Micro-Milling Process of Metals: A Comparison between Femtosecond Laser and EDM Techniques
<p>Schematic representation of the femtosecond laser micro-machining setup: the laser beam is directed with a mirror (M) on a polarizer waveplate (λ/4) and expanded with a beam expander (BE). A galvanometric scanner (G) and a F-Theta (<span class="html-italic">f</span>-θ) lens are used to scan the laser beam on the work piece.</p> "> Figure 2
<p>Representation of EDM milling operation.</p> "> Figure 3
<p>Parameters involved into the EDM process.</p> "> Figure 4
<p>Schematic representation of the geometries designed for the comparison between the femtosecond laser and the EDM technology: (<b>a</b>) micro-channel; (<b>b</b>) micro-pillar.</p> "> Figure 5
<p>Schematic representation of the geometries designed for the comparison between the femtosecond laser and the EDM technology with the effect of the taper angle on (<b>a</b>) micro-channel and (<b>b</b>) micro-pillar.</p> "> Figure 6
<p>Top (<b>a</b>) and bottom (<b>b</b>) optical microscopy images of the channels on aluminum, stainless steel and titanium alloys obtained with femto-laser.</p> "> Figure 7
<p>Three-dimensional reconstruction of the aluminum channel realized with laser milling.</p> "> Figure 8
<p>Profiles acquired with the white light interferometer of the channels realized with laser milling on (<b>a</b>) Al5754-H111, (<b>b</b>) AISI316L and (<b>c</b>) Ti6Al4V.</p> "> Figure 9
<p>SEM images of the femto-laser pillars on stainless steel (<b>a</b>,<b>b</b>) and titanium alloys (<b>c</b>,<b>d</b>), depth 50 µm (<b>a</b>,<b>c</b>) and 100 µm (<b>b</b>,<b>d</b>).</p> "> Figure 10
<p>Three-dimensional reconstruction of pillars on AISI 316L, with a depth of about (<b>a</b>) ∆ = 50 µm and (<b>b</b>) ∆ = 100 µm, obtained using a femto-laser.</p> "> Figure 11
<p>Top (<b>a</b>) and bottom (<b>b</b>) optical microscopy images of the channels on aluminum, stainless steel and titanium alloys for 100 µm depth obtained with EDM.</p> "> Figure 12
<p>Example of a 3D reconstruction of a channel on aluminum at 100 µm as depth.</p> "> Figure 13
<p>Reconstructed profile of the channels machined with EDM technology (<b>a</b>) Al5754-H111, (<b>b</b>) AISI316L and (<b>c</b>) Ti6Al4V.</p> "> Figure 14
<p>SEM images of the EDM pillars on stainless steel (<b>a</b>,<b>b</b>) and titanium alloy (<b>c</b>,<b>d</b>), depth 50 µm (<b>a</b>,<b>c</b>) and 100 µm (<b>b</b>,<b>d</b>).</p> "> Figure 15
<p>3D reconstruction of pillars on Ti6Al4V with a depth of about (<b>a</b>) ∆ = 50 µm and (<b>b</b>) ∆ = 100 µm obtained using EDM.</p> "> Figure 16
<p>Comparison between the MRR of the channel obtained with a femto-laser and EDM.</p> "> Figure 17
<p>Comparison between the taper of the channel obtained with a femto-laser and EDM.</p> "> Figure 18
<p>Comparison between the Ra of the channel obtained with z femto-laser and EDM.</p> "> Figure 19
<p>Comparison between the MRR of the pillars obtained with a femto-laser and EDM.</p> "> Figure 20
<p>Comparison between the taper of the pillars obtained with a femto-laser and EDM.</p> ">
Abstract
:1. Introduction
2. Experimental Plan
3. Analysis of the Results
3.1. Femto-Laser
3.2. Micro-EDM
4. Comparison Femto-Laser and EDM Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, B.; Sun, J.; Hua, Y.; Zhan, N.; Jia, J.; Chu, K. Femtosecond Laser Micro/Nano-manufacturing: Theories, Measurements, Methods, and Applications. Nanomanuf. Metrol. 2020, 3, 26–67. [Google Scholar] [CrossRef] [Green Version]
