An Experimental Procedure to Study the High-Speed Orthogonal Cutting of Unidirectional GFRP
<p>Rectangular specimen: cutting test (<b>left</b>) and its schematization (<b>right</b>).</p> "> Figure 2
<p>Circular specimen: cutting test (<b>left</b>) and its schematization (<b>right</b>).</p> "> Figure 3
<p>Example diagram of test set-up used for circular specimens.</p> "> Figure 4
<p>Burrs observed on circular (<b>a</b>) and rectangular (<b>b</b>) specimens and schematization of their formation (<b>c</b>).</p> "> Figure 5
<p><span class="html-italic">F<sub>p</sub></span> and <span class="html-italic">F<sub>t</sub></span> versus time for rectangular specimens with polycarbonate (θ = 45°, γ = 0°, α = 30°, <span class="html-italic">a<sub>c</sub></span> = 0.20 mm, and <span class="html-italic">v<sub>c</sub></span> = 25 m/min).</p> "> Figure 6
<p><span class="html-italic">F<sub>p</sub></span> and <span class="html-italic">F<sub>t</sub></span> versus θ for circular specimens without polycarbonate (γ = 0°, α = 30°, <span class="html-italic">a<sub>c</sub></span> = 0.10 mm, and <span class="html-italic">v<sub>c</sub></span> = 25 m/min).</p> "> Figure 7
<p><span class="html-italic">F<sub>p</sub></span> and <span class="html-italic">F<sub>t</sub></span> versus θ for circular specimens with and without polycarbonate (γ = 0°, α = 30°, <span class="html-italic">a<sub>c</sub></span> = 0.20 mm, and <span class="html-italic">v<sub>c</sub></span> = 25 m/min).</p> "> Figure 8
<p><span class="html-italic">F<sub>p</sub></span> and <span class="html-italic">F<sub>t</sub></span> versus time for rectangular specimens with and without polycarbonate (θ = 90°, γ = 0°, α = 30°, <span class="html-italic">a<sub>c</sub></span> = 0.20 mm, and <span class="html-italic">v<sub>c</sub></span> = 25 m/min).</p> "> Figure 9
<p><span class="html-italic">F<sub>p</sub></span> and <span class="html-italic">F<sub>t</sub></span> versus θ for circular and rectangular specimens without polycarbonate (γ = 0°, α = 30°, <span class="html-italic">a<sub>c</sub></span> = 0.10 mm, and <span class="html-italic">v<sub>c</sub></span> = 25 m/min).</p> "> Figure 10
<p><span class="html-italic">F<sub>p</sub></span> and <span class="html-italic">F<sub>t</sub></span> versus θ for circular and rectangular specimens with polycarbonate (γ = 0°, α = 30°, <span class="html-italic">a<sub>c</sub></span> = 0.10 mm, and <span class="html-italic">v<sub>c</sub></span> = 25 m/min).</p> "> Figure 11
<p><span class="html-italic">F<sub>p</sub></span> and <span class="html-italic">F<sub>t</sub></span> versus θ for circular and rectangular specimens without polycarbonate (γ = 0°, α = 30°, <span class="html-italic">a<sub>c</sub></span> = 0.20 mm, and <span class="html-italic">v<sub>c</sub></span> = 25 m/min).</p> "> Figure 12
<p><span class="html-italic">F<sub>p</sub></span> and <span class="html-italic">F<sub>t</sub></span> versus θ for circular and rectangular specimens with polycarbonate (γ = 0°, α = 30°, <span class="html-italic">a<sub>c</sub></span> = 0.20 mm, and <span class="html-italic">v<sub>c</sub></span> = 25 m/min).</p> "> Figure 13
<p><span class="html-italic">S<sub>a</sub></span> versus θ for circular and rectangular specimens with polycarbonate (γ = 0°, α = 30°, <span class="html-italic">a<sub>c</sub></span> = 0.20 mm, and <span class="html-italic">v<sub>c</sub></span> = 25 m/min).</p> "> Figure 14
<p><span class="html-italic">F<sub>p</sub></span> and <span class="html-italic">F<sub>t</sub></span> versus θ for different γ values (α = 15°, <span class="html-italic">a<sub>c</sub></span> = 0.20 mm, and <span class="html-italic">v<sub>c</sub></span> = 50 m/min).</p> "> Figure 15
