UAV-Based Low Altitude Remote Sensing for Concrete Bridge Multi-Category Damage Automatic Detection System
<p>Flowchart of the proposed UAV-based low-altitude remote sensing system for detecting multiple types of damage to bridges.</p> "> Figure 2
<p>The bridge damage detection network is applied to UAV inspection systems.</p> "> Figure 3
<p>The illustration of (<b>a</b>) W-MSA operation and (<b>b</b>) SW-MSA operation.</p> "> Figure 4
<p>The Swin Transformer encoder forms the backbone network and comprises the W-MSA, SW-MSA, LN, and MLP connected in series.</p> "> Figure 5
<p>Sample of PE module processing input images.</p> "> Figure 6
<p>Sample of PM module providing downsampling details for a channel.</p> "> Figure 7
<p>The LRCA-Net’s spatial attention module restricted by the convolutional kernel size, which limits the perceptual field to local feature information only.</p> "> Figure 8
<p>Local dependencies are captured through convolutions (indicated in yellow), while long-distance connections (indicated in red) capture global dependencies.</p> "> Figure 9
<p>The modified spatial attention module.</p> "> Figure 10
<p>The overall architecture of LRGA-Net.</p> "> Figure 11
<p>Normalized height and width clusters of bounding boxes obtained through K-means clustering.</p> "> Figure 12
<p>The experimental site and inspection path. (<b>a</b>) Location of the Kyungdae Bridge test site; (<b>b</b>) DJI Avata UAV used for the inspection; (<b>c</b>) the inspection path taken by the UAV; (<b>d</b>) some samples of specific areas inspected by the UAV.</p> "> Figure 13
<p>Example of the attitude of the UAV while hovering for inspection.</p> "> Figure 14
<p>Five categories of defects in datasets: (<b>a</b>) crack, (<b>b</b>) spallation, (<b>c</b>) efflorescence, (<b>d</b>) exposed bars, and (<b>e</b>) corrosion.</p> "> Figure 15
<p>The number and percentage of defects in each category.</p> "> Figure 16
<p>Comparison of backbone networks: (<b>a</b>) convergence state of loss function, and (<b>b</b>) mAP curves.</p> "> Figure 17
<p>Three output sizes of the visual heat map where more highlighted areas indicate higher attention weights given by the network. (<b>a</b>) No attention module and (<b>b</b>) LRGA-Net.</p> "> Figure 18
<p>Precision × recall curves for each damage category: (<b>a</b>) corrosion stain, (<b>b</b>) crack, (<b>c</b>) efflorescence, (<b>d</b>) exposed bars, (<b>e</b>) spallation.</p> "> Figure 19
<p>Comparison of comprehensive performance of models: (<b>a</b>) parameters (M) vs. mAP, (<b>b</b>) parameters (M) vs. mF1.</p> "> Figure 20
<p>Comparison of the computational efficiency of different models.</p> "> Figure 21
<p>Sample results of the actual field output of different models. (<b>a</b>) Original image, (<b>b</b>) our approach, (<b>c</b>) YOLOX, (<b>d</b>) Faster-RCNN, (<b>e</b>) SSD.</p> "> Figure 22
<p>Samples of error detection (indicated by red dashed lines) and omission detection (indicated by orange dashed lines) using our proposed model.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Network for UAV Inspection Systems Designed for Bridge Damage Detection
2.1.1. Backbone Network Designed Based on Swin Transformer Encoder
2.1.2. Multi-Scale Attention Pyramid Network
2.1.3. Anchor-Based Decoupling Headers
2.2. UAV Detection of Bridge Damage Field Experiments
2.3. Experiments
2.3.1. Experimental Environment and Dataset
2.3.2. Evaluation Indices and Training Strategies
3. Results
3.1. Comparison of the Performance of Each Backbone Network
3.2. Comparison of the Attention Modules
3.3. Comparison of Performance with Other Classical Networks
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rizzo, P.; Enshaeian, A. Challenges in bridge health monitoring: A review. Sensors 2021, 21, 4336. [Google Scholar] [CrossRef] [PubMed]
- Nasr, A.; Björnsson, I.; Honfi, D.; Larsson Ivanov, O.; Johansson, J.; Kjellström, E. A review of the potential impacts of climate change on the safety and performance of bridges. Sustain. Resilient Infrastruct. 2021, 6, 192–212. [Google Scholar] [CrossRef] [Green Version]
- Feroz, S.; Abu Dabous, S. Uav-based remote sensing applications for bridge condition assessment. Remote Sens. 2021, 13, 1809. [Google Scholar] [CrossRef]