- Schaeffer, R. Fundamentals of Laser Micromachining, 1st ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Chichkov, B.N.; Momma, C.; Nolte, S.; von Alvensleben, F.; Tunnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 1996, 63, 109–115. [Google Scholar] [CrossRef]
- Leitz, K.-H.; Redlingshöfer, B.; Reg, Y.; Otto, A.; Schmidt, M. Metal ablation with short and ultrashort laser pulses. Phys. Procedia 2011, 12, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Lei, S.; Zhao, X.; Yu, X.; Hu, A.; Vukelic, S.; Jun, M.B.G.; Joe, H.-E.; Yao, Y.L.; Shin, Y.C. Ultrafast laser applications in manufacturing processes: A state-of-the-art review. J. Manuf. Sci. Eng. 2020, 142, 1–43. [Google Scholar] [CrossRef]
- Henry, M.; Harrison, P.M.; Henderson, I.H.S.; Brownell, M.F. Laser milling: A practical industrial solution for machining a wide variety of materials. In Proceedings of the Fifth International Symposium on Laser Precision Microfabrication, Nara, Japan, 11–14 May 2004; Volume 5662. [Google Scholar]
- Schille, J.; Ebert, R.; Loeschner, U.; Scully, P.; Goddard, N.; Exner, H. High repetition rate femtosecond laser processing of metals. Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications X. In Proceedings of the SPIE—The International Society for Optical Engineering, San Francisco, CA, USA, 25–28 January 2010; Volume 7580. [Google Scholar]
- Lickschat, P.; Schille, J.; Müller, M.; Weißmantel, S.; Reiße, G. Comparative study on microstructuring of steel using pico-and femtosecond laser pulses. In Proceedings of the International Congress on Applications of Lasers and Electro-Optics, Laser Institute of America, Anaheim, CA, USA, 23–27 September 2012; Volume 2012. [Google Scholar]
- Pfeifenberger, M.J.; Mangang, M.; Wurster, S.; Reiser, J.; Hohenwarter, A.; Pfleging, W.; Kiener, D.; Pippan, R. The use of femtosecond laser ablation as a novel tool for rapid micro-mechanical sample preparation. Mater. Des. 2017, 121, 109–118. [Google Scholar] [CrossRef]
- Hodgson, N.; Steinkopff, A.; Heming, S.; Allegre, H.; Haloui, H.; Lee, T.S.; Laha, M.; VanNunen, J. Ultrafast Laser Ablation at 1035 nm, 517 nm and 345 nm as a Function of Pulse Duration and Fluence. In Proceedings of the Lasers in Manufacturing Conference, Munich, Germany, 24–27 June 2019. [Google Scholar]
- Neuenschwander, B.; Jaeggi, B.; Schmid, M.; Hennig, G. Surface structuring with ultra-short laser pulses: Basics, limitations and needs for high throughput. Phys. Procedia 2014, 56, 1047–1058. [Google Scholar] [CrossRef] [Green Version]
- Campanelli, S.; Ludovico, A.; Bonserio, C.; Cavalluzzi, P.; Cinquepalmi, M. Experimental analysis of the laser milling process parameters. J. Mater. Process. Technol. 2007, 191, 220–223. [Google Scholar] [CrossRef]
- Auerswald, J.; Ruckli, T.G.A.; Weber, P.; Diego-Vallejo, D.; Schlüter, H. Taper Angle Correction in Cutting of Complex Micro-Mechanical Contours with Ultra-Short Pulse Laser. J. Mech. Eng. Autom 2016, 6, 334–338. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.H.; Newman, S.T. State of the art electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 2003, 431, 287–300. [Google Scholar] [CrossRef]
- Pham, D.T.; Dimov, S.S.; Bigot, S.; Ivanov, A.; Popov, K. Micro EDM—Recent developments and research issues. J. Mater. Process. Technol. 2004, 149, 50–57. [Google Scholar] [CrossRef]
- Masuzawa, T.; Tonshoff, H.K. Three-dimensional micromachining by machine tools. CIRP Ann. Manuf. Technol. 1997, 46, 621–628. [Google Scholar] [CrossRef]