<p><span class="html-italic">F<sub>p</sub></span> and <span class="html-italic">F<sub>t</sub></span> versus θ for different t values (γ = 30°, α = 15°, and <span class="html-italic">v<sub>c</sub></span> = 50 m/min).</p> "> Figure 16
<p><span class="html-italic">F<sub>p</sub></span> and <span class="html-italic">F<sub>t</sub></span> versus θ for different α values (γ = 15°, <span class="html-italic">a<sub>c</sub></span> = 0.05 mm, and <span class="html-italic">v<sub>c</sub></span> = 50 m/min).</p> "> Figure 17
<p>Chip morphology of circular specimens with (<b>left</b>) and without polycarbonate (<b>right</b>), around θ = 180° (γ = 0°, α = 15°, <span class="html-italic">a<sub>c</sub></span> = 0.20 mm, and <span class="html-italic">v<sub>c</sub></span> = 50 m/min).</p> "> Figure 18
<p>Chip morphology of circular specimens with (<b>left</b>) and without polycarbonate (<b>right</b>), around θ = 180° (γ = 15°, α = 15°, <span class="html-italic">a<sub>c</sub></span> = 0.20 mm, and <span class="html-italic">v<sub>c</sub></span> = 50 m/min).</p> "> Figure 19
<p>Characteristics of machined surface at 5× (left) and 10× (right) magnifications for θ = 180° and (<b>a</b>) γ = 0°, (<b>b</b>) θ = 15°, and (<b>c</b>) θ = 30° (α = 15°, <span class="html-italic">a<sub>c</sub></span> = 0.20 mm, and <span class="html-italic">v<sub>c</sub></span> = 50 m/min).</p> "> Figure 20
<p>Chip morphology of circular specimens with (left) and without polycarbonate (right) for (<b>a</b>) θ = 15° and (<b>b</b>) θ = 75° (γ = 0°, α = 15°, <span class="html-italic">a<sub>c</sub></span> = 0.20 mm, and <span class="html-italic">v<sub>c</sub></span> = 50 m/min).</p> "> Figure 21
<p>Characteristics of cutting surface at 5× (left) and 10× (right) magnifications for (<b>a</b>) θ = 30°, (<b>b</b>) θ = 60°, and (<b>c</b>) θ = 90° (γ = 30°, α = 15°, <span class="html-italic">a<sub>c</sub></span> = 0.20 mm, and <span class="html-italic">v<sub>c</sub></span> = 50 m/min).</p> "> Figure 22
<p>Characteristics of cutting surface at 5× (left) and 10× (right) magnifications for (<b>a</b>) γ = 0° and (<b>b</b>) γ = 15° (θ = 90°, α = 15°, <span class="html-italic">a<sub>c</sub></span> = 0.20 mm, and <span class="html-italic">v<sub>c</sub></span> = 50 m/min).</p> "> Figure 23
<p>Chip morphology of circular specimens with (left) and without polycarbonate (right) for (<b>a</b>) θ = 105°, (<b>b</b>) θ = 135°, and (<b>c</b>) θ = 165° (γ = 15°, α = 15°, <span class="html-italic">a<sub>c</sub></span> = 0.20 mm, and <span class="html-italic">v<sub>c</sub></span> = 50 m/min).</p> "> Figure 24
<p>Characteristics of cutting surface at 5× (left) and 10× (right) magnifications for (<b>a</b>) θ = 105°, (<b>a</b>,<b>b</b>) θ = 135°, and (<b>c</b>) θ = 165° (γ = 15°, α = 15°, <span class="html-italic">a<sub>c</sub></span> = 0.20 mm, and <span class="html-italic">v<sub>c</sub></span> = 50 m/min).</p> "> Figure 25
<p>Details of machined surface (θ = 165°, γ = 15°, α = 15°, <span class="html-italic">a<sub>c</sub></span> = 0.20 mm, and <span class="html-italic">v<sub>c</sub></span> = 50 m/min).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Burrs
3.2. Cutting Forces
- The “GFRP” curve represents specimens made solely of GFRP.
- The “GFRP + PC” curve represents specimens made of GFRP with additional external layers of polycarbonate.
- The “PC” curve represents specimens made only with two layers of polycarbonate.
- The “Theoretical GFRP + PC” curve is derived by summing the values of the “GFRP” and “PC” curves.
