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Abstract: The suspension parameters of heavy-duty freight trains can deviate from their initial de-
sign values due to material aging and performance degradation. While traditional multibody dy-
namics simulation models are usually designed for fixed working conditions, it is difficult for them 
to adequately analyze the safety status of the vehicle–line system in actual operation. To address 
this issue, this research provides a suspension parameter estimation technique based on CNN-GRU. 
Firstly, a prototype C80 train was utilized to build a simulation model for multibody dynamics. 
Secondly, six key suspension parameters for wheel–rail force were selected using the Sobol global 
sensitivity analysis method. Then, a CNN-GRU proxy model was constructed, with the actually 
measured wheel–rail forces as a reference. By combining this approach with NSGA-II (Non-domi-
nated Sorting Genetic Algorithm II), the key suspension parameters were calculated. Finally, the 
estimated parameter values were applied into the vehicle–line coupled multibody dynamical model 
and validated. The results show that, with the corrected dynamical model, the relative errors of the 
simulated wheel–rail force are reduced from 9.28%, 6.24% and 18.11% to 7%, 4.52% and 10.44%, 
corresponding to straight, curve, and long and steep uphill conditions, respectively. The wheel–rail 
force simulation’s precision is increased, indicating that the proposed method is effective in estimat-
ing the suspension parameters for heavy-duty freight trains. 
 

Keywords: deep learning; heavy-duty freight trains; machine learning; CNN-GRU model;  
parameter estimation 
 

1. Introduction 
As demand for the transportation of heavy-duty freight trains increases, trains are 

operating with higher loads under complex and changing line conditions. The effective-
ness and safety of the overall transportation system are closely correlated with the opera-
tional safety and stability of trains [1,2]. The suspension system is the core structural com-
ponent supporting the stable running of heavy-duty freight trains. Therefore, the design 
and adjustment of its parameters are particularly important. However, during long ser-
vice, the parameters of suspension systems for heavy-duty freight trains can deviate from 
their initial design values due to material aging and performance degradation, resulting 
in a decrease in vehicle dynamics performance [3,4]. As traditional multibody dynamics 
simulation models are usually designed for fixed working conditions, it is difficult for 
them to fully and accurately assess the status of the vehicle–line system. For this reason, 
it is crucial to use advanced machine learning techniques and data-driven methods to es-
timate and optimize suspension parameters. 

In the field of track–vehicle system identification and parameter estimation, the research 
can be broadly classified into two directions, i.e., numerical estimation methods based on 
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track–vehicle dynamics simulation modeling [5,6] and methods based on machine learning 
[7–9]. Among them, as one of the machine learning methods [10,11], the proxy model, com-
bined with a deep learning model, can effectively capture comprehensive dynamic character-
istics of trains during operation, simplify the original complex model and derive accurate re-
sults faster, such that the safety and reliability of the transportation system can be improved. 
Mohamed et al. [12] sought to optimize a passive vehicle suspension system by using the HHO 
(Harris Hawk Optimization) algorithm. Qing et al. [13] discussed an approximate Bayesian 
method to accurately estimate the suspension characteristics of high-speed trains in operation. 
Zou [14] used a surrogate model to replace the high-precision dynamical model, for the pur-
pose of developing a quick optimization technique for suspension parameters under various 
circumstances. Pan et al. [15] comprehensively studied various machine learning methods in 
the field of estimating suspension parameters. 

