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Abstract: The efficacy of visual Simultaneous Localization and Mapping (SLAM) diminishes in
large-scale environments due to challenges in identifying distant landmarks, leading to a limited
perception range and trajectory drift. This paper presents a practical method to enhance the accuracy
of feature-based real-time visual SLAM for compact unmanned vehicles by constructing distant
map points. By tracking consecutive image features across multiple frames, remote map points are
generated with sufficient parallax angles, extending the mapping scope to the theoretical maximum
range. Observations of these landmarks from preceding keyframes are supplemented accordingly,
improving back-end optimization and, consequently, localization accuracy. The effectiveness of this
approach is ensured by the introduction of the virtual map point, a proposed data structure that
links relational features to an imaginary map point, thereby maintaining the constrained size of local
optimization during triangulation. Based on the ORB-SLAM3 code, a SLAM system incorporating
the proposed method is implemented and tested. Experimental results on drone and vehicle datasets
demonstrate that the proposed method outperforms ORB-SLAM3 in both accuracy and perception
range with negligible additional processing time, thus preserving real-time performance. Field tests
using a UGV further validate the efficacy of the proposed method.

Keywords: visual SLAM; unmanned vehicle; structure from motion; computer vision; localization;
perception

1. Introduction

Simultaneous Localization and Mapping (SLAM) is a technique that concurrently
estimates the poses of a platform and maps the details of an environment through sensory
perception. It has emerged as a promising approach for the localization of autonomous
unmanned vehicles, particularly in GNSS-denied environments. With significant advance-
ments over the recent two decades, SLAM has been successfully demonstrated in indoor,
building-scale environments; however, it remains challenging for SLAM operated over
extended periods and larger areas [1], such as in autonomous driving [2], ocean explo-
ration [3] or precision agriculture [4]. The limited detection range of sensors restricts the
scope of perception, posing a risk to mapping with insufficient coverage and to localization
with a trajectory drift.

Cameras as sensory instruments offer incomparable advantages in being lightweight
and cost-effective, making vision-based SLAM an attractive option for unmanned vehicle
applications [5,6]. In addition, images contain a wider scope of information, including
pixels projected from distant landmarks, which has the potential to extend the perception
range of SLAM systems in large-scale environments. However, direct measurements of
distances using a camera require an auxiliary camera (e.g., stereo camera or depth camera)
or additional sensor (e.g., LiDAR or other ranging sensors), which still suffers from accuracy
degradation as the range increases. To map distant landmarks utilizing projected pixels,
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structure computation is performed across different viewpoints, which is a fundamental
process in feature-based visual SLAM.

In modern feature-based SLAM, pixels corresponding to the same spatial point, re-
ferred to as image features, are typically associated and constructed into a map point
within a small batch of consecutive images. The batch size is constrained to maintain the
algorithm efficiency, which limits the maximum search range for features in conventional
feature-based SLAM, leading to insufficient parallax for triangulating distant landmarks.

This paper presents an effective method for constructing distant landmarks, which ex-
tends the mapping range and improves the localization accuracy of feature-based SLAM in
large-scale environments while maintaining real-time performance. The main contributions
of this work are as follows:

1. The limitation of the conventional SLAM algorithm in large-scale environments is
revealed by discussing the perception range constrained by the triangulation parallax
angle. By enhancing the covisibility of keyframes for the graph optimization, a
methodology is proposed to improve SLAM by the observation of distant landmarks.

2. The concept of the virtual map point is introduced, representing a map point candidate
without a determined spatial coordinate. By continuously tracking corresponding fea-
tures across frames through this data structure, distant map points can be triangulated
once sufficient parallax angles are achieved, expanding the mapping range of visual
SLAM. Meanwhile, these features are related, monitored, and retrieved effectively
and preciously without extending the range of local mapping, thus constraining the
scale of optimization.

3. An example SLAM software incorporating the proposed method is implemented
based on the open-source ORB-SLAM3 code. Experiments conducted on drone and
vehicle datasets, along with field tests on an embedded system in a UGV, demonstrate
that the proposed method surpasses the state-of-the-art baseline system in terms of
perception range, enhancing localization accuracy while maintaining real-time perfor-
mance.

This paper is organized as follows. Related works on the evolution of visual-based
SLAM in large-scale environments are briefly surveyed in Section 2. The cause of limited
perception ranges in feature-based SLAM is analyzed in Section 3, with a discussion
of the possibility of enhancing the accuracy of localization by distant landmarks. The
methodology and implementation details are introduced in Section 4. In Section 5, the
experiments conducted with the proposed method on datasets and in the real world are
presented, with discussions on experimental results. The contribution of this paper is
concluded in Section 6.

2. Related Works

For direct methods of visual SLAM, frame poses are estimated by minimizing the
photometric error of pixels, which is less affected by the distance of landmarks. Some
direct methods can be applied in large-scale indoor scenes, such as LSD-SLAM, and in
outdoor scenes, such as the succeeding DSO [7]. Since minimizing intensity error typically
requires a denser sampling of pixels, a key challenge for large-scale direct SLAM lies
in the computational burden of back-end optimization for global consistency, affecting
both runtime and memory usage. In SVO and the succeeding SVO Pro [8], minimization
is sparsified/ becomes sparse by selecting corners and features among pixels, thereby
enhancing robustness and efficiency in outdoor environments. DSM [9] advances the
technique of photometric bundle adjustment (PBA) toward building a persistent global
map. However, the fundamental of direct methods relies on the intensity-invariant
assumption, which is significantly challenged in long-term, large-scale scenarios.

