and other
time-varying patterns of signals. The GRU (gated recurrent unit) [25] is derived from
the LSTM network. It has a simplified LSTM structure while maintaining a capacity for
handling long-range dependence. The GRU regulates the flow of information by creating
update and reset gates, allowing the network to better remember past information and
ignore irrelevant information.
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In this section, a CNN-GRU hybrid model is proposed, leveraging the feature extrac-
tion capabilities of CNN and the strong capacity of GRU for time-series prediction. The
hybrid model’s purpose is to extract key characteristics from the primitive vehicle move-
ment data using CNN and to construct a time-evolution model for these features through
GRU, so that an efficient estimation of suspension parameters can finally be achieved. The
proposed model’s structure is illustrated in Figure 3.
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The input of the proxy model is the values screened out by a sensitivity analysis
of the six key suspension parameters already defined. Each parameter contains data of
1000 time steps, the data for each time step are collected at three different time points,
forming twenty-one features, forming a total of six channels. The outputs of the model
are wheel–track lateral interaction force and vertical interaction force. To generate training
data, a sliding window was used for sampling, employing a 20 × 21 window and a step
increment of one. It generated 980 small fragments arranged in time order, each of which is
a 20 × 21 matrix. The overall operation procedure is as follows:

(1) Convolutional layers are mainly used to extract spatial features from input data. A
one-dimensional convolution kernel with dimensions [1,1] and a step increment of one
was adopted to ensure effective feature extraction. In the first round of convolution,
21 depths were set, with a step size of 1, using the activation function ReLU. The
depth of the second round of convolution was increased to 128, and the LeakyReLU
activation function was used to capture nonlinear features. Then, down sampling was
performed through the max pooling layer with a [2,1] window and a step interval
of one. This aids in lowering the number of parameters and extracting key features,
while maintaining timing continuity. Via the above processing approach, each small
fragment was transformed into feature data with 64 channels. To reduce the likelihood
of overfitting, a dropout layer was introduced with a value of 0.2;

(2) To capture the temporal dependencies in these feature data, gated recurrent units
were added to the model. The GRU layer is able to analyze the data in both forward
and reverse directions, enabling us to more comprehensively mine the contextual
information in time-series data. We then adopted a three-layer GRU. The number
of hidden units in GRU layer 1 was 64, with the input being feature data processed
through convolution and pooling. GRU layer 2 had 32 hidden units, and GRU layer 3
had 16 hidden units. The results from the GRU layer were fed into the fully connected
layers. The numbers of elements in the fully connected layers were 64, 8, and 1,
respectively, ensuring that the model was able to gradually map high-dimensional
features to low-dimensional wheel–track interaction forces;

(3) The forecast output values of wheel–track interaction forces were compared with
the simulated values to validate the model’s accuracy. The outcomes are depicted in
Figure 4.
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4. Dynamic Parameter Estimation Based on Measured Data

In this section, the suspension parameters of C80 heavy-duty freight trains were esti-
mated using NSGA-II, with the help of the above CNN-GRU model and the measured data.

4.1. Introduction of Instrumented Wheelset

The measured wheel–track interaction force data used in this paper were derived
from a heavy-freight transportation line in China. Figure 5 demonstrates the instrumented
wheelset installed in the heavy-duty freight train. It can facilitate the real-time measurement
of the wheel–track interaction force. The force-measuring wheelset can continuously
capture key mechanical data during the running of the freight train, providing an important
basis for vehicle dynamics analysis and suspension parameter estimation.
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4.2. NSGA-II Parameter Estimation Based on the Proxy Model