To achieve the accurate estimation of suspension parameters for heavy-duty freight 
trains, this paper utilizes actual values of wheel–rail force measurements from heavy-duty 
freight trains, constructs a proxy model based on CNN-GRU, and combines sensitivity 
analysis and an optimization algorithm. Figure 1 depicts the overall procedure, and the 
primary contributions of the method are as follows: 
(1) A database of wheel–track interaction force values recorded by the force measuring 

system is established, including wheel–track interaction force data under three typi-
cal working conditions, i.e., straight, curve, and long and heavy uphill conditions. 
This provides reliable data for the training of the proxy model; 

(2) A suspension parameter estimation method is proposed. It is data-driven and based 
on the mechanism model. Using a proxy model and an optimization algorithm, it 
estimates the suspension parameters, providing a new approach to accurately evalu-
ate the safety state of heavy-duty freight trains; 

(3) The proposed method’s usefulness is demonstrated through comparative trials, re-
sulting in a new approach for ensuring vehicle safety and stability. 
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Figure 1. Overall block diagram of CNN-GRU parameter estimation algorithm. 
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2. Establishment of a Multibody Dynamic Model for the Vehicle–Line and Determi-
nation of Key Parameters 

In this section, a multibody dynamics model of vehicle and track interaction is estab-
lished. The model’s complexity is then reduced by performing a sensitivity analysis to 
discover which parameters have a greater influence on its wheel–rail force output. 

2.1. Multibody Dynamics Model of Vehicle and Track Interaction 
With the data of a Chinese C80 heavy-haul freight train taken as the primary model-

ing parameters, as presented in Table 1 [16], a vehicle–line coupling multibody dynamic 
model was constructed by adopting SIMPACK 2018. The car body is represented using 
K6 bogie, and the rigid parts such as the wheelset, axle box and frame relate to each other 
by force elements. The primary spring and the primary vertical shock absorber are con-
structed from linear force elements and nonlinear viscoelastic force elements, respectively. 
The wheelset and the frame are linked via the primary suspension system, and the sec-
ondary suspension consists of the secondary lateral shock absorber, an anti-yaw shock 
absorber, etc. The frame and the car body are connected through the secondary suspen-
sion system [17,18]. The contact at the interface of the track and wheelset was examined 
using Hertz contact theory. The wheelset thread is considered as an LMA worn tread, and 
wheel–track rolling contact modeling was carried out using the FASTSIM algorithm. The 
track irregularity excitation was calculated using the American Class V track spectrum. 

Table 1. Core parameters of the vehicle–track coupled system model. 

Dynamical Parameter Symbol Initial Value 
Wheelset weight/(kg) X1 1200 

Wheelset rolling moment of inertia (relative to center of mass)/(kg·m2) X2 800 
Wheelset pitching moment of inertia (relative to center of mass)/(kg·m2) X3 110 
Wheelset yawing moment of inertia (relative to center of mass)/(kg·m2) X4 800 

Load-bearing saddle weight/(kg) X5 27 
Load-bearing saddle rolling moment of inertia (relative to center of mass)/(kg·m2) X6 0.4 

Load-bearing saddle pitching moment of inertia (relative to center of mass)/(kg·m2) X7 0.2 
Load-bearing saddle yawing moment of inertia (relative to center of mass)/(kg·m2) X8 0.4 

Longitudinal span of cross rod pin hole/(m) X9 1 
Horizontal span of cross rod pin hole/(m) X10 1.981 
Lateral span of resilient side bearing/(m) X11 1.52 

Stop clearance/(mm) X12 12 
Primary suspension longitudinal stiffness/(MN·m−1) X13 14 

Primary suspension lateral stiffness/(MN·m−1) X14 10 
Primary suspension vertical stiffness/(MN·m−1) X15 170 

Secondary suspension longitudinal stiffness/(MN·m−1) X16 1.8 
Secondary suspension lateral stiffness/(MN·m−1) X17 1.8 

Secondary suspension lateral shock absorber damping/(MN·s·m−1) X18 50 
Swing arm node longitudinal/vertical stiffness/(MN·m−1) X19 30000 

Primary spring longitudinal/lateral stiffness/(MN·m−1) X20 1000 

2.2. Determination of Key Parameters of Train-Line Coupling Multibody Dynamic Model 
According to relevant experience and expert knowledge, the 10 suspension parame-

ters X11~X20 shown in Table 1 have important impacts on the vehicle suspension system 
[13,19,20]; therefore, they are defined as the main suspension parameters. To simplify the 
structure of the proxy model, a sensitivity analysis method is further adopted to screen 
the most critical influencing parameters out of these main suspension parameters. The 
process is as follows: 
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(1) Taking wheel–rail force as the optimization target, 1000 samples of each of these 
10 suspension parameters were taken randomly using the LHS (Latin hypercube sam-
pling) method [21] within their respective parameter ranges. The specific sampling range 
is shown in Table 2. 

