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Abstract: For joining metallic materials for battery applications such as copper and stainless steel,
laser beam micro welding with beam sources in the near-infrared range has become established in
recent years. In laser beam micro welding, spatial power modulation describes the superposition
of the linear feed motion with an oscillating motion. This modulation method serves to widen the
cross-section of the weld seam as well as to increase the process stability. Temporal power modulation
refers to the controlled modulation of the laser power over time during the welding process. In
this paper, the superposition of both temporal and spatial power modulation methods is presented,
which enables a variable control of the weld penetration depth. Three weld geometries transverse to
the feed direction are part of this investigation: the compensation of the weld penetration depth due
to the asymmetric path movement during spatial power modulation only, a W-shaped weld profile,
and a V-shaped. The weld geometries are investigated by the bed on plate weld tests with CuSn6.
Furthermore, the use of combined power modulation for welding tests in butt joint configuration
between CuSn6 and stainless steel 1.4301 with different material properties is investigated. The study
shows the possibility of precise control of the welding depth by this methodology. Depending on
the material combination, the desired regions with maximum and minimum welding depth can be
achieved by the control of local and temporal power modulation on the material surface.

Keywords: laser welding; micro; copper; stainless steel; power modulation; spatial modulation;
wobbling

1. Introduction

Energy storage systems are gaining importance due to the increasing trend of elec-
trification, especially the stationary application as intermediate storage for power gen-
eration from renewable energies and electromobility devices. In the production of high-
performance battery packs, lithium-ion cells are used due to their high energy density and
good weldability of the stainless steel casing [1,2]. To establish electrical contact between
the cells, electrically conductive bonds are connected to the cells. Copper bonds are suitable
for cell contacting due to their high electrical and thermal conductivity but cannot be
processed in conventional ultrasonic joining due to their high thermal conductivity [3].
Laser beam micro welding offers a highly automatable, contactless joining method whereby
copper bonds can be processed. Compared to conventional welding processes, the intensity
of the energy input is increased by focusing the laser beam down to several 10 µm in diam-
eter to precisely weld materials with high thermal conductivity [4]. To protect the sensitive
joining partners, a defined weld geometry is crucial in order not to damage the cell and at
the same time to guarantee a large cross-section for the electrical current flow [5]. The weld
geometry, defined by width and depth, must not deviate from the defined values due to
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fluctuations and process influences. If the weld seams are too wide, adjacent components
on the surface, such as seals or electronic components, may be damaged. In the event
of fluctuations or deviations in the welding depth, underlying material such as polymer
substrates or electrolytes in battery storage systems can be destroyed.

In laser micro welding, spatial power modulation (PM) describes the superposition
of the linear feed motion with an oscillating motion. This makes the one-dimensional
movement of conventional laser beam micro welding two-dimensional and allows both
processing wider weld seams as well as a more stable process without pore or crack forma-
tion [6–9]. Additional parameters in the welding process, such as oscillation amplitude,
allow further degrees of freedom in the design of the weld seam width [10,11]. This ad-
justed weld seam width is mainly influenced by the movement of the scanning system,
which is highly reliable and not affected by any process errors. One negative effect of
this oscillation shape is the asymmetry of the path velocity of the laser beam. Differences
in velocity have an effect on the energy per unit length and thus the weld penetration
depth [12–14].

The combination of spatial and temporal power modulation offers new possibilities
to control the difference of the energy input by means of adapted laser power during the
process [5,15,16]. A combination of spatial and temporal power modulation for processing
aluminum and copper was demonstrated by Kraetzsch et al. with a 1D scanning system.
They adjusted the laser power along with the linear movement of the laser beam. By
adjusting the laser power and thus the heat input into the material, they could control the
formation of intermetallic phases and thus reduce the formation of cracks and increase the
tensile strength of the joining area [17]. The combination of both methods for a 2D circular
movement of the laser beam is shown by Chen et al. in welding dissimilar materials of
aluminum AA6061 and titanium Ti6Al4V in butt joint configuration for a macroscopic
attempt with a laser beam diameter of 460 µm. By lowering the laser power on the
titanium alloy material, they could compensate the penetration depth transverse to the
feed direction. [18] However, this method has not yet been adapted to microscopic welds
of copper and stainless steel material and shows new possibilities to freely design the
cross-section geometry of the weld seams.