Conversely, in the majority of feature-based SLAM algorithms, the accuracy of pose
estimation is heavily dependent on the quality of the constructed landmarks, raising
concerns about the mapping range in large-scale environments.
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In the filtering era of visual SLAM, limiting the size and quality of landmarks was
crucial for large-scale SLAM. Now that the bundle adjustment of keyframes has been
proven to outperform filtering in efficiency, increasing the number of features has been
shown to improve accuracy [10]. Ever since the feasibility of decoupling mapping from
localization was demonstrated in PTAM [11], numerous methods have been developed to
enhance visual SLAM by improving the construction and management of landmarks from
features without the strict constraint of immediacy.

The depth of the landmarks in conventional approaches is estimated based on the
motion of the camera, similar to structure from motion (SFM). In most feature-based
methods, the perception of landmarks relies on the precise triangulation of features, which
directly affects the accuracy of feature tracking in subsequent localization. To construct
landmarks with larger depth, DT-SLAM [12] defers triangulation until a sufficient baseline
is achieved in a subsequent keyframe. In ORB-SLAM [13], the range of triangulation
candidates is further extended to a set of preceding keyframes with covisiblity.

To further extend the range of visual mapping, auxiliary sensors can be introduced to
cooperate with cameras, providing an instant depth measurement of landmarks within a
frame. RGB-D cameras can directly provide pixel depths using structured light or time-of-
flight (ToF) within a short range, which can be used in large-scale indoor environments [14].
In large-scale outdoor environments, point clouds generated by ranging sensors can assist
the camera with depth information, such as LIMO [15] and LOFF [16] with LiDAR.

As for secondary cameras, stereo vision can provide depth image similar to point
clouds of RGB-D camera. Nevertheless, stereo cameras in visual SLAM are typically used
for triangulating features on landmarks instantly within the frame [17]. In addition to the
depth measurement of pixels, some multi-camera systems can provide a wider field of view
and expand the perception width. However, the range of triangulation depth is directly
constrained by the baseline length of the cameras. In large-scale SLAM applications, such
as autonomous driving, the baseline of a stereo or multi-camera system can reach several
decimeters, which is too bulky for most unmanned platforms. Moreover, the measurement
of depth assisted by auxiliary sensors or secondary cameras is inherently bounded by
instrumental limitation and can typically only supplement the mapping in most situations.

Consequently, many visual SLAM research works focus on computer-vision-based
approaches in large-scale environments, and most approaches focus on better recognizing
and managing the landmarks. For instance, Xue et al. [18] semantically labeled entire
buildings as instances in the database for recognition. MS-SLAM [19] sparsified the map
by removing redundant nonlocal map points to achieve memory efficiency, facilitating the
scalability in large-scale environments. However, the perception range while mapping
and its relationship with localization accuracy are rarely discussed. This issue brings the
topic back to the construction of landmarks from motion. The perception, or at least the
sensation, of remote landmarks remains a concern in large-scale visual SLAM.

3. Perception of Distant Landmarks in SLAM
3.1. Triangulation Error and Parallax Angle

As illustrated in Figure 1, a spatial point P with world coordinates Pw = (x, y, z) is
observed from two camera viewpoints with camera centers C1 and C2. The projection of P
onto images I1 and I2 are p1 and p2, respectively. According to the epipolar constraint in
multiple-view geometry, the points P, p1, C1 and p2, C2 are coplanar. Given the camera
extrinsics C = [R|t] for each camera pose, the position of P can be determined by the
intersection of the back-projected rays l1 =

−−→
C1p1 and l2 =

−−→
C2p2, satisfying

p1 = C1P, (1)

p2 = C2P, (2)
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where p1 = (u1, v1, 1)⊤, p2 = (u2, v2, 1)⊤ and P are homogeneous coordinates. Applying
the direct linear transformation (DLT) [20], a linear equation can be formulated as

AP =


u1c3⊤

1 − c1⊤
1

v1c3⊤
1 − c2⊤

1
u2c3⊤

2 − c1⊤
2

v2c3⊤
2 − c2⊤

2

P = 0, (3)

where C1 = [c1⊤
1 c2⊤

1 c3⊤
1 ]⊤ and C2 = [c1⊤

2 c2⊤
2 c3⊤

2 ]⊤. P can be computed numerically by
singular value decomposition (SVD), considering the measurement error of the camera.

C1

p1

C1 C1
C2 C2

b b

δφ
δφ

p1
p2 p2

P

P

θ

θ
I1 I2

Figure 1. Triangulation of a spatial point. The uncertainty of triangulation is represented by the gray
area. The case illustrated on the right has a shorter baseline b and/or a smaller parallax angle θ,
resulting in greater uncertainty in the localization of P.

To be more specific, when the projection point p1 moves by ∆p, the angular displace-
ment ∆ϕ of the sight angle ∠PC1C2 causes a corresponding change ∆P in the estimation
of P. A larger baseline b = C1C2 or parallax angle θ = ∠C1PC2 results in significantly
smaller ∆P, thereby reducing the uncertainty in the estimation of P [21], and vice versa.
The measurement error of p2 and the estimation error of C1 and C2 bring similar ∆ϕ and
thus uncertainty to the estimation of P. Given that baseline length correlates positively
with the distance to the spatial point, a threshold θth is set to ensure a minimum parallax
angle during triangulation in SLAM.