Table 2. Suspension parameter design values. 

Dynamical Parameter Minimum Maximum 
X11 0.76 2.28 
X12 6 18 
X13 7 21 
X14 5 15 
X15 85 255 
X16 0.9 2.7 
X17 0.9 2.7 
X18 25 75 
X19 15,000 45,000 
X20 500 1500 

(2) The Sobol global sensitivity analysis method was used [22,23] to assess how input 
parameters affect the model’s output. It can assess the impact of the input dynamical pa-
rameters on the variation of wheel–track forces. Based on the values of 10 suspension pa-
rameters sampled using the Latin hypercube method and the corresponding forces acting 

vertically and laterally on the wheels and rails, the global sensitivity coefficients tS  of 
parameters X11-X20 to wheel–rail forces were calculated, and the sensitivity analysis re-
sults are shown in Figure 2. 

 
Figure 2. Sensitivity analysis results of dynamical parameters. 

The larger the sensitivity coefficient, the greater the influence of the parameter on the 
target; conversely, the lower the coefficient, the smaller the impact of the parameter on the 
target. As shown in Figure 2, parameters X14, X15, X16 and X18 have greater effects on wheel–
track lateral interaction force, while X13, X15 and X17 have a greater effect on wheel–track 
vertical interaction force. Based on the above results, these six parameters were defined as 
key suspension parameters. 

3. Construction of the CNN-GRU Proxy Model 
With the advancement of deep learning technologies, neural network models are 

widely used in various fields, showing great performance, especially in processing time-
series data. As a feedforward neural network, the Convolutional Neural Network [24] is 
particularly suitable for image recognition and signal processing tasks. It captures the spa-
tial structural characteristics of input data through local connections and weight sharing 



Big Data Cogn. Comput. 2024, 8, 181 5 of 18 
 

mechanisms. CNN can be used to extract spatiotemporal characteristics of the vehicle 
movement data, for instance, wheel–track interaction forces, acceleration values, and 
other time-varying patterns of signals. The GRU (gated recurrent unit) [25] is derived from 
the LSTM network. It has a simplified LSTM structure while maintaining a capacity for 
handling long-range dependence. The GRU regulates the flow of information by creating 
update and reset gates, allowing the network to better remember past information and 
ignore irrelevant information. 

In this section, a CNN-GRU hybrid model is proposed, leveraging the feature extrac-
tion capabilities of CNN and the strong capacity of GRU for time-series prediction. The 
hybrid model’s purpose is to extract key characteristics from the primitive vehicle move-
ment data using CNN and to construct a time-evolution model for these features through 
GRU, so that an efficient estimation of suspension parameters can finally be achieved. The 
proposed model’s structure is illustrated in Figure 3. 
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Figure 3. Architecture of the CNN-GRU agent model. 

The input of the proxy model is the values screened out by a sensitivity analysis of 
the six key suspension parameters already defined. Each parameter contains data of 1000 
time steps, the data for each time step are collected at three different time points, forming 
twenty-one features, forming a total of six channels. The outputs of the model are wheel–
track lateral interaction force and vertical interaction force. To generate training data, a 
sliding window was used for sampling, employing a 20 × 21 window and a step increment 
of one. It generated 980 small fragments arranged in time order, each of which is a 20 × 21 
matrix. The overall operation procedure is as follows: 
(1) Convolutional layers are mainly used to extract spatial features from input data. A 

one-dimensional convolution kernel with dimensions [1,1] and a step increment of 
one was adopted to ensure effective feature extraction. In the first round of convolu-
tion, 21 depths were set, with a step size of 1, using the activation function ReLU. The 
depth of the second round of convolution was increased to 128, and the LeakyReLU 
activation function was used to capture nonlinear features. Then, down sampling was 
performed through the max pooling layer with a [2,1] window and a step interval of 
one. This aids in lowering the number of parameters and extracting key features, 
while maintaining timing continuity. Via the above processing approach, each small 
fragment was transformed into feature data with 64 channels. To reduce the likeli-
hood of overfitting, a dropout layer was introduced with a value of 0.2; 