The aim of this work is to investigate the feasibility of influencing the weld geometry
during laser beam micro welding by means of combining spatial and temporal power mod-
ulation. The compensation of the welding depth difference due to the spatial modulation
is investigated. Furthermore, the possibilities of welding other weld geometries (W-shaped
and V-shaped profile) and the welding of materials in butt joint configuration with different
degrees of absorption and thermal conductivity (1.4301 stell and CuSn6 copper) of the join-
ing partners are investigated. To analyze the measures taken for the modulation method,
the energy coupling during the process is additionally measured with two integrating
spheres and photo diodes.

To conduct the study, an experimental setup is first created that allows the synchro-
nization of the moving laser beam and the modulation of the laser power. Then, a study
is carried out in which the phase shift between local and temporal modulation is varied.
This is used to investigate at which difference of the two signals the optimal result of the
defined weld penetration geometries can be achieved. The investigations are carried out
with constant laser parameters.

2. Materials and Methods
2.1. Theoretical Principles

In heat conduction welding, the material is heated locally to a temperature above the
melting point, whereby the energy coupling into the material takes place exclusively at
the material surface. Due to reflection levels > 95% of copper in the infrared range, only a
relatively small proportion of the energy is introduced into the material [19]. The energy
transport from the surface into the material only takes place through heat conduction. By
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increasing the power density of the radiation, the transition from heat conduction welding
to deep penetration welding can be realized (Figure 1).

Figure 1. Illustration of process regimes (heat conduction and deep penetration welding) after [20].

Reaching the intensity threshold, the vaporization temperature of the material is
exceeded, and the material becomes gaseous. The outflowing metal vapor depresses the
surface and a vapor channel, called a vapor capillary develops inside the material. By this
circumstance, the laser radiation is channeled deeper into the material and increases the
total energy absorption (energy coupling). This creates very deep and narrow weld seams
with a very high aspect ratio a = depth/width up to a value of 15 [21].

With local power modulation, the linear feed motion is superimposed with an inde-
pendent oscillating motion, and thus, the laser motion is two-dimensional [9]. Figure 2
shows a schematic representation of local power modulation. By means of the local modu-
lation, the aspect ratio is reduced while the welding depth remains the same. This makes it
possible to widen the narrow weld seams and to improve the mechanical, thermal, and
electrical properties of the welded connection. [13,22] As a result, local modulation has
become more important, especially for joining copper and aluminum.

Figure 2. Illustration of spatial power modulation for laser beam micro welding.

Oscillatory motion is generated by the superposition of two periodic, orthogonal
motions. Possible oscillating movements are linear (one-dimensional movement transverse
to the feed direction), circular, elliptical, and octagonal. The use of circular oscillation has
gained acceptance in laser beam micro welding because experiments have shown that
molten pool ejections are reduced compared to other forms of oscillation and conventional
welding [22–24].

The spiral trajectory of the laser beam using a circular oscillation movement is de-
scribed by Equation (1)(

x(t)
y(t)

)
=

(
v f · t + As · cos(2π · fs · (t− ts))
−As · sin(2π · fs · (t− ts))

)
(1)
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where v f is the feed rate, fs the oscillation frequency As the oscillation amplitude, and t/ts
the time [19]. The oscillation amplitude corresponds to the radius of the circular motion.

A detrimental effect caused by the superposition of a circular oscillation with the
linear feed motion in local power modulation is the asymmetry of the path motion of the
laser. The formal relationship of this absolute velocity vPath(t) is described in Equation (2).
The absolute speed is highest in the direction of the linear feed rate and lowest in the
opposite direction.

vPath(t) =

√(
v f − 2π · fs · Ao · sin(2π · fs · (t− ts))

)2
+ (−2π · fs · As · cos(2π · fs · (t− ts)))

2 (2)

After calculating the magnitude of the path velocity, the result is a sinusoidal course.
Since the energy per unit length Epath(t), the energy on the material per unit length, is
directly proportional to the path velocity, it also changes in the course of an oscillation.
Equation (3) describes this relationship mathematically with

Epath(t) =
PL∣∣∣→v Path(t)

∣∣∣ (3)

where PL describes the laser power and
→
v Path(t) the path velocity on the material surface.

The energy per unit length influences the shape and depth of the molten pool and the
vapor capillary, which causes the weld penetration depth to be greater at points with high
energy per unit length than at low energy per unit length. This results in tilted weld seams
transverse to the feed direction. [15,25].