Compared with traditional genetic algorithms, NSGA-II (Non-dominated Sorting
Genetic Algorithm II) [26,27] adopts the concepts of fast non-dominated sorting and crowd-
ing. This significantly increases the rate at which iterations converge, significantly lowers
computational complexity, and guarantees population variety so that the optimal solu-
tion set can be found among multiple and conflicting objectives. With certain constraints,
NSGA-II can find the best combination of suspension parameters. Its principle is illustrated
in Figure 6.
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The core idea of NSGA-II is to perform non-dominant sorting on the population
and select excellent individuals for genetic operation according to the sorting results and
crowding information. First, an initial population Pt is randomly generated. It contains
a certain number of individuals. Each one represents a possible solution consisting of a
set of decision variables, ranked in a non-dominated fashion according to the individual’s
objective function value. The non-dominant hierarchy defines the criteria for one individual
to be better than another, i.e., an individual is better than another if it outperforms the
other in all goal functions. Through non-dominated sorting, the population can be divided
into multiple frontiers (F1, F2, F3, . . .). For each individual on the frontier, the crowding
distance between them is computed. This facilitates the consideration of diversity and
distribution when selecting new population members. A new candidate population Qt is
generated through hybridization and mutation operations. The original population and the
newly generated candidate population are then merged. By comparing the non-dominated
level and crowding distance of individuals in the two populations, the highest-performing
individuals are selected to be part of the next population. The algorithm’s flow is illustrated
in Figure 7.

In this section, the main research objective is to minimize the difference between simu-
lated and measured wheel–rail forces. Taking the sensitivity analysis results in Section 2.2
as the design variables, considering that the wheel–rail force includes vertical and lateral
forces, the wheel–rail force is divided into two components. The specific objectives are
to compare the difference between the predicted wheel–rail lateral force from simulated
data and the actual measured wheel–rail lateral force, as well as the difference between the
predicted wheel–rail vertical force from simulated data and the actual measured wheel–rail
vertical force. The optimization objectives are determined as follows:

min{|ŷi − yi|} (1)
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The following parameters were used: population size 50, crossover probability 0.9,
mutation probability 0.05, and 100 iterations. Figure 8 illustrates the convergence of X13. It
is discernible that X13 gradually converges to a certain stable value and fluctuates slightly
around this value.
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After the optimization calculation, Figure 9 shows the Pareto front of NSGA-II.
Tables 3 and 4 provide some information about NSGA-II during operation, where the
first column represents the current number of iterations, the second column represents
the total number of evaluated individuals, the third column represents the number of
non-dominated solutions, the fourth column represents the convergence index, and the
fifth column represents the evaluation index. Ideal indicates that the current solution set
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is close to the ideal solution, f indicates that there is no significant change in the current
solution set, and nadir indicates that the current solution set is closest to the worst solution.
In the later stage of optimization, a smaller EPS value indicates that the solution set is close
to the optimal solution. The indicator is mainly f, indicating that the solution set tends to
be stable.
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Table 3. Middle stage of the algorithm.

n_gen n_eval n_nds eps Indicator

111 1150 50 0.0381746939 ideal
112 1160 50 0.0006818878 f
113 1170 50 0.0010485927 f
114 1180 50 0.0024256293 f
115 1190 50 0.0034794493 f
116 1200 50 0.0016466931 f
117 1210 50 0.0023378674 f
118 1220 50 0.0073210258 nadir

Table 4. Late stage of the algorithm.

n_gen n_eval n_nds eps Indicator

493 4970 50 0.0028696928 f
494 4980 50 0.0005592864 f
495 4990 50 0.0018608608 f
496 5000 50 0.0033501854 f
497 5010 50 0.0003631807 f
498 5020 50 0.0010969726 f
499 5030 50 0.0016310799 f
500 5040 50 0.0018601757 f

We substituted the corrected results into the vehicle–line coupled multibody dynamics
model, and the initial values and estimated results of key dynamic parameters are listed in
Table 5.

Table 5. Key settings’ estimation outcome.