3.3. Surface Roughness
3.4. Chip and Cutting Surface Morphology
3.4.1. Chip Morphology for θ = 0°/180°/360°
3.4.2. Chip Morphology for θ = 0°/180°/360°
3.4.3. Chip Morphology for 90° < θ < 180°
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hsissou, R.; Seghiri, R.; Benzekri, Z.; Hilali, M.; Rafik, M.; Elharfi, A. Polymer composite materials: A comprehensive review. Compos. Struct. 2021, 262, 113640. [Google Scholar] [CrossRef]
- Sajan, S.; Philip Selvaraj, D. A review on polymer matrix composite materials and their applications. Mater. Today Proc. 2021, 47, 5493–5498. [Google Scholar] [CrossRef]
- Ozkan, D.; Gok, M.S.; Karaoglanli, A.C. Carbon Fiber Reinforced Polymer (CFRP) Composite Materials, Their Characteristic Properties, Industrial Application Areas and Their Machinability. In Engineering Design Applications III: Structures, Materials and Processes; Öchsner, A., Altenbach, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 235–253. [Google Scholar]
- Seo, J.; Kim, D.Y.; Dong Kim, D.C.; Park, H.W. Recent Developments and Challenges on Machining of Carbon Fiber Reinforced Polymer Composite Laminates. Int. J. Precis. Eng. Manuf. 2021, 22, 2027–2044. [Google Scholar] [CrossRef]
- He, Y.; Sheikh-Ahmad, J.; Zhu, S.; Zhao, C. Cutting Force Analysis Considering Edge Effects in the Milling of Carbon Fiber Reinforced Polymer Composite. J. Mater. Process Technol. 2020, 279, 116541. [Google Scholar] [CrossRef]
- Storchak, M.; Stehle, T.; Möhring, H.-C. Numerical Modeling of Cutting Characteristics during Short Hole Drilling: Modeling of Kinetic Characteristics. J. Manuf. Mater. Process. 2023, 7, 195. [Google Scholar] [CrossRef]
- Storchak, M.; Stehle, T.; Möhring, H.-C. Numerical Modeling of Titanium Alloy Ti10V2Fe3Al Milling Process. J. Manuf. Mater. Process. 2023, 7, 1. [Google Scholar] [CrossRef]
- Panico, M.; Durante, M.; Langella, A.; Boccarusso, L. One-Shot Drilling Process for Thin CFRP/Aluminium Alloys Stacks. Mater. Manuf. Process. 2024; in press. [Google Scholar] [CrossRef]
- Seeholzer, L.; Kneubühler, F.; Grossenbacher, F.; Wegener, K. Tool Wear and Spring Back Analysis in Orthogonal Machining Unidirectional CFRP with Respect to Tool Geometry and Fibre Orientation. J. Adv. Manuf. Technol. 2021, 115, 2905–2928. [Google Scholar] [CrossRef]
- El-Ghaoui, K.; Chatelain, J.-F.; Ouellet-Plamondon, C. Effect of Graphene on Machinability of Glass Fiber Reinforced Polymer (GFRP). J. Manuf. Mater. Process. 2019, 3, 78. [Google Scholar] [CrossRef]
- Durante, M.; Boccarusso, L.; De Fazio, D.; Langella, A. Circular Cutting Strategy for Drilling of Carbon Fiber-Reinforced Plastics (CFRPs). Mater. Manuf. Process. 2019, 34, 554–566. [Google Scholar] [CrossRef]
- Panico, M.; Durante, M.; Langella, A.; Boccarusso, L. Numerical and theoretical approach to evaluate the clamping force and the interlayer gap extent during drilling of stacked materials. Proc. Inst. Mech. Eng. Part B, 2024; in press. [Google Scholar] [CrossRef]
- Bolat, Ç.; Karakılınç, U.; Yalçın, B.; Öz, Y.; Yavaş, Ç.; Ergene, B.; Ercetin, A.; Akkoyun, F. Effect of Drilling Parameters and Tool Geometry on the Thrust Force and Surface Roughness of Aerospace Grade Laminate Composites. Micromachines 2023, 14, 1427. [Google Scholar] [CrossRef] [PubMed]
- Maegawa, S.; Morikawa, Y.; Hayakawa, S.; Itoigawa, F.; Nakamura, T. Mechanism for Changes in Cutting Forces for Down-Milling of Unidirectional Carbon Fiber Reinforced Polymer Laminates: Modeling and Experimentation. Int. J. Mach. Tools Manuf. 2016, 100, 7–13. [Google Scholar] [CrossRef]