2.2. Experimental Plan and Setup

For all experiments within the scope of this work, a fiber laser of the type SPI400C
from the company SPI Lasers (Southampton, UK) is used as the beam source. The laser
emits radiation with a wavelength of λ = 1064 nm, the beam quality is M2 < 1.1, and the
maximum measured power output PL,max = 423 W. The feed motion and the oscillation
motion of the local power modulation are generated by a galvanometer scanner of the
model intelliSCAN20 (Scanlab) by means of two rotatable mirrors. The output laser beam
from the scanner system is focused by f-theta optics from Sill Optics with a focal length
of f = 163 mm. The laser beam is focused to a focal diameter of 38 µm for sufficient laser
beam intensity.

In the case of temporal power modulation with a laser beam source, one possibility
for the power variation is achieved by superimposing the constant power PL, med with a
periodic power modulation. Thus, the laser power results in

PL,Sinus(t) = PL, med + At · sin(2π · ft · (t− tt)). (4)

where PL,med is the constant laser power, At the laser power amplitude and ft the frequency
of the laser power modulation and t/tt the time.

The weld-in profile of laser beam micro welding without modulation is narrow with a
high aspect ratio. The weld seam of a weld with local power modulation with a circular
oscillation is wider and shows an oblique seam bottom in the transverse section. In the
feed direction with a clockwise circular oscillation movement, the weld has the minimum
weld penetration depth on the left side and the maximum weld penetration depth on the
opposite side. Figure 3 shows a schematic diagram of the weld-in geometries that are tried
to be achieved in this work.
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Figure 3. Schematic representation of the weld-in profiles to be investigated in transverse section.
Initial situation (left); compensation and targeted profiles with combined power modulation (right).

By combining local and temporal power modulation, the influence on the weld
geometry is investigated by means of bed on plate welding tests for three weld penetration
profiles: the compensation of the weld penetration depth difference due to local power
modulation, a W-shaped weld penetration profile with the minimum weld penetration
depth between two maximum depths, and a V-shaped profile with the maximum depth
between two minimum depths.

To investigate the influence of local and temporal power modulation on the weld
geometry during the transition between metals with different material properties, welding
tests are carried out in butt joint configuration. Figure 4 shows the schematic representation
of two weld-in profiles of welds in the butt joint.

Figure 4. Schematic representation of the weld penetration profile of a weld in the butt joint of
dissimilar joining partners and the compensated target situation using combined power modulation.

The aim of the investigation is to demonstrate the possibility of compensating for the
difference in weld penetration depth due to the different material properties. The different
material properties are listed in Table 1.

Table 1. Optical and thermal material properties of CuSn6 and 1.4301 stainless steel [20,26,27].

Material Property CuSn6 1.4301

Absorptivity (λ = 1064 nm) 7.9% 37.2%

Heat conductivity 75 W/mK 15 W/mK

Heat capacity 377 J/kgK 500 J/kgK

Liquidus temperature 1323 K 1673 K

For compensation for the difference in weld penetration depth due to the local power
modulation, the amplitude of the temporal power modulation must be varied by the same
factor as the change in velocity.

The study is carried out by changing the phase shift between local and temporal
modulation (see Figure 5). This is used to investigate at which difference of the two
signals the optimal result of the defined weld penetration geometries can be achieved. The
investigations are carried out with constant laser parameters such as feed rate and laser
power to ensure comparability of the results. An average laser power of 360 W and a feed
rate of 75 mm/s was used in order to use both process-technically sensible and frequently
used feed rates as well as to obtain a continuous deep welding process without collapse of
the process. The selected parameters for the investigation are shown in Table 2.



J. Manuf. Mater. Process. 2021, 5, 127 6 of 13

Figure 5. Qualitative representation of the position of the maximum and minimum laser power;
red—maximum power; blue—minimum power.

Table 2. Parameters for the investigated laser welding modulation method.

Profile/Weld Feed Rate Average Laser
Power

Frequency
Temporal

Amplitude
Temporal

Frequency
Spatial

Amplitude
Spatial

Initial 75 mm/s 360 W 500 Hz 40 W 500 Hz 0.2 mm

Compensation 75 mm/s 360 W 500 Hz 40 W 500 Hz 0.2 mm

W-profile 75 mm/s 360 W 1000 Hz 60 W 500 Hz 0.2 mm

V-profile 75 mm/s 360 W 1000 Hz 60 W 500 Hz 0.2 mm

Dissimilar material 75 mm/s 360 W 500 Hz 40 W 500 Hz 0.2/0.3 mm

The temporal power modulation is adjusted by ±40 W for the bed on plate welds
on CuSn6 to compensate for the change in path velocity. For the joining of the dissimilar
material combination, the temporal power modulation was increased up to ±60 W to
additionally compensate for the difference in the material properties between CuSn6 and
1.4301. This was the highest amplitude possible with the used laser beam source. To take
into account statistical fluctuations in the process, all tests were carried out with a number
of n = 3 in order to exclude outliers in the results.