3.2. Perception Range of Feature-Based SLAM

In typical feature-based SLAM, image features corresponding to new landmarks are
searched and matched within the new frame and a batch of adjacent keyframes. After tri-
angulation, the coordinates of local landmarks, together with the poses of local keyframes,
are filtered or optimized to minimize the reprojection error in each keyframe, thereby
reducing triangulation errors. This procedure is known as local mapping, and the can-
didate keyframes are typically designated by a sliding window or covisibility graph. To
maintain real-time performance, the batch size for local mapping is bounded, which limits
the maximum length of baseline. Since the minimum parallax angle θth is fixed as afore-
mentioned, the maximum distance of the perception range is constrained in conventional
SLAM systems, as illustrated in Figure 2.

To extend the perception range and accurately triangulate distant landmarks, the
baseline can be extended by searching for corresponding features in preceding keyframes
outside the local mapping batch, starting from the initial observation of the landmark by
the camera. Once a sufficient parallax angle is established between the new frame and a
past keyframe, the distant landmark can be triangulated with acceptable uncertainty. Since
corresponding features have been matched in preceding keyframes, the observation of
constructed landmarks is subsequently integrated into these frames. This approach enables
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earlier triangulation of distant landmarks than conventional methods, thereby maximizing
the perception range of SLAM.

P

{
Max Range of Local Mapping

{
Max Range of Local MappingFirst Key Frame

Observing P

Moving
Direction

θth

θth

F0
Fi−δ Fi Fj−δ Fj

p0
pi−δ pi pj−δ pj

Con
ve

nti
on

al 
Pe

rce
pti

on
 R

an
ge

Theorical Max Perception Range

... ... ... ...

Figure 2. Extending the perception range to the maximum by utilizing features from keyframes
beyond the local mapping range.

3.3. Localization Enhanced by Distant Landmarks

In contrast to indoor environments, landmarks in large-scale environments are dis-
tributed across a wider range of distances. While nearby landmarks may suffice for
short-term localization, the perception of distant landmarks, expected to be observed
through longer range, is crucial for long-term applications as it enhances the covisibility of
keyframes.

The error of observation during SLAM is represented as

e(x) = e(x̂ + ∆x) ≃ e + J∆x, (4)

where x concatenates the states of camera poses C = {Ci} and landmarks P = {Pj}, e
represents the error around the current estimated state x̂, and J is the Jacobian matrix of
the error function e(x).

In typical feature-based SLAM systems with an optimization-based back-end, the in-
cremental linear equation of optimization for camera poses and landmarks is established as

H∆x∗ = b (5)[
HCC HCP
H⊤

CP HPP

][
∆x∗C
∆x∗P

]
=

[
bC,
bP

]
, (6)

where ∆x∗ is the optimal perturbation, H = J⊤ΩJ is the Hessian matrix, Ω is the informa-
tion matrix, and b = J⊤Ωe is a constant vector in each iteration [22]. The subscripts C and
P represent camera poses and landmarks, respectively.

In the bundle adjustment with graph optimization, H takes an arrowhead structure
with a sparse pattern. The blocks HCC and HPP are diagonal due to the independence of
distribution within camera poses and map points. The dimension M of ∆x∗C is significantly
smaller than the dimension N of ∆x∗P in the context of SLAM. A block Hij in HCP is non-zero
only when the camera pose Ci has an observation of Pj.

In large-scale SLAM, it is common for camera viewpoints along a long trajectory to
have limited overlap in the observation of landmarks due to a restricted perception range.
For camera poses Ca and Cc, which do not observe the same landmarks, their relationship
and constraints are relayed by intermediate poses Cb and landmarks Pb, as illustrated in
Figure 3a. The Hessian block matrix HCP for this local part is diagrammed in Figure 3b. In
the absence of direct constraint between Ca and Cc within HCP, the risk of drift increases
during pose and landmark estimation using Equation (6).
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(a)

{ { { { {{

(b)

(c)

{ { { { { {

(d)

Figure 3. The relationship between the perception ranges of the camera and the structure of the
matrix HCP. The case in (a) has shorter perception range, with HCP represented as (b). While the case
in (c) has longer perception range, with HCP augmented by the commonly observed landmarks Pabc,
represented as (d). Note that many of the block matrices in dark blue remain zero due to the absence
of observation between corresponding camera pose Ci and landmark Pj.

With the extension of perception range, the observation of distant landmarks can
be supplemented across aforementioned camera poses, as illustrated in Figure 3c. The
number of covisible landmarks Pab and Pbc are enriched, and landmarks Pabc that can be
commonly observed by all sets of pose are supplemented. HCP is augmented accordingly, as
diagrammed in Figure 3d, thereby enhancing constraints during optimization and reducing
the likelihood of drift. Furthermore, distant landmarks can be recognized over a broader
scope and are less likely to be occluded by other objects, which can aid in loop closure,
improve global positioning, and enhance relocalization from kidnapping scenarios.

On the other hand, optimization efficiency can be preserved by maintaining the batch
size of camera poses. Equation (6) can be marginalized with Schur elimination, yielding
the following expression:[

HCC − HCP H−1
PP H⊤

CP 0
H⊤

CP HPP

][
∆x∗C
∆x∗P

]
=

[
bC − HCP H−1

PP bP
bP

]
. (7)

The complexity for each iteration to determine ∆x∗C is O(M3 + M2N) [23], primarily
dictated by the number of poses M, given that M ≪ N. By limiting the amount of poses
to optimize, the bundle adjustment with additional constraint remains computationally
feasible, especially when conducted in a thread parallel to real-time tracking.