Dynamic Parameter Initial Value Estimated Value

X13 14 16.1
X14 10 8.3
X15 170 164
X16 1.8 1.7
X17 1.8 1.91
X18 50 51.3
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5. Experiment Result Analysis

This section describes the experiment and its outcomes in depth. Considering the
complexity of each working condition, only three working circumstances, i.e., straight line,
curved line, and long and steep uphill, were considered for the wheel–track interaction
force in the current work. The specific parameter settings of each working condition are
shown in Table 6, while different settings of the same working condition type were not
considered here.

Table 6. Parameter settings of three typical working conditions.

Working Condition Speed Curve Radius Slope

Straight line 60 km/h
Curved line 60 km/h 300 m

Long and steep uphill line 60 km/h 0.1

5.1. Performance Comparison of Several Models

To better illustrate the efficacy of the method presented in this research, the CNN-GRU
model is assessed alongside the RBF, CNN-LSTM, BP and CNN-BiLSTM models [28–30],
as shown in Figures 10 and 11. To more intuitively display the model’s forecast accuracy,
the relative error was employed to assess the discrepancy between predicted and simulated
values. The results are given in Table 7. The formula is as follows [31,32]:∣∣∣∣∆x

x

∣∣∣∣ = ∣∣∣∣y − yi
yi

∣∣∣∣ (2)

where y represents the value predicted by various models, and yi represents the value
simulated by the vehicle–line coupling multibody dynamic model.
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Figure 10. Comparison of predicted and simulated values of wheel–track lateral interaction force by
different combinations of models and algorithms.

As shown above, for wheel–track lateral interaction force, the RBF model has the
highest relative error rate of 10.09%, whereas this value in the other models is relatively low,
and the method proposed in this research has the lowest relative error ratio of 3.59%. For the
values of wheel–track vertical interaction force, the numerical fluctuation is small, and the
relative error rate of incidence of the proposed method is minimal, at 1.56%. In other words,
the CNN-GRU model described in this paper can provide better forecasting accuracy.
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Table 7. Relative error of wheel–rail forces by integrating various models and algorithms.

Simulated
Wheel–Rail

Vertical
Force/(kN)

Predicted
Value

Relative
Error Rate

Simulated
Wheel–Rail

Lateral
Force/(kN)

Predicted
Value

Relative
Error Rate

RBF 126.13 123.86 1.80% 20.3 22.35 10.09%
CNN-LSTM 126.13 123.91 1.76% 20.3 21.73 7.04%

CNN-BiLSTM 126.13 128.38 1.78% 20.3 21.24 4.63%
BP 126.13 129.04 2.30% 20.3 18.97 6.55%

CNN-GRU proposed
in this paper 126.13 128.13 1.56% 20.3 19.57 3.59%
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5.2. Comparison of Wheel–Rail Forces Before and After Parameter Estimation

The parameter estimation results in Section 4.2 were introduced into the train–line
coupling multibody dynamic model based on C80 data, and the simulated forces were com-
pared with the forces measured by the instrumented wheelset, before and after using the
estimated parameters. The wheel–rail lateral force results produced under three working
conditions before and after parameter correction are shown in Figures 12 and 13.

The simulated values of wheel–track lateral interaction force before and after us-
ing the estimated suspension parameters were compared separately with the measured
force values, and relative error was used to evaluate the accuracy before and after the
parameter correction. Tables 8 and 9 present the results of the comparison between the
simulated and real-world values of wheel–track lateral interaction force before and after
parameter correction.

Table 8. Comparison of simulated and real-world values of wheel–track interaction force before
parameter correction.

Working Condition
Simulated

Wheel–Rail Lateral
Force/(kN)

Measured
Wheel–Track

Force
Error Rate

Simulated
Wheel–Track

Vertical Interaction
Force/(kN)

Measured
Wheel–Track
Interaction

Error Rate

Straight line 12.48 11.42 9.28% 140.20 138.91 0.93%
Curved line 31.52 29.67 6.24% 131.28 128.12 2.47%

Long and steep uphill
line 13.24 11.21 18.11% 140.95 138.17 2.01%
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Table 9. Comparison of simulated and real-world values of wheel–track interaction force after
parameter correction.