- Yu, Z.Y.; Masuzawa, T.; Fujino, M. 3D micro-EDM with simple shape electrode, Part 1: Machining of cavities with sharp corners and electrode wear compensation. In Proceedings of the KORUS 2000, the 4th Korea-Russia International Symposium on Science and Technology, Ulsan, Korea, 21 June–1 July 2000; pp. 102–105. [Google Scholar]
- Yu, H.-L.; Luan, J.-L.; Li, J.-Z.; Zhang, Y.-S.; Yu, Z.-Y.; Guo, D.-M. A new electrode wear compensation method for improving performance in 3D micro EDM milling. Micromech. Microeng. 2010, 20, 055011. [Google Scholar] [CrossRef] [Green Version]
- Van Brussel, H.; Peirs, J.; Reynaerts, D.; Delchambre, A.; Reinhart, G.; Roth, N.; Weck, M.; Zussman, E. Assembly of microsystems. CIRP Ann. Manuf. Technol. 2020, 49, 451–472. [Google Scholar] [CrossRef]
- Pham, D.T.; Ivanov, A.; Bigot, S.; Popov, K.; Dimov, S. A study of micro-electro discharge machining electrode wear. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2007, 221, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Zhang, Q.; Zhu, G.; Wang, K.; Zhang, J.; Dong, C. Effect of Electrode Size on the Performances of Micro-EDM. Mater. Manuf. Process. 2016, 31, 391–396. [Google Scholar] [CrossRef]
- Alting, L.; Kimura, F.; Hansec, H.N.; Bissacco, G. Micro engineering. CIRP Ann. Manuf. Technol. 2003, 52, 635–657. [Google Scholar] [CrossRef]
- Rajurkar, K.P.; Levy, G.; Malshe, A.; Sundaram, M.M.; McGeough, J.; Hu, X.; Resnick, R.; DeSilva, A. Micro and nano by electro-physical and chemical processes. CIRP Ann. Manuf. Technol. 2006, 55, 643–666. [Google Scholar] [CrossRef]
- Kibria, G.; Muhammad, P.J.; Bhattacharyya, B. Micro-electrical Discharge Machining Processes. In Technologies and Applications; Springer: Singapore, 2019. [Google Scholar]
- Rasheed, M.S. Comparison of Micro-Holes Produced By Micro-EDM with Laser Machining. Int. J. Sci. Mod. Eng. 2013, 1, 14–18. [Google Scholar]
- Shang, G.; Han, H. Recent advances in micro- and nano-machining technologies. Front. Mech. Eng. 2017, 12, 18–32. [Google Scholar]
- Romoli, L.; Rashed, C.A.A.; Fiaschi, M. Experimental characterization of the inner surface in micro-drilling of spray holes: A comparison between ultrashort pulsed laser and EDM. Opt. Laser Technol. 2014, 56, 35–42. [Google Scholar] [CrossRef]
- Li, L.; Diver, C.; Atkinson, J.; Giedl-Wagner, R.; Helml, H.J. Sequential Laser and EDM Micro-drilling for Next Generation Fuel Injection Nozzle Manufacture. CIRP Ann. 2006, 55, 179–182. [Google Scholar] [CrossRef]
- Al-Ahmari, A.M.A.; Rasheed, S.M.; Mohammed, M.K.; Saleh, T. A Hybrid Machining Process Combining Micro-EDM and Laser Beam Machining of Nickel–Titanium-Based Shape Memory Alloy. Mater. Manuf. Process. 2016, 31, 447–455. [Google Scholar] [CrossRef]
- Brousseau, E.B.; Dimov, S.S.; Pham, D.T. Some recent advances in multi-material micro- and nano-manufacturing. Int. J. Adv. Manuf. Technol. 2010, 47, 161–180. [Google Scholar] [CrossRef]
- Kurselis, K.; Kudrius, T.; Paipulas, D.; Balachninaite, O.; Sirutkaitis, V. Experimental study on femtosecond laser micromachining of grooves in stainless steel. Lith. J. Phys. 2010, 50, 95–103. [Google Scholar] [CrossRef]
- Nikolidakis, E.; Aristomenis, A. FEM modeling and simulation of kerf formation in the nanosecond pulsed laser engraving process. CIRP J. Manuf. Sci. Technol. 2021, 35, 236–249. [Google Scholar] [CrossRef]
- Schille, J.; Schneider, L.; Loeschner, U.; Ebert, R.; Scully, P.; Goddard, N.; Steiger, B.; Exner, H. Micro processing of metals using a high repetition rate femtosecond laser: From laser process parameter study to machining examples. In Proceedings of the International Congress on Applications of Lasers and Electro-Optics, Laser Institute of America, Jacksonville, FL, USA, 23–27 October 2011; pp. 773–782. [Google Scholar]