Decisive for the formation of the weld-in profiles is the position of the maximum and
minimum laser power due to the temporal modulation on the oscillation loop. Figure 5
shows the schematic representation of the laser power depending on the position of the
laser beam.

While the compensation of the difference in welding depth is investigated with the
same frequency of the local and the temporal power modulation, the welding tests for
the generation of the W-profile and the V-profile are carried out with a frequency of the
temporal power modulation twice as high as the frequency of the spatial one. As a result,
the minimum and maximum of the energy per unit length alternate every 90◦ on the track
of the spatial power modulation.

Table 3 lists the areas on the oscillation curve where the maximum and minimum laser
power was positioned. Between these limits, the phase of the laser power was varied in
∆ϕ = 5◦ steps for investigation.

Table 3. Areas on the oscillation profile for variation of the temporal power modulation.

Profile Maximum Laser Power Minimum Laser Power

Compensation ϕ = 255–285◦ ϕ = 75–105◦

W-profile ϕ = 75–105◦/255–285◦ ϕ = 165–195◦/345–375◦

V-profile ϕ = 165–195◦/345–375◦ ϕ = 75–105◦/255–285◦
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2.3. Experimental Setup for Synchronizing Temporal and Spatial Power Modulation

For superposition of the temporal with the spatial power modulation and detailed
synchronization, an experimental setup like the one shown in Figure 6 (left) is needed.

Figure 6. Schematic experimental setup for synchronizing temporal and spatial power modula-
tion (left); measured signals to determine the phase shift tz (right).

The setup allows synchronizing the laser power modulation with the spatial location
of the laser beam on the surface. Therefore, a PSD diode (Hamamatsu C10443-03) and a
photodiode (Thorlabs DET10A2) are used. These diodes allow capturing both the change in
laser beam intensity (photodiode) as well as the location of the laser beam on a 12× 12 mm2

diode (PSD-diode). Both signals are captured with an oscilloscope DSO-X 2002A. In the
diagram (Figure 6, right), the phase difference of the temporal and the spatial modulation
can be analyzed. The constant phase difference evoked by the technical equipment of the
experimental setup can then be equalized by either increasing or reducing the phase of the
temporal power modulation to match the movement of the laser scanner.

2.4. Experimental Setup for Measuring of Laser Energy Coupling

For analyzing the totally absorbed energy during the laser welding process, the
reflected laser power from the material surface has to be measured. The reflected laser
power is observed with two integrating spheres (refer to [26,28]). The material sample
is placed inside the lower integrating sphere (819C-SF-4, Newport Corporation, Irvine,
CA, USA). Due to the position, the diffusely reflected radiation can be measured with a
photodiode in the lower sphere. The coaxial reflected radiation is deflected via a beam
splitter (Thorlabs BSN11, Thorlabs, Newton, NJ, USA) in the upper integrating sphere
(819D-SF-4, Newport Corporation). The beam splitter has a transmission of 89.14% and a
reflectivity of 10.86%. The measurements in the two integrating spheres are performed with
Si-photodiodes (Thorlabs DET10A2). Both photodiodes are equipped with a bandpass filter
(Thorlabs FB1070-10) for noise suppression. With optical filters of known density (Thorlabs
NEK01), the measurement signals at the photodiodes are further reduced in case of signal
overload. The two signals are monitored using an InfiniiVision DSO-X 2002A oscilloscope
from Agilent Technologies (Santa Clara, CA, USA). To assign a respective laser power to a
measured photodiode signal, a calibration was conducted before the measurements. After
a calibration measurement with a broadband mirror (Thorlabs BB05-E02) tilted by 8◦ the
diode voltage of the lower photodiode can be assigned to specific laser power. In order to
take into account the radiation reflected vertically from the lower integrating sphere into
the upper integrating sphere during the welding process, the diode voltage of the upper
photodiode is also measured with a horizontally positioned mirror. With the measured
diode voltages, the absorptivity coefficient η can be calculated [14,15,26,28].
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3. Results
3.1. Bed on Plate Weld on Copper CuSn6

In this section, the most representative parameters with the most distinctive details
are presented. First, the initial situation is shown compared to the approach for com-
pensating the difference in weld depth. Figure 7, left, shows a weld with spatial power
modulation only. 
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Figure 7. Left: Laser weld with only spatial power modulation. Right: Laser weld with combined
spatial and temporal power modulation (compensation).