(2) To capture the temporal dependencies in these feature data, gated recurrent units 
were added to the model. The GRU layer is able to analyze the data in both forward 
and reverse directions, enabling us to more comprehensively mine the contextual in-
formation in time-series data. We then adopted a three-layer GRU. The number of 
hidden units in GRU layer 1 was 64, with the input being feature data processed 
through convolution and pooling. GRU layer 2 had 32 hidden units, and GRU layer 
3 had 16 hidden units. The results from the GRU layer were fed into the fully con-
nected layers. The numbers of elements in the fully connected layers were 64, 8, and 
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1, respectively, ensuring that the model was able to gradually map high-dimensional 
features to low-dimensional wheel–track interaction forces; 

(3) The forecast output values of wheel–track interaction forces were compared with the 
simulated values to validate the model’s accuracy. The outcomes are depicted in Fig-
ure 4. 

 
(a) wheel–track lateral interaction force 

 
(b) wheel–track vertical interaction force 

Figure 4. Comparison of SIMPACK simulation values and model prediction values. 

4. Dynamic Parameter Estimation Based on Measured Data 
In this section, the suspension parameters of C80 heavy-duty freight trains were es-

timated using NSGA-II, with the help of the above CNN-GRU model and the measured 
data. 

 

4.1. Introduction of Instrumented Wheelset 
The measured wheel–track interaction force data used in this paper were derived 

from a heavy-freight transportation line in China. Figure 5 demonstrates the instrumented 
wheelset installed in the heavy-duty freight train. It can facilitate the real-time measure-
ment of the wheel–track interaction force. The force-measuring wheelset can continuously 
capture key mechanical data during the running of the freight train, providing an im-
portant basis for vehicle dynamics analysis and suspension parameter estimation. 
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Figure 5. Instrumented wheelset detection system. 

4.2. NSGA-II Parameter Estimation Based on the Proxy Model 
Compared with traditional genetic algorithms, NSGA-II (Non-dominated Sorting 

Genetic Algorithm II) [26,27] adopts the concepts of fast non-dominated sorting and 
crowding. This significantly increases the rate at which iterations converge, significantly 
lowers computational complexity, and guarantees population variety so that the optimal 
solution set can be found among multiple and conflicting objectives. With certain con-
straints, NSGA-II can find the best combination of suspension parameters. Its principle is 
illustrated in Figure 6. 
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Figure 6. Schematic depiction of the NSGA-II principle. 

The core idea of NSGA-II is to perform non-dominant sorting on the population and 
select excellent individuals for genetic operation according to the sorting results and 
crowding information. First, an initial population Pt is randomly generated. It contains a 
certain number of individuals. Each one represents a possible solution consisting of a set 
of decision variables, ranked in a non-dominated fashion according to the individual’s 
objective function value. The non-dominant hierarchy defines the criteria for one individ-
ual to be better than another, i.e., an individual is better than another if it outperforms the 
other in all goal functions. Through non-dominated sorting, the population can be divided 
into multiple frontiers (F1, F2, F3,…). For each individual on the frontier, the crowding dis-
tance between them is computed. This facilitates the consideration of diversity and distri-
bution when selecting new population members. A new candidate population Qt is gen-
erated through hybridization and mutation operations. The original population and the 
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newly generated candidate population are then merged. By comparing the non-domi-
nated level and crowding distance of individuals in the two populations, the highest-per-
forming individuals are selected to be part of the next population. The algorithm’s flow is 
illustrated in Figure 7. 
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Figure 7. Flow diagram of NSGA-II. 