Feature | Geometrical Data | Material |
---|---|---|
Micro-channel | L0 = 10 mm | AISI316L |
t0 = 100 µm | Ti6Al4V | |
∆ = 100 µm | Al5754-H111 | |
Micro-pillar | D0 = 50 µm | AISI316L |
∆ = 50 µm, 100 µm | Ti6Al4V |
Workpiece | ∆ [µm] | Feature | Energy | Gap | I (Index) | V (V) | W (µs) | F (kHz) | Gain |
---|---|---|---|---|---|---|---|---|---|
Al5754-H111 | 100 | Channel | 100 | 20 | 100 | 100 | 5 | 140 | 350 |
AISI316L | 100 | Channel | 100 | 20 | 100 | 100 | 5 | 150 | 350 |
Ti6Al4V | 100 | Channel | 100 | 20 | 100 | 100 | 5 | 150 | 150 |
AISI316L | 50 | Pillar | 100 | 72 | 100 | 100 | 5 | 140 | 350 |
AISI316L | 100 | Pillar | 100 | 72 | 100 | 100 | 5 | 140 | 350 |
Ti6Al4V | 50 | Pillar | 100 | 75 | 100 | 102 | 5 | 150 | 150 |
Ti6Al4V | 100 | Pillar | 100 | 75 | 100 | 102 | 5 | 150 | 150 |
Workpiece | ∆ (µm) | MRR (mm3/s) | t0 (µm) | tc (µm) | Taper (-) | Ra (µm) |
---|---|---|---|---|---|---|
Al5754-H111 | 100 | 8.42 × 10−4 | 129 | 60 | 0.56 | 0.33 |
AISI316L | 100 | 3.04 × 10−4 | 127 | 71 | 0.57 | 0.29 |
Ti6Al4V | 100 | 3.06 × 10−4 | 123 | 66 | 0.56 | 0.22 |
Workpiece | ∆ (µm) | 2r0 (µm) | 2rc (µm) | Taper (-) | MRR (mm3/s) |
---|---|---|---|---|---|
AISI316L | 50 | 48.4 | 122.6 | 1.48 | 9.25 × 10−4 |
AISI316L | 100 | 51.38 | 181.95 | 1.31 | 8.11 × 10−4 |
Ti6Al4V | 50 | 51.86 | 123.95 | 1.44 | 1.02 × 10−3 |
Ti6Al4V | 100 | 50.61 | 188.25 | 1.38 | 8.87 × 10−4 |
Workpiece | ∆ (µm) | MRR (mm3/s) | Electrode Wear (mm) | t0 (µm) | tc (µm) | Taper (-) | Ra (µm) |
---|---|---|---|---|---|---|---|
Al5754-H111 | 100 | 5.3 × 10−5 | 0.491 | 112 | 90 | 0.16 | 0.38 |
AISI316L | 100 | 2.1 × 10−5 | 4.465 | 119 | 78 | 0.46 | 0.18 |
Ti6Al4V | 100 | 2 × 10−5 | 6.552 | 124 | 91 | 0.40 | 0.24 |
Workpiece | ∆ (µm) | Electrode Wear (mm) | 2r0 (µm) | 2rc (µm) | Taper (-) | MRR (mm3/s) |
---|---|---|---|---|---|---|
AISI316L | 50 | 2.75 | 41.76 | 59.12 | 0.347 | 3.28 × 10−5 |
AISI316L | 100 | 5.018 | 35.78 | 53 | 0.172 | 3.64 × 10−5 |
Ti6Al4V | 50 | 1.536 | 51.77 | 74.98 | 0.464 | 6.56 × 10−5 |
Ti6Al4V | 100 | 2.823 | 52.52 | 79.51 | 0.27 | 6.30 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calabrese, L.; Azzolini, M.; Bassi, F.; Gallus, E.; Bocchi, S.; Maccarini, G.; Pellegrini, G.; Ravasio, C. Micro-Milling Process of Metals: A Comparison between Femtosecond Laser and EDM Techniques. J. Manuf. Mater. Process. 2021, 5, 125. https://doi.org/10.3390/jmmp5040125
Calabrese L, Azzolini M, Bassi F, Gallus E, Bocchi S, Maccarini G, Pellegrini G, Ravasio C. Micro-Milling Process of Metals: A Comparison between Femtosecond Laser and EDM Techniques. Journal of Manufacturing and Materials Processing. 2021; 5(4):125. https://doi.org/10.3390/jmmp5040125
Chicago/Turabian StyleCalabrese, Luigi, Martina Azzolini, Federico Bassi, Enrico Gallus, Sara Bocchi, Giancarlo Maccarini, Giuseppe Pellegrini, and Chiara Ravasio. 2021. "Micro-Milling Process of Metals: A Comparison between Femtosecond Laser and EDM Techniques" Journal of Manufacturing and Materials Processing 5, no. 4: 125. https://doi.org/10.3390/jmmp5040125
APA StyleCalabrese, L., Azzolini, M., Bassi, F., Gallus, E., Bocchi, S., Maccarini, G., Pellegrini, G., & Ravasio, C. (2021). Micro-Milling Process of Metals: A Comparison between Femtosecond Laser and EDM Techniques. Journal of Manufacturing and Materials Processing, 5(4), 125. https://doi.org/10.3390/jmmp5040125