Thus, to enhance real-time large-scale visual SLAM, the proposed method should
perform the following:
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1. Construct distant landmarks as early as possible;
2. Constrain the batch size of keyframes to optimize while constructing landmarks.

4. SLAM System with the Virtual Map Point

With maintaining a bounded size of local mapping, distant map points can be tri-
angulated using matched features between a new frame and the preceding frame with a
sufficient parallax angle. However, it is time-consuming to traverse preceding keyframes,
retrieve features and match them correctly.

Considering that unmapped features in preceding frames have already/previously
been extracted, matched and had triangulation attempted to be performed on, managing
these data for later triangulation is both convenient and beneficial. By threading and
indexing features corresponding to potential distant map points for a real-time SLAM
system, a data structure named the virtual map point (VMP) is introduced in the proposed
method.

4.1. Virtual Map Point

A virtual map point is defined as a provisional map point, representing a landmark
that is observed by the camera but whose spatial coordinate cannot be determined at
the moment. A virtual map point can be considered a pre-built candidate for a distant
map point.

Through the virtual map point, observations of a remote landmark from frames are
registered to this data structure. Unlike a normal map point whose spatial coordinates
are determined immediately after observation, the virtual map point and corresponding
observations are to be managed by the SLAM system over a period of time. The following
are key motivations behind the design of the data structure of the virtual map point:

1. Efficient Parallax Inspection: Through computing angles between back-projected rays
from observed frames, the maximum parallax angle among frames is continuously
updated within the data structure. This procedure is detached from the optimization
for tracking or mapping; thus, the angle can be inspected constantly but effectively,
which consumes minimal computational resources, ensuring timely awareness of
enough parallax.

2. Rapid Frame Retrieval: The features corresponding to the same distant landmark are
continuously attached to the data structure. Instead of searching for frames outside
the range of local mapping by feature matching, the frame corresponding to sufficient
parallax angle can be retrieved effectively through indexed features.

3. Seamless Conversion to Map Point: Once the spatial coordinates of a virtual map
point are determined, the observation from historical frames is inherited when con-
structing the corresponding map point. This relationship of observations enhances
covisibility between frames and is crucial for further local and global optimization in
the SLAM system.

Based on these principles, the pipeline for constructing and managing a virtual map
point is outlined as follows. When a landmark is observed by two frames with a small
parallax angle, a virtual map point is instantiated, storing references to the corresponding
features and frames. Observations of the virtual map point are concurrently added to
the frames. As the camera continues moving, features in subsequent frames are matched
and associated to the virtual map point. The parallax angle between the new frame and
the stored frames is computed within the virtual map point. Once sufficient parallax is
accumulated, the spatial coordinates are triangulated. Subsequently, a new map point is
constructed from the triangulated virtual map point, inheriting preceding observations
from the frames. A diagram of a virtual map point is illustrated in Figure 4.

Compared to a normal map point, a virtual map point contains nearly identical
information, including indices to corresponding features and observed frames, except
for the spatial coordinates. Consequently, the construction, maintenance and conversion



Drones 2024, 8, 586 8 of 19

of virtual map points can be processed alongside normal map points during mapping,
conserving computing resources and time.

P

Moving
Direction

θth

F0 F1 F2 F3 Fi−1 Fi

p0 p1 p2 pi−1 pi

V

l0 l1 l2 l3
li−1

li

p3

Construct
& Inherit

(ⅳ)

...

(ⅱ)

(ⅲ)

(ⅳ)
(ⅱ)

(ⅱ)

(ⅳ)

Figure 4. A diagram of a virtual map point. (i) The virtual map point V is constructed from features
matched from two adjacent frames. (ii) As the camera moves, features and back-projected rays in
subsequent frames are associated with V, allowing for the calculation of the maximum parallax angle.
(iii) The spatial coordinates of V are triangulated when the parallax angle exceeds the threshold θth.
(iv) Subsequently, a map point P is constructed from V, inheriting the observation relationships with
frames ranging from F0 to Fi.

4.2. Software Implementation Based on ORB-SLAM3

To validate the efficacy and efficiency of the proposed method, a real-time SLAM
software is implemented based on an existing SLAM system, which also serves as a
baseline for comparison in the experiments. ORB-SLAM3 [24], one of the most popular
feature-based open-source SLAM systems with state-of-the-art performance, is selected as
the base system. An overview of the proposed system is illustrated in Figure 5.

LOCAL MAPPING

Map Database

Covisibility Graph

TRACKING
New

Key Frame
New

Map Points

New Virtual
Map Points

Local Bundle
Adjustment

Map Points
Virtual

Map Points

Key Frames

LOOPING &
MERGING

Figure 5. An overview of the proposed SLAM system. The management of virtual map points is
integrated into the “Local Mapping” thread of ORB-SLAM3.

Parallel to map points, virtual map points are created and managed by the “Local
Mapping” thread, where the major modifications of the proposed method take place.
When the new keyframe is passed from the “Tracking” thread, a covisibility graph is
organized with local keyframes and map points in the “Local Mapping” thread. Features
are then matched between the new keyframe and each of the local keyframes. Features with
sufficient parallax are triangulated into new map points, whereas low-parallax features are
constructed into virtual map points or associate to existing virtual map points for update.
Once the maximum parallax angle exceeds the threshold θth after the update, the virtual
map point is triangulated and converted to new map point, retaining preceding observation
relationships. The details of mapping with a virtual map point are stated in Algorithm 1.
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Algorithm 1 Mapping with virtual map points.