In this section, the main research objective is to minimize the difference between sim-
ulated and measured wheel–rail forces. Taking the sensitivity analysis results in Section 
2.2 as the design variables, considering that the wheel–rail force includes vertical and lat-
eral forces, the wheel–rail force is divided into two components. The specific objectives 
are to compare the difference between the predicted wheel–rail lateral force from simu-
lated data and the actual measured wheel–rail lateral force, as well as the difference be-
tween the predicted wheel–rail vertical force from simulated data and the actual measured 
wheel–rail vertical force. The optimization objectives are determined as follows: 

{ }ˆmin i iy y−  (1)

The following parameters were used: population size 50, crossover probability 0.9, 
mutation probability 0.05, and 100 iterations. Figure 8 illustrates the convergence of X13. It 
is discernible that X13 gradually converges to a certain stable value and fluctuates slightly 
around this value. 
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Figure 8. Convergence of primary suspension longitudinal stiffness. 

After the optimization calculation, Figure 9 shows the Pareto front of NSGA-II. Tables 
3 and 4 provide some information about NSGA-II during operation, where the first col-
umn represents the current number of iterations, the second column represents the total 
number of evaluated individuals, the third column represents the number of non-domi-
nated solutions, the fourth column represents the convergence index, and the fifth column 
represents the evaluation index. Ideal indicates that the current solution set is close to the 
ideal solution, f indicates that there is no significant change in the current solution set, and 
nadir indicates that the current solution set is closest to the worst solution. In the later 
stage of optimization, a smaller EPS value indicates that the solution set is close to the 
optimal solution. The indicator is mainly f, indicating that the solution set tends to be 
stable. 

We substituted the corrected results into the vehicle–line coupled multibody dynam-
ics model, and the initial values and estimated results of key dynamic parameters are 
listed in Table 5. 

 
Figure 9. The Pareto frontier of NSGA-II. 

Table 3. Middle stage of the algorithm. 

n_gen n_eval n_nds eps Indicator 
111 1150 50 0.0381746939 ideal 
112 1160 50 0.0006818878 f 
113 1170 50 0.0010485927 f 
114 1180 50 0.0024256293 f 
115 1190 50 0.0034794493 f 
116 1200 50 0.0016466931 f 
117 1210 50 0.0023378674 f 
118 1220 50 0.0073210258 nadir 
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Table 4. Late stage of the algorithm. 

n_gen n_eval n_nds eps Indicator 
493 4970 50 0.0028696928 f 
494 4980 50 0.0005592864 f 
495 4990 50 0.0018608608 f 
496 5000 50 0.0033501854 f 
497 5010 50 0.0003631807 f 
498 5020 50 0.0010969726 f 
499 5030 50 0.0016310799 f 
500 5040 50 0.0018601757 f 

Table 5. Key settings’ estimation outcome. 

Dynamic Parameter Initial Value Estimated Value 
X13 14 16.1 
X14 10 8.3 
X15 170 164 
X16 1.8 1.7 
X17 1.8 1.91 
X18 50 51.3 

5. Experiment Result Analysis 
This section describes the experiment and its outcomes in depth. Considering the 

complexity of each working condition, only three working circumstances, i.e., straight 
line, curved line, and long and steep uphill, were considered for the wheel–track interac-
tion force in the current work. The specific parameter settings of each working condition 
are shown in Table 6, while different settings of the same working condition type were not 
considered here. 

Table 6. Parameter settings of three typical working conditions. 