The slanted seam base is clearly visible. As in the state of the art mentioned, the tilting
is pronounced on the side with the higher energy per unit length (lower path velocity).
A tilting of this kind would, in the worst case, lead to the destruction of the component,
especially on components with only thin substrate layers and an underlying sensitive layer.
Therefore, precise control of the welding depth is necessary. This has been achieved in
Figure 7, right, by superimposing local and temporal power modulation. The synchronized
superimposition of the temporal power modulation with an amplitude of ±40 W visibly
compensates for the tilting. The tilt could be reduced from 22.5% to 14%, measured with the
welding depth on the right and left side. For the generation of a perfectly rectangular seam
cross-section, a more precise parameter study and further optimizations of the process
control strategies are necessary.

In order to obtain further degrees of freedom in the production of components, the
variable adjustment of the seam cross-section is also considered. The generated cross-
section profiles with W- and V-shape are shown in Figure 8.
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Figure 8. Laser weld with combined spatial and temporal power modulation Left: W-shape;
Right: V-shape.

The weld seam in Figure 8, left shows a region of minimum weld penetration sur-
rounded by two regions of maximum weld penetration. The two sides of the profile are
approximately the same depth, which indicates that the energy balance by means of a
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power amplitude of ±60 W is sufficient. It can also be seen that the left side of the profile
is somewhat wider and more voluminous. Here, the process control does not yet seem
to have been ideal in order to produce an absolutely symmetrical profile. The temporal
modulation of the laser power should be done here via a non-symmetrical sine modulation
in order to compensate for the differences in the path velocity. Similar behavior can be
noted when creating the V-profile. A clear indentation in the middle area of the weld seam
can be seen. The flanks that are welded less deeply towards the outside form the V-profile.
However, asymmetrical behavior is also clearly visible here. The maximum depth of the
weld is not in the centre but shifts to the right of the center line on the side of the minimum
feed rate. Here, a shift of the maximum power further to the side of the maximum feed
rate is obviously necessary. However, the other parameters examined did not provide such
a clear V-shape. A stronger modulation of the laser power > ±60 W would certainly lead
to more reproducible and stronger pronounced results.

3.2. Dissimilar Welds of CuSn6 Copper and 1.4301 Stainless Steel in Butt Joint Configuration

When welding two different components in a butt joint configuration with local power
modulation, the molten metals intermix due to the fluid dynamics of the circulating molten
pool. The resulting weld seams are shown in Figures 9 and 10.

Figure 9. Comparison of two welds in butt joint. Left: with local PM; right: with combined PM with
local amplitude As = 0.2 mm.

Figure 10. Comparison of two weld seams in the butt joint. Left: with local PM; right: with combined
PM with an amplitude of As = 0.3 mm.

While in the bed on plate welding tests with local power modulation, a difference
in weld depth with a maximum depth on the right side of the weld (location of lowest
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path velocity) is observed; this is inverse in the case of these butt joints, even though
the spatial power modulation alone was not changed. Due to the material properties of
copper and stainless steel, in particular the lower absorption coefficient and higher thermal
conductivity of copper compared to stainless steel, the maximum depth is on the side of
the stainless steel and thus in the region of maximum path velocity.

Applying combined power modulation to the specimens, the difference in depth can
be compensated in the same way as for the bed on plate welds. It can be seen that ±40 W
is already sufficient to almost completely compensate or even invert (the copper material is
positioned higher than the steel Figure 9, right) the effect of the depth difference on the
stainless steel and copper sides. To make the effect clearer, a larger spatial amplitude of
0.3 mm is also examined.

The aspect ratio of the weld decreases with the larger amplitude As in Figure 10
compared to Figure 9. The weld is wider, and the depth is shallower. This circumstance
arises from the application of the same energy to a larger surface area on the material. Both
welds show a clearly reduced difference in the weld penetration depth due to the combined
power modulation. The difference in welding depth within the investigated parameter set
was reduced up to 39% compared to the butt joint without combined power modulation.

Problematic for the welding tests in the butt joint configuration is the positioning and
alignment of the specimens to the laser beam. This is a source of error in the experimental
procedure, which is clearly shown in Figure 9, right. The weld is not centered on the butt
edge, and most of the weld is in the copper sheet. Despite this defect, the weld has a
compensated difference in weld penetration depth. This fact advocates for the choice of
the modulation method for adaptation in multi-material combinations. However, in a butt
joint configuration where the materials are arranged the other way round, the position of
the laser power maxima and minima would, of course, have to be reversed as well.