- Geier, N. Influence of fibre orientation on cutting force in up down milling of UD-CFRP composites. Int. J. Adv. Manuf. Technol. 2020, 111, 881–893. [Google Scholar] [CrossRef]
- Meng, Q.; Cai, J.; Cheng, H.; Zhang, K. Investigation of CFRP cutting mechanism variation and the induced effects on cutting response and damage distribution. Int. J. Adv. Manuf. Technol. 2020, 106, 2893–2907. [Google Scholar] [CrossRef]
- Li, H.; Qin, X.; He, G.; Jin, Y.; Sun, D.; Price, M. Investigation of Chip Formation and Fracture Toughness in Orthogonal Cutting of UD-CFRP. J. Adv. Manuf. Technol. 2016, 82, 1079–1088. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, K.; Cheng, H.; Qi, Z.; Meng, Q. A Cutting Force Predicting Model in Orthogonal Machining of Unidirectional CFRP for Entire Range of Fiber Orientation. J. Adv. Manuf. Technol. 2017, 89, 833–846. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Z.; Cai, Y.; Luo, X.; Ma, H.; Song, Q.; Xiong, Z. Advancements in Material Removal Mechanism and Surface Integrity of High Speed Metal Cutting: A Review. Int. J. Mach. Tools Manuf. 2021, 166, 103744. [Google Scholar] [CrossRef]
- Slamani, M.; Chatelain, J.-F. A Review on the Machining of Polymer Composites Reinforced with Carbon (CFRP), Glass (GFRP), and Natural Fibers (NFRP). Discov. Mech. Eng. 2023, 2, 4. [Google Scholar] [CrossRef]
- Slamani, M.; Chatelain, J.F.; Hamedanianpour, H. Comparison of two models for predicting tool wear and cutting force components during high speed trimming of CFRP. Int. J. Mater. Form. 2015, 8, 305–316. [Google Scholar] [CrossRef]
- Uhlmann, E.; Richarz, S.; Sammler, F.; Hufschmied, F. High Speed Cutting of Carbon Fibre Reinforced Plastics. Procedia Manuf. 2016, 6, 113–123. [Google Scholar] [CrossRef]
- Pecat, O.; Rentsch, R.; Brinksmeier, E. Influence of Milling Process Parameters on the Surface Integrity of CFRP. Procedia CIRP 2012, 1, 466–470. [Google Scholar] [CrossRef]
- An, Q.; Cai, C.; Cai, X.; Chen, M. Experimental Investigation on the Cutting Mechanism and Surface Generation in Orthogonal Cutting of UD-CFRP Laminates. Compos. Struct. 2019, 230, 111441. [Google Scholar] [CrossRef]
- Voss, R.; Seeholzer, L.; Kuster, F.; Wegener, K. Analytical Force Model for Orthogonal Machining of Unidirectional Carbon Fibre Reinforced Polymers (CFRP) as a Function of the Fibre Orientation. J. Mater. Process. Technol. 2019, 263, 440–469. [Google Scholar] [CrossRef]
- Zhang, L.C.; Zhang, H.J.; Wang, X.M. A force prediction model for cutting unidirectional fibre-reinforced plastics. Mach. Sci. Technol. 2001, 5, 293–305. [Google Scholar] [CrossRef]
- Calzada, K.A.; Kapoor, S.G.; DeVor, R.E.; Samuel, J.; Srivastava, A.K. Modeling and Interpretation of Fiber Orientation-Based Failure Mechanisms in Machining of Carbon Fiber-Reinforced Polymer Composites. J. Manuf. Process 2012, 14, 141–149. [Google Scholar] [CrossRef]
- Xu, X.; Jin, X. 3-D Finite Element Modeling of Sequential Oblique Cutting of Unidirectional Carbon Fiber Reinforced Polymer. Compos. Struct. 2021, 256, 113127. [Google Scholar] [CrossRef]
- Mates Italiana. Available online: https://fileserver.mates.it/Prodotti/2_Matrici/TDS/Resine/Mates/SX10_DS.pdf (accessed on 6 April 2024).
- Dalla Betta Group. Available online: https://www.dallabetta.com/vetro.html (accessed on 10 November 2023).