Working Condition Speed Curve Radius Slope 
Straight line 60 km/h   
Curved line 60 km/h 300 m  

Long and steep uphill line 60 km/h  0.1 

5.1. Performance Comparison of Several Models 
To better illustrate the efficacy of the method presented in this research, the CNN-

GRU model is assessed alongside the RBF, CNN-LSTM, BP and CNN-BiLSTM models 
[28–30], as shown in Figures 10 and 11. To more intuitively display the model’s forecast 
accuracy, the relative error was employed to assess the discrepancy between predicted 
and simulated values. The results are given in Table 7. The formula is as follows [31,32]: 

i

i

x y y
x y

Δ −=  (2)

where y   represents the value predicted by various models, and iy   represents the 
value simulated by the vehicle–line coupling multibody dynamic model. 
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(b) CNN-LSTM 
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(d) BP 
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(e) CNN-GRU 

Figure 10. Comparison of predicted and simulated values of wheel–track lateral interaction force by 
different combinations of models and algorithms. 

 
(a) RBFNN 

 
(b) CNN-LSTM 

 
(c) CNN-BiLSTM 
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(d) BP 

 
(e) CNN-GRU 

Figure 11. Comparison of predicted and simulated values of wheel–track vertical interaction force 
by integrating various models and algorithms. 

Table 7. Relative error of wheel–rail forces by integrating various models and algorithms. 

 
Simulated Wheel–

Rail Vertical 
Force/(kN) 

Predicted 
Value 

Relative 
Error Rate 

Simulated Wheel–
Rail Lateral 
Force/(kN) 

Predicted 
Value 

Relative Error 
Rate 

RBF 126.13 123.86 1.80% 20.3 22.35 10.09% 
CNN-LSTM 126.13 123.91 1.76% 20.3 21.73 7.04% 

CNN-BiLSTM 126.13 128.38 1.78% 20.3 21.24 4.63% 
BP 126.13 129.04 2.30% 20.3 18.97 6.55% 

CNN-GRU proposed in this paper 126.13 128.13 1.56% 20.3 19.57 3.59% 

As shown above, for wheel–track lateral interaction force, the RBF model has the 
highest relative error rate of 10.09%, whereas this value in the other models is relatively 
low, and the method proposed in this research has the lowest relative error ratio of 3.59%. 
For the values of wheel–track vertical interaction force, the numerical fluctuation is small, 
and the relative error rate of incidence of the proposed method is minimal, at 1.56%. In 
other words, the CNN-GRU model described in this paper can provide better forecasting 
accuracy. 

5.2. Comparison of Wheel–Rail Forces Before and After Parameter Estimation 
The parameter estimation results in Section 4.2 were introduced into the train–line 

coupling multibody dynamic model based on C80 data, and the simulated forces were 
compared with the forces measured by the instrumented wheelset, before and after using 
the estimated parameters. The wheel–rail lateral force results produced under three work-
ing conditions before and after parameter correction are shown in Figures 12 and 13. 
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(a) Straight line 

 
(b) Curved line 

 
(c) Long and steep uphill line 

Figure 12. Comparison of simulated and measured values of wheel–track lateral interaction force 
before and after using the estimated parameters. 
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(a) Straight line 

 
(b) Curved line 

 
(c) Long and steep uphill line 

Figure 13. Comparison of simulated and real-world values of wheel–track lateral interaction force 
after using the estimated parameters. 

The simulated values of wheel–track lateral interaction force before and after using 
the estimated suspension parameters were compared separately with the measured force 
values, and relative error was used to evaluate the accuracy before and after the parameter 
correction. Tables 8 and 9 present the results of the comparison between the simulated and 
real-world values of wheel–track lateral interaction force before and after parameter cor-
rection. 
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Table 8. Comparison of simulated and real-world values of wheel–track interaction force before 
parameter correction. 

Working Condition 
Simulated Wheel–

Rail Lateral 
Force/(kN) 

Measured 
Wheel–Track 

Force 
Error Rate 

Simulated Wheel–Track 
Vertical Interaction 

Force/(kN) 

Measured 
Wheel–Track 

Interaction 

Error 
Rate 

Straight line 12.48 11.42 9.28% 140.20 138.91 0.93% 
Curved line 31.52 29.67 6.24% 131.28 128.12 2.47% 

Long and steep uphill line 13.24 11.21 18.11% 140.95 138.17 2.01% 

Table 9. Comparison of simulated and real-world values of wheel–track interaction force after pa-
rameter correction. 