Input: New frame F1 with n features {p1
i } and pose C1;

Adjacent keyframe F2 with features and pose C2;
Output: New map points {Pi} and virtual map points {Vi};

1: for each i ∈ [1, n] do
2: Match p1

i with corresponding feature p2
j in F2;

3: Back project p1
i and p2

j with ray l1i and l2j ;
4: Calculate the included angle θi;
5: if θi ≥ θth then
6: Triangulate Pi with coordinates p1

i , p2
j , C1 and C2;

7: else
8: if p2

j has been attached to virtual map point Vk then

9: Traverse features attached to Vk, finding max parallax angle θmax between p1
i

and pmax;
10: if θmax ≥ θth then
11: Triangulate Vk with coordinates p1

i , pmax, C1 and Cmax;
12: Construct Pi inheriting Vk;
13: else
14: Attach p1

i and l1i to Vk;
15: end if
16: else
17: Construct virtual map point Vi, associating p1

i , p2
j , l1i and l2j ;

18: end if
19: end if
20: end for
21: return {Pi} and {Vi}

Once all the new map points and new virtual map points are created, a local bundle
adjustment is executed within the covisibility graph together with the new map points,
optimizing

{Pi, Cl | i ∈ P , l ∈ FL} = argmin
Pi ,Cl

∑
k∈FL∪FC

∑
j

ρ(E(k, j)), (8)

E(k, j) = ∥pj − CkPj∥2, (9)

where P are triangulated virtual map points together with other new map points and
local map points, FL are local keyframes, and FC are other covisible keyframes of local
keyframes. E(k, j) is the reprojection error of Pj in Fk, and ρ(·) is the robust Huber cost
function [25]. Through a local bundle adjustment, the coordinates of converted virtual map
points are further optimized, eliminating inconsistent triangulation. Afterwards, the new
keyframe is conveyed to the “Loop and Map Merging” thread, searching for a possible
loop closure.

The threshold of the parallax angle θth is set to 0.02 rad in ORB-SLAM3, which remains
unchanged in our method for a better comparison. Some low-parallax features are dis-
carded in ORB-SLAM3 due to a threshold of the triangulation baseline for corresponding
local keyframes, defined as

bth =

{
bs, if stereo camera
0.01zm, otherwise,

(10)

where bs is the baseline of the stereo camera and zm is the median depth of map points
observed by the new frame. Keeping bth unchanged, these features are also retained in our
method to be constructed or associated to virtual map points.
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5. Experimental Results and Discussion
5.1. Dataset Tests

To verify the proposed method, dataset experiments are conducted using both ORB-
SLAM3 and the proposed system for comparison. Some image sequences in large-scale en-
vironments with accurate groundtruth are selected from popular datasets for visual SLAM.

Collected by a vehicle in city scenes, the KITTI Dataset [26] is widely tested by many
visual SLAM algorithms. Consequently, all 11 sequences are tested and compared in this
paper. Collected indoors by a drone, the EuRoC Dataset [27] is also widely used due to the
accuracy of groundtruth tracked by a laser tracker. Rather than the Vicon Room sequences,
the Machine Hall sequences are chosen for their larger depth of field.

In addition to classical datasets, some popular datasets with long-range sequences and
large-scale scenes are tested in this paper. Collected by a vehicle in metropolitan scenes,
the KAIST urban dataset [28] is tested with a subset of complex routes. The Zurich Urban
Micro Aerial Vehicle Dataset [29] is also tested in this paper due to the long duration of
recording by a quadrotor drone.

The experiments have been conducted on an Intel Core i7-12700K@3.6GHz computer,
without the utilization of GPU acceleration. The image sequences are processed in monoc-
ular mode, producing poses of keyframes as trajectory and map points as the map. A
Sim(3) transformation with the Umeyama algorithm is applied to align the trajectory with
groundtruth due to the ambiguous scale. In both methods, the number of extracted fea-
tures per frame is set to 1000 for the EuRoC dataset and 2000 for the rest, according to the
resolution.

The root mean square of absolute trajectory error (RMS ATE) is calculated to evaluate
the accuracy of localization. For each sequence, multiple experiments are conducted with
both methods, and the metric results featuring median RMS ATE are listed in Tables 1
and 2. Mean tracking time per frame is calculated to verify the real-time performance
of the algorithms. The depth of triangulation during the construction of map points is
recorded, along with the distance of map points observed by keyframes. The median
depths and distances are provided in the table for reference. The amount of map points is
listed, indicating the size of the map. Additionally, the percentage of map points converted
from virtual map points is provided for the proposed method.

Table 1. Classical SLAM dataset results and comparison.