Working Condition
Simulated

Wheel–Rail Lateral
Force/(kN)

Measured
Wheel–Track

Force
Error Rate

Simulated
Wheel–Track

Vertical Interaction
Force/(kN)

Measured
Wheel–Track
Interaction

Error Rate

Straight line 12.22 11.42 7.00% 140.54 138.91 1.17%
Curved line 31.01 29.67 4.52% 130.71 128.12 2.02%

Long and steep uphill
line 12.38 11.21 10.44% 139.34 138.17 0.85%
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Figure 13. Comparison of simulated and real-world values of wheel–track lateral interaction force
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The statistics in Tables 8 and 9 show that, under different working conditions, the error
produced in simulating wheel–rail force is significantly improved after using the estimated
suspension parameters, i.e., after the suspension parameters are corrected. Specifically, the
error rate of the wheel–track lateral interaction force decreases from 9.28% to 7.00%, while
the error of wheel–track vertical interaction force increases slightly from 0.93% to 1.17%
under the straight-line condition. Under the curved-line condition, the error rate of wheel–
track lateral interaction force decreases from 6.24% to 4.52%, and from 2.47% to 2.02% for
the vertical force. Under the long and steep uphill conditions, the error rate of wheel–track
lateral interaction force decreases greatly from 18.11% to 10.44%, and from 2.01% to 0.85%
for the wheel–track vertical interaction force. These results show that the error between
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the simulated and real-world values of the wheel–track interaction force is significantly
reduced by suspension parameter correction, especially under complex working conditions
(such as curved line and long and steep uphill line). This fully demonstrates the efficacy of
the strategy provided in this study in improving the accuracy of the simulation model and
the operational safety of the train.

6. Conclusions

This paper aimed to achieve accurate estimation of the suspension parameters for
heavy-duty freight trains by building a CNN-GRU proxy model combined with a sensitivity
analysis and an optimization algorithm, and herein, we have conducted comparative
experiments before and after using the estimated suspension parameters. The significant
results are as follows:

(1) For the C80 freight train, under the three typical working conditions mentioned in
this paper, the primary suspension longitudinal stiffness, the secondary suspension
vertical stiffness, and the secondary suspension lateral stiffness have stronger effects
on the wheel–track vertical interaction force, while the primary lateral stiffness, pri-
mary vertical stiffness, secondary lateral shock absorber damping, and secondary
longitudinal stiffness have greater effects on the wheel–track lateral interaction force;

(2) Through comparative experiments, the effectiveness of the suggested CNN-GRU
proxy model has been verified. The investigation results reveal that by using the
optimized suspension parameters, the accuracy of the multibody dynamics simulation
model was significantly elevated, and the peak value of the wheel–rail force was
reduced, such that the risk of derailment was reduced, and the operational safety and
stability of heavy-haul freight trains were effectively improved;

(3) The NSGA-II algorithm based on the CNN-GRU model proposed in this work demon-
strates remarkable effectiveness in the estimation of suspension parameters for heavy-
duty freight trains. This method can more accurately identify changes in suspension
parameters. It provides a new approach to augmenting the safety and stability of
train operation.

The method proposed in this study is suitable for estimating the suspension param-
eters of C80 heavy-duty trucks. In future research, the generalizability of this method
when using different vehicle types and operating conditions can be further explored so
as to extend it to other types of transportation systems. By combining advanced machine
learning technology and visual inspection methods, the real-time monitoring and dynamic
adjustment of vehicle status can be realized to further improve the safety and efficiency
of transportation systems. Future research can be devoted to exploring more complex
conditions, a wider variety of suspension parameters, and how to apply these technologies
to online monitoring and fault diagnosis systems used in actual operations so as to achieve
more intelligent and automated transportation management.
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