- Jagadeesh, P.; Sanjay Mavinkere Rangappa, S.M.; Suyambulingam, I.; Siengchin, S.; Puttegowda, M.; Binoj, J.S.; Gorbatyuk, S.; Khan, A.; Doddamani, M.; Fiore, V.; et al. Drilling characteristics and properties analysis of fiber reinforced polymer composites: A comprehensive review. Heliyon 2023, 9, e14428. [Google Scholar] [CrossRef]
- Wang, F.; Yin, J.; Ma, J.; Jia, Z.; Yang, F.; Niu, B. Effects of Cutting Edge Radius and Fiber Cutting Angle on the Cutting-Induced Surface Damage in Machining of Unidirectional CFRP Composite Laminates. J. Adv. Manuf. Technol. 2017, 91, 3107–3120. [Google Scholar] [CrossRef]
- Caprino, G.; Langella, A. Analysing Cutting Forces in Machining Processes for Polymer-Based Composites. In Machining Technology for Composite Materials; Hocheng, H., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 75–115. [Google Scholar]
- Rathod, K.B.; Lalwani, D.I. Force Modelling in Orthogonal Cutting Considering Flank Wear Effect. J. Inst. Eng. Ser. C 2018, 99, 673–679. [Google Scholar] [CrossRef]
- Henerichs, M.; Voß, R.; Kuster, F.; Wegener, K. Machining of Carbon Fiber Reinforced Plastics: Influence of Tool Geometry and Fiber Orientation on the Machining Forces. CIRP J. Manuf. Sci. Technol. 2015, 9, 136–145. [Google Scholar] [CrossRef]
- Pwu, H.; Hocheng, H. Chip Formation Model of Cutting Fiber-Reinforced Plastics Perpendicular to Fiber Axis. ASME J. Manuf. Sci. Eng. 1998, 120, 192–196. [Google Scholar] [CrossRef]
- Wang, X.M.; Zhang, L.C. An Experimental Investigation into the Orthogonal Cutting of Unidirectional Fibre Reinforced Plastics. Int. J. Mach. Tools Manuf. 2003, 43, 1015–1022. [Google Scholar] [CrossRef]
Fiber Strength [MPa] | Fiber Stiffness [GPa] | Weight [g/m2] | Thickness [mm] | Fabric Strength [kN/m] |
---|---|---|---|---|
3100 | 80 | 300 | 0.115 | 354.96 |
Modulus | [GPa] |
---|---|
Longitudinal Modulus, E1 | 45 |
Transverse Modulus, E2 | 7 |
Ultimate Strengths | [MPa] |
Longitudinal Tensile Strength, Xt | 1320 |
Longitudinal Compressive Strength, Xc | 810 |
Circular Specimens | Rectangular Specimens | |||
---|---|---|---|---|
θ (°) | Average (μm) | St. Dev. (μm) | Average (μm) | St. Dev. (μm) |
0 | 2.51 | 0.16 | 2.83 | 0.24 |
15 | 2.21 | 0.33 | ||
30 | 2.69 | 0.29 | ||
45 | 3.62 | 0.47 | 3.57 | 0.18 |
60 | 3.33 | 0.28 | ||
75 | 4.21 | 0.59 | ||
90 | 5.07 | 0.52 | 4.61 | 0.30 |
105 | 6.35 | 0.34 | ||
120 | 9.09 | 0.02 | ||
135 | 12.31 | 2.63 | 15.63 | 4.26 |
150 | 17.98 | 2.33 | ||
165 | 9.46 | 2.10 | ||
180 | 2.51 | 0.16 | 2.83 | 0.24 |
Circular Specimens | Rectangular Specimens | |||
---|---|---|---|---|
θ (°) | Average (μm) | St. Dev. (μm) | Average (μm) | St. Dev. (μm) |
0 | 2.01 | 0.11 | 2.264 | 0.51 |
15 | 1.768 | 0.24 | ||
30 | 2.152 | 0.19 | ||
45 | 2.353 | 0.21 | 2.3205 | 0.69 |
60 | 3.1635 | 0.12 | ||
75 | 3.368 | 0.39 | ||
90 | 4.056 | 0.14 | 3.688 | 0.37 |
105 | 5.08 | 0.34 | ||
120 | 6.363 | 0.02 | ||
135 | 9.848 | 0.69 | 8.5965 | 2.42 |
150 | 14.384 | 2.01 | ||
165 | 6.622 | 0.15 | ||
180 | 2.008 | 0.32 | 2.547 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panico, M.; Boccarusso, L.; Formisano, A.; Villani, G.; Langella, A. An Experimental Procedure to Study the High-Speed Orthogonal Cutting of Unidirectional GFRP. J. Manuf. Mater. Process. 2024, 8, 87. https://doi.org/10.3390/jmmp8030087
Panico M, Boccarusso L, Formisano A, Villani G, Langella A. An Experimental Procedure to Study the High-Speed Orthogonal Cutting of Unidirectional GFRP. Journal of Manufacturing and Materials Processing. 2024; 8(3):87. https://doi.org/10.3390/jmmp8030087
Chicago/Turabian StylePanico, Martina, Luca Boccarusso, Antonio Formisano, Giuseppe Villani, and Antonio Langella. 2024. "An Experimental Procedure to Study the High-Speed Orthogonal Cutting of Unidirectional GFRP" Journal of Manufacturing and Materials Processing 8, no. 3: 87. https://doi.org/10.3390/jmmp8030087