Sequence Images Method
Mean

Tracking
Time (ms)

RMS
ATE (m)

Median MP
Triangulation

Depth (m)

Median MP
Observation
Distance (m)

Map
Points

Virtual
Map Point
Percentage

KITTI 00 4541 ORB3 1 15.413 8.928 17.669 20.581 152,450 -
MOD 2 14.856 7.095 18.024 20.944 153,900 4.71%

KITTI 01 1101 ORB3 13.410 405.202 56.957 62.147 25,925 -
MOD 13.612 357.171 60.985 60.345 26,156 6.29%

KITTI 02 4661 ORB3 15.493 28.620 17.813 20.500 197,044 -
MOD 15.104 25.877 18.639 21.452 192,774 5.24%

KITTI 03 801 ORB3 21.328 0.827 16.793 20.448 30,243 -
MOD 22.641 0.795 16.770 20.651 30,388 4.85%

KITTI 04 271 ORB3 15.159 0.968 30.519 36.302 11,789 -
MOD 15.642 0.538 32.786 38.703 11,458 13.41%

KITTI 05 2761 ORB3 14.879 7.902 23.283 27.480 88,343 -
MOD 14.203 6.389 23.385 27.856 87,560 6.21%

KITTI 06 1101 ORB3 15.388 13.621 27.486 31.502 37,027 -
MOD 15.014 12.714 28.578 32.296 35,856 8.33%

KITTI 07 1101 ORB3 16.712 3.140 20.472 24.015 40,221 -
MOD 15.515 2.363 21.920 25.728 42,928 5.27%

KITTI 08 4071 ORB3 19.935 66.120 12.477 14.144 162,303 -
MOD 15.597 55.433 12.855 14.563 154,909 6.56%
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Table 1. Cont.

Sequence Images Method
Mean

Tracking
Time (ms)

RMS
ATE (m)

Median MP
Triangulation

Depth (m)

Median MP
Observation
Distance (m)

Map
Points

Virtual
Map Point
Percentage

KITTI 09 1591 ORB3 14.208 7.910 20.098 25.036 69,606 -
MOD 14.942 7.330 20.415 25.523 72,536 4.71%

KITTI 10 1201 ORB3 14.759 8.292 13.452 15.862 47,516 -
MOD 14.572 6.811 13.458 15.744 47,045 5.42%

EuRoC MH 01 3682 ORB3 16.754 0.0457 3.914 4.699 13,591 -
MOD 13.964 0.0453 3.929 4.687 13,507 2.18%

EuRoC MH 02 3040 ORB3 14.572 0.0401 3.558 4.395 11,924 -
MOD 13.072 0.0356 3.570 4.481 11,909 4.01%

EuRoC MH 03 2700 ORB3 13.450 0.0365 4.309 5.004 10,501 -
MOD 12.843 0.0364 4.291 5.033 10,241 2.88%

EuRoC MH 04 2033 ORB3 12.167 0.0531 5.821 6.856 13,256 -
MOD 10.529 0.0482 5.822 6.810 13,008 3.69%

EuRoC MH 05 2273 ORB3 12.056 0.0583 5.393 6.254 13,926 -
MOD 12.454 0.0480 5.548 6.703 12,954 5.71%

1 ORB3: Original ORB-SLAM3 system. 2 MOD: Proposed SLAM system modified from ORB-SLAM3.

Table 2. Long-range dataset results and comparison.

Sequence Images Method
Mean

Tracking
Time (ms)

RMS
ATE (m)

Median MP
Triangulation

Depth (m)

Median MP
Observation
Distance (m)

Map
Points

Virtual
Map Point
Percentage

KAIST 26 5837 ORB3 25.976 35.428 17.879 24.719 100,549 -
MOD 24.749 23.361 18.598 27.682 96,321 8.50%

KAIST 27 11,605 ORB3 24.500 26.274 19.218 31.358 138,445 -
MOD 20.694 22.483 19.608 32.510 136,682 9.60%

KAIST 28 19,745 ORB3 20.258 87.110 21.114 22.994 270,674 -
MOD 22.767 72.789 23.879 23.296 264,266 8.25%

KAIST 29 4436 ORB3 24.965 98.036 21.114 18.217 62,721 -
MOD 22.633 73.398 23.879 21.702 60,797 11.24%

KAIST 32 10,968 ORB3 22.339 108.416 11.309 10.729 195,685 -
MOD 21.872 83.542 17.674 16.859 187,904 9.21%

KAIST 33 * 12,822 ORB3 23.121 137.694 15.999 22.254 236,458 -
MOD 23.994 68.610 16.463 21.846 233,570 9.13%

KAIST 38 21,600 ORB3 19.830 64.144 13.212 16.384 303,414 -
MOD 21.940 53.473 18.563 22.525 254,995 7.80%

KAIST 39 18,657 ORB3 19.767 115.902 11.583 15.129 310,722 -
MOD 22.420 46.189 16.275 22.005 284,604 7.26%

UZH * 81,169 ORB3 41.479 11.672 10.234 10.788 284,779 -
MOD 43.179 10.857 10.704 11.430 276,414 3.06%

* The trajectory is broken into 3 segments in both methods due to tracking failure.

5.2. Discussion on Dataset Tests
5.2.1. Accuracy of Localization

The proposed method exceeds the baseline ORB-SLAM3 system in all sequences, with
a consistently lower RMS ATE of keyframe trajectories.

In the KITTI sequences, the range of reduced RMS ATE is from 0.032 m in sequence 03
to 10.687 m in sequence 08. In sequence 04, the proposed method reduces the RMS ATE
by a maximum proportion of 44.42% compared to ORB-SLAM3. Although both methods
underperform in sequence 01, the proposed method achieves 11.85% less RMS ATE than
ORB-SLAM3.

In the KAIST sequences, which are more lengthy and complicated than the KITTI
sequences, the proposed method outperforms ORB-SLAM3 by a significant margin. The



Drones 2024, 8, 586 12 of 19

minimum reduced RMS ATE is 3.791 m in sequence 27 by 14.43%, and the maximum is
69.713 m in sequence 39 by an impressive 60.15%.