4. Discussion

In the following, the degree of energy coupling for the four bed on plate welds is
shown to discuss the results obtained with the superpositioned power modulation method.
The above-shown results are analyzed in detail as these show the best results of the
respective targeted weld-in profiles for the investigated parameter set. Figure 11 shows the
temporal course of the coupling degree of the welding process for all four weld seams.

Figure 11. Temporal course of the coupling degrees for bed on plate welds on CuSn6. Left: spatial PM only and combined
PM (compensation); Right: W- and V- profile.

The left diagram shows the time course over an interval of 20 ms from a stabilized
process with spatial power modulation and the combined power modulation (compen-
sation). The temporal course of the coupling degree during welding with local power
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modulation (black graph) corresponds to a periodic oscillation with the frequency of the
local modulation (500 Hz). The oscillation behavior of the degree of coupling has its origin
in the periodic change of the path velocity within an oscillation loop where the depth of
the vapor capillary changes due to the multiple crossing of areas in the weld seam and
thus the total absorbed energy inside the vapor capillary is differing. In addition to the
periodic oscillation, microscopic fluctuations in the order of microseconds can be detected.
The average degree of coupling of this welding test over a measuring time of 20 ms is
η = 66.20% ± 2.25%. The peak coupling degree occurs at the maximum energy per unit
length, which is reached at a phase angle of 90◦ on the local scale since the path velocity
is lowest there. This is the reference for the following shifts of the temporal course of the
coupling degree due to the different modulation types.

The red graph (dot stroke line Figure 11, left) shows the temporal course of the
coupling degree of the compensation profile. The curve corresponds to the temporal mod-
ulation of a sinusoidal oscillation. The average degree of coupling is η = 66.03% ± 4.82%.
With a constant mean value, the amplitude increases due to the amplitude of the local
power modulation. The superposition of the local and temporal power modulation can be
significantly recognized by the shifted course. The temporal course of the combined modu-
lation is shifted by −0.787 ms or −141.6◦ compared to the course of the local modulation.
This means that the location of the maximum energy coupling on the material surface is
shifted towards the location of the maximum path velocity. The graph of the combined
modulation additionally does not show any microscopic fluctuations in the microsecond
range. The superposition of the spatial and temporal power modulation imposes a power
setting and thus a predetermined movement on the vapor capillary to stabilize it and thus
influence the energy input into the process.

Figure 11, right, shows the temporal courses of the coupling degrees of the W- and
the V-profile. As the graph of the compensation profile, these show a sinusoidal curve
but with a temporal frequency of 1000 Hz. The frequency of the temporal modulation is
twice as large as the frequency of the spatial modulation. The amplitude of the energy
coupling increases further for both profiles due to the higher temporal power modulation
of ±60 W. The respective course of the degree of coupling is smoothed and the welding
process further stabilized. The two curves are shifted relative to each other by approx.
π (90◦) on the time scale, which corresponds to the phase shift of the power maxima of
the profiles relative to each other. The superposition of the local modulation and the
temporal modulation with double the frequency can be recognized by the periodically
changing magnitude of the maxima and minima of the coupling degree of the W-profile
and the V-profile.

5. Conclusions

The following conclusions can be drawn from this work:

• Based on the standard weld seam, it has been shown that in addition to compensating
for seam tilt, it is also possible to create other cross-section profiles such as W and
V shapes.

• The feasibility to control the laser energy deposition during laser micro welding by
means of synchronized temporal and spatial power modulation is shown.

• The difference in the welding depth could be reduced in the parameter space examined
in this work by 8.5%-points for bed on plate welds on CuSn6 and by 39% points for
dissimilar material systems in the butt joint configuration between 1.4301 and CuSn6.

• A variation of the position of maximum and minimum laser power on the weld seam
is crucial for successful adjustment of the weld seam geometry.

• Measurement of energy coupling during the welding process can be used to analyze
changes in the energy coupling due to modified power modulation in detail.

• The uneven welding depth in butt joints of dissimilar materials can be compensated
by exposing higher laser power on the material with increased thermal conductivity
and reflectivity and vice versa.
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In further research work, a more detailed parameter study has to be conducted to find
optimized parameters for the butt joint equalization. Additionally, the sinusoidal curve of
the temporal power modulation must be extended by peaks of different heights in order to
compensate for the non-symmetrically change in path velocity on the material surface to
the right extent.
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