Working Condition Simulated Wheel–Rail 
Lateral Force/(kN) 

Measured 
Wheel–Track 

Force 

Error 
Rate 

Simulated Wheel–Track 
Vertical Interaction 

Force/(kN) 

Measured 
Wheel–Track 

Interaction 

Error 
Rate 

Straight line 12.22 11.42 7.00% 140.54 138.91 1.17% 
Curved line 31.01 29.67 4.52% 130.71 128.12 2.02% 

Long and steep uphill line 12.38 11.21 10.44% 139.34 138.17 0.85% 

The statistics in Tables 8 and 9 show that, under different working conditions, the 
error produced in simulating wheel–rail force is significantly improved after using the 
estimated suspension parameters, i.e., after the suspension parameters are corrected. Spe-
cifically, the error rate of the wheel–track lateral interaction force decreases from 9.28% to 
7.00%, while the error of wheel–track vertical interaction force increases slightly from 
0.93% to 1.17% under the straight-line condition. Under the curved-line condition, the er-
ror rate of wheel–track lateral interaction force decreases from 6.24% to 4.52%, and from 
2.47% to 2.02% for the vertical force. Under the long and steep uphill conditions, the error 
rate of wheel–track lateral interaction force decreases greatly from 18.11% to 10.44%, and 
from 2.01% to 0.85% for the wheel–track vertical interaction force. These results show that 
the error between the simulated and real-world values of the wheel–track interaction force 
is significantly reduced by suspension parameter correction, especially under complex 
working conditions (such as curved line and long and steep uphill line). This fully demon-
strates the efficacy of the strategy provided in this study in improving the accuracy of the 
simulation model and the operational safety of the train. 

6. Conclusions 
This paper aimed to achieve accurate estimation of the suspension parameters for 

heavy-duty freight trains by building a CNN-GRU proxy model combined with a sensi-
tivity analysis and an optimization algorithm, and herein, we have conducted compara-
tive experiments before and after using the estimated suspension parameters. The signif-
icant results are as follows: 
(1) For the C80 freight train, under the three typical working conditions mentioned in 

this paper, the primary suspension longitudinal stiffness, the secondary suspension 
vertical stiffness, and the secondary suspension lateral stiffness have stronger effects 
on the wheel–track vertical interaction force, while the primary lateral stiffness, pri-
mary vertical stiffness, secondary lateral shock absorber damping, and secondary 
longitudinal stiffness have greater effects on the wheel–track lateral interaction force; 

(2) Through comparative experiments, the effectiveness of the suggested CNN-GRU 
proxy model has been verified. The investigation results reveal that by using the op-
timized suspension parameters, the accuracy of the multibody dynamics simulation 
model was significantly elevated, and the peak value of the wheel–rail force was re-
duced, such that the risk of derailment was reduced, and the operational safety and 
stability of heavy-haul freight trains were effectively improved; 
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(3) The NSGA-II algorithm based on the CNN-GRU model proposed in this work 
demonstrates remarkable effectiveness in the estimation of suspension parameters 
for heavy-duty freight trains. This method can more accurately identify changes in 
suspension parameters. It provides a new approach to augmenting the safety and 
stability of train operation. 
The method proposed in this study is suitable for estimating the suspension param-

eters of C80 heavy-duty trucks. In future research, the generalizability of this method 
when using different vehicle types and operating conditions can be further explored so as 
to extend it to other types of transportation systems. By combining advanced machine 
learning technology and visual inspection methods, the real-time monitoring and dy-
namic adjustment of vehicle status can be realized to further improve the safety and effi-
ciency of transportation systems. Future research can be devoted to exploring more com-
plex conditions, a wider variety of suspension parameters, and how to apply these tech-
nologies to online monitoring and fault diagnosis systems used in actual operations so as 
to achieve more intelligent and automated transportation management. 
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