For aerial datasets, the RMS ATE is reduced by 0.815 m during a 45 min flight in
the UZH MAV sequence. In the indoor environment of the EuRoC sequences, the im-
provement in accuracy is diminished due to the short range of motion and limited scale
of the environment, though the maximum reduction in RMS ATE occurs in the sequence
of Machine Hall 05 with a proportion of 17.67%. The EuRoC dataset test indicates that
while the proposed method is designed for large-scale environments, it does not degrade
in indoor environments.

The keyframe trajectories of selected sequences, highlighted in bold in the tables, are
compared in Figure 6 from the top view, which are plotted by EVO [30].
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Figure 6. Keyframe trajectory comparison between ORB-SLAM3 (ORB3) and the proposed method
(MOD) alongside groundtruth (GT) from the top view in sequences of (a) EuRoC Machine Hall 05,
(b) KITTI 00, (c) KAIST 32, (d) KAIST 27, (e) KAIST 33, (f) KAIST 39 and (g) UZH MAV during the
dataset test.
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5.2.2. Range of Mapping

Compared with the baseline ORB-SLAM3 system, the proposed method creates
map points with greater triangulation depths, thereby extending the perception range
during mapping.

The median map point triangulation depth in the proposed method is universally
larger than that in ORB-SLAM3. The only exception occurs in indoor sequence EuRoC MH
03, where the median depths in the two methods are sufficiently close, with a disparity
of 0.42%.

Corresponding to trajectories in Figure 6, the distribution of the triangulation depth
of map points is illustrated in Figure 7a. Compared with ORB-SLAM3, the map points
of the proposed method converge at greater depths. To further analyze the distribution
of the triangulation depth in the proposed method, the comparison between normal map
points and map points converted from virtual map points is illustrated in Figure 7b. The
distribution of the triangulation depth of normal map points in the proposed method is
similar to that in ORB-SLAM3. However, the converted virtual map points converges at
significantly greater depth than normal map points, demonstrating that the expansion of
the perception range is attributed to the utilization of virtual map points.

(a) EuRoC MH05 (b) KITTI 00 (c) KAIST 32 (d) KAIST 27 (e) KAIST 33 (f) KAIST 39 (g) UZH
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Figure 7. The distribution of triangulation depth of map points in dataset tests: (a) Comparison
between ORB-SLAM3 (ORB3) and the proposed method (MOD); (b) comparison between normal
map points and map points converted from virtual map points within the proposed method.

Consequently, landmarks of larger distance are observed during frame tracking, mani-
fested by the universal promotion in the median observation distance of map points. A
comparison of the perception and observation range for the two methods is given as an
example in Figure 8. In the proposed method, the remote white buildings are initially
observed in the 2776th frame of the sequence KAIST 26, with the corresponding converted
virtual map point beginning to be continuously tracked. After a time interval of 20.3 s with
258.01 m of displacement, the same buildings are initially observed in the 2979th frame by
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ORB-SLAM3. Meanwhile, several converted virtual map points on the buildings have been
constructed and tracked for a period in the proposed method, continuously guiding the
localization of the platform. Covisibility relationship is then expanded by the converted
virtual map points, enhancing local and global optimization for keyframes and map points.

In summary, the extended range of perception by distant landmarks contributes to the
improvement in the accuracy of localization in visual SLAM, especially under large-scale
and long-range situations.

(a) (b)

(c) (d)

Figure 8. The observation on map points in the 2776th frame of the sequence KAIST 26 by (a)
ORB-SLAM3 and (b) the proposed method, and in the 2979th frame by (c) ORB-SLAM3 and (d)
the proposed method, with normal map points denoted in green and converted virtual map points
denoted in red.

5.2.3. Real-Time Performance

The proposed method maintains real-time performance comparable to the baseline
ORB-SLAM3, with negligible extra processing time.

The mean tracking time listed in the tables suggests that both the methods may
process the frames quicker or slower independently of other factors. Additionally, the mean
tracking time fluctuates across all the sequences in the same dataset. Since the experiment
has been conducted repeatedly for each sequence in both methods, the mean tracking time
of every experiment is collected. The statistics are illustrated in Figure 9, containing tens to
over a hundred trials for each dataset.

The median of mean tracking time in ORB-SLAM3 is 12.593 ms, 15.353 ms and
23.311 ms for EuRoC, KITTI and KAIST, respectively. In the proposed method, the median
of the mean tracking time is 12.648 ms, 15.285 ms and 24.008 ms, respectively. It is expected
that the proposed method would consume more time than the base system due to the
additional management of virtual map points. However, the distribution of mean tracking
time is similar in both methods, and the difference of the median is negligible, being under
1 ms.

The difference in the amount of map points may provide some clues. The map points
in the proposed method are slightly fewer than those in ORB-SLAM3 for most of the
sequences, which contributes to restraining the map size for long-term SLAM [31]. It is
inferred that the utilization of virtual map points might reduce some repetitive or redundant
map points corresponding to the same landmarks, thereby limiting the scale of the map
size, and maintaining the efficiency of local mapping and global optimization. In any
case, it is concluded that the proposed method can maintain the real-time performance
comparable to the baseline method.
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EuRoC KITTI KAIST Field Test
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Figure 9. Comparison of statistics on mean tracking time across the dataset and field tests between
ORB-SLAM3 (ORB) and the proposed method (MOD).

5.3. Field Tests and Discussion

To further evaluate the real-time performance of the proposed method in practical appli-
cations, field tests are conducted using an embedded system. Monocular image sequences are
recorded at 640× 480@30 fps by an Intel D435i camera integrated into an Agilex wheeled robot
with Ackermann steering. The ComNav M100 system (RTK + GNSS + INS) offers groundtruth
with exceptional three-dimensional positioning precision within 2 cm. The unmanned ground
vehicle carrying the experimental platform is illustrated in Figure 10a. The unmanned ground
vehicle is manually guided through campus scenes, including a yard, road and park. The
paths on the satellite map are illustrated in Figure 10c–e.

The Nvidia AGX Xavier Developer Kit is selected to conduct the experiments under
maximum power mode. The video stream is processed by ORB-SLAM3 and the proposed
system, respectively, and repeatedly, producing keyframe trajectories. The metrics are
similar to those in the dataset tests, and the median tracking time per frame is provided as
a reference for real-time performance. In both methods, the number of extracted features
per frame is set to 1000. The data featuring the median RMS ATE are listed in Table 3.
Keyframe trajectories are illustrated in Figure 11 from the top view and the distribution of
the triangulation depth of map points is illustrated in Figure 12. The statistics of mean time
in repeated experiments are illustrated in Figure 9.

Table 3. Field test results and comparison.

Sequence Images Method
Mean

Tracking
Time (ms)

Median
Tracking

Time (ms)

RMS
ATE (m)

Median MP
Triangulation

Depth (m)

Median MP
Observation
Distance (m)

Map
Points

Virtual
Map Point
Percentage

Yard 4838 ORB3 30.271 26.739 1.962 3.535 10.263 17,945 -
MOD 26.122 23.247 1.531 3.739 11.536 17,076 9.76%

Road 9901 ORB3 30.289 28.705 2.376 4.834 15.196 32,025 -
MOD 30.385 28.672 2.033 5.208 16.850 29,473 10.51%

Park 10,538 ORB3 24.804 23.430 1.842 6.219 13.364 29,229 -
MOD 24.805 23.458 1.639 6.699 13.601 27,028 7.43%
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D435i

  M100 

z
x
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(a) (b)

(c) (d) (e)

Figure 10. (a) The experimental platform on a wheeled robot. Intel D435i collects the monocular
image sequence and ComNav M100 offers groundtruth. (b) A sample of collected image sequences,
which contains parts of distant landmarks. The sequences are collected in campus scenes of (c) yard,
(d) road and (e) park. Location: Science Park, Harbin Institute of Technology.
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Figure 11. Keyframe trajectory comparison between ORB-SLAM3 (ORB3) and the proposed method
(MOD) alongside groundtruth (GT) from the top view in scenes of a (a) yard, (b) road and (c) park
during the field test.

In the proposed method, the reduction in RMS ATE is 0.431 m in the yard scene, and
narrowed to 0.203 m and 0.343 m in the road and park scenes, respectively, owing to loop
closure. The median depth of triangulation is enlarged, ranging from 0.204 m to 0.480 m.
The results strengthen the conclusion that the proposed method outperforms the baseline
ORB-SLAM3 in terms of the range of perception and accuracy of localization.

Due to the limitation of computing capability, the median of mean tracking time soars
to 29.149 ms in ORB-SLAM3 and 30.588 ms in the proposed method. Since the frame rate
of the camera is 30 fps, it is confirmed that the SLAM system with the proposed method
achieves real-time performance in the field test.
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Figure 12. The distribution of triangulation depth of map points in field tests: (a) Comparison
between ORB-SLAM3 (ORB3) and the proposed method (MOD); (b) comparison between normal
map points and map points converted from virtual map points within the proposed method.

6. Conclusions

This paper demonstrates that the perception of distant landmarks can significantly
improve localization accuracy in large-scale SLAM by expanding the mapping scope. A
novel method is introduced to triangulate map points on distant landmarks, which are
routinely deferred or discarded in conventional SLAM systems due to low parallax. A data
structure named the virtual map point is proposed to relate corresponding features across
frames and construct distant map points effectively. The proposed method is implemented
based on ORB-SLAM3 codes and is validated through both dataset experiments and
field tests. The experimental results demonstrate that the modified system incorporating
the proposed method outperforms the base system in mapping range and localization
accuracy with negligible additional time, thereby enhancing visual SLAM in large-scale
environments while maintaining real-time performance.

The proposed method holds potential for improving the navigation of autonomous
robots and unmanned vehicles operating outdoors over extended periods. The virtual map
point structure is highly adaptable and can be integrated into other landmark-based or
landmark-related visual SLAM systems, particularly applicable for perception, mapping or
SFM tasks using monocular cameras or short-baseline stereo cameras.

Further improvement of the proposed method could involve refining the estimation
model for the initial depth of converted virtual map points, potentially utilizing projections
on images with sub-pixel accuracy during local optimization. Additionally, the extended
range of visual perception could be integrated with other sensors to enhance multi-source
fusion SLAM, offering a potential direction for future research.
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ATE Absolute Trajectory Error
DLT Direct Linear Transform
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GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit
INS Inertial Navigation System
LiDAR Light Detection and Ranging
MAV Micro Aerial Vehicle
MP Map Point
PBA Photometric Bundle Adjustment
RMS Root Mean Square
RTK Real-time Kinematic Positioning
SLAM Simultaneous Localization and Mapping
SVD Singular Value Decomposition
ToF Time-of-Flight
UGV Unmanned Ground Vehicle
VMP Virtual Map Point
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