- Luo, J.; Huang, M.; Lei, Y. Temperature Effect on Vibration Properties and Vibration-Based Damage Identification of Bridge Structures: A Literature Review. Buildings 2022, 12, 1209. [Google Scholar] [CrossRef]
- Gonen, S.; Erduran, E. A Hybrid Method for Vibration-Based Bridge Damage Detection. Remote Sens. 2022, 14, 6054. [Google Scholar] [CrossRef]
- Tonelli, D.; Rossi, F.; Luchetta, M.; Caspani, V.; Zonta, D.; Migliorino, P.; Selleri, A.; Valeri, E.; Marchiondelli, A.; Ascari, G. Effectiveness of acoustic emission monitoring for in-service prestressed concrete bridges. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2021; SPIE: Bellingham, DC, USA, 2021; Volume 11591, pp. 178–192. [Google Scholar]
- Tonelli, D.; Rossi, F.; Luchetta, M.; Zonta, D.; Migliorino, P.; Selleri, A.; Valeri, E.; Marchiondelli, A.; Ascari, G. Acoustic emission monitoring of prestressed concrete bridges: Differences before and after the first-crack opening. In Civil Structural Health Monitoring: Proceedings of CSHM-8 Workshop 8; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 389–402. [Google Scholar]
- Lin, J.J.; Ibrahim, A.; Sarwade, S.; Golparvar-Fard, M. Bridge inspection with aerial robots: Automating the entire pipeline of visual data capture, 3D mapping, defect detection, analysis, and reporting. J. Comput. Civ. Eng. 2021, 35, 04020064. [Google Scholar] [CrossRef]
- Chen, S.; Laefer, D.F.; Mangina, E.; Zolanvari, S.I.; Byrne, J. UAV bridge inspection through evaluated 3D reconstructions. J. Bridge Eng. 2019, 24, 05019001. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Rashidi, M.; Samali, B.; Yousefi, A.M.; Wang, W. Multi-image-feature-based hierarchical concrete crack identification framework using optimized SVM multi-classifiers and D–S fusion algorithm for bridge structures. Remote Sens. 2021, 13, 240. [Google Scholar] [CrossRef]
- Gordan, M.; Sabbagh-Yazdi, S.R.; Ismail, Z.; Ghaedi, K.; Hamad Ghayeb, H. Data mining-based structural damage identification of composite bridge using support vector machine. J. AI Data Min. 2021, 9, 415–423. [Google Scholar]
- Fan, C.L. Detection of multidamage to reinforced concrete using support vector machine-based clustering from digital images. Struct. Control Health Monit. 2021, 28, e2841. [Google Scholar] [CrossRef]
- Zoubir, H.; Rguig, M.; El Aroussi, M.; Chehri, A.; Saadane, R. Concrete Bridge Crack Image Classification Using Histograms of Oriented Gradients, Uniform Local Binary Patterns, and Kernel Principal Component Analysis. Electronics 2022, 11, 3357. [Google Scholar] [CrossRef]
- Balbin, J.R.; Hortinela IV, C.C.; Garcia, R.G.; Baylon, S.; Ignacio, A.J.; Rivera, M.A.; Sebastian, J. Pattern recognition of concrete surface cracks and defects using integrated image processing algorithms. In Second International Workshop on Pattern Recognition; SPIE: Bellingham, DC, USA, 2017; Volume 10443, pp. 40–44. [Google Scholar]
- Wang, J.; He, X.; Faming, S.; Lu, G.; Cong, H.; Jiang, Q. A real-time bridge crack detection method based on an improved inception-resnet-v2 structure. IEEE Access 2021, 9, 93209–93223. [Google Scholar] [CrossRef]
- Li, G.; Li, X.; Zhou, J.; Liu, D.; Ren, W. Pixel-level bridge crack detection using a deep fusion about recurrent residual convolution and context encoder network. Measurement 2021, 176, 109171. [Google Scholar] [CrossRef]
- Li, H.; Xu, H.; Tian, X.; Wang, Y.; Cai, H.; Cui, K.; Chen, X. Bridge crack detection based on SSENets. Appl. Sci. 2020, 10, 4230. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, M.; Peng, Y.; Wu, L.; Wang, Y. HDCB-Net: A neural network with the hybrid dilated convolution for pixel-level crack detection on concrete bridges. IEEE Trans. Ind. Inform. 2020, 17, 5485–5494. [Google Scholar] [CrossRef]
- Xu, Y.; Fan, Y.; Li, H. Lightweight semantic segmentation of complex structural damage recognition for actual bridges. Struct. Health Monit. 2023. [Google Scholar] [CrossRef]
- Li, G.; Liu, T.; Fang, Z.; Shen, Q.; Ali, J. Automatic bridge crack detection using boundary refinement based on real-time segmentation network. Struct. Control Health Monit. 2022, 29, e2991. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, J.; Cai, F. On bridge surface crack detection based on an improved YOLO v3 algorithm. IFAC-Paper 2020, 53, 8205–8210. [Google Scholar] [CrossRef]
- Wu, P.; Liu, A.; Fu, J.; Ye, X.; Zhao, Y. Autonomous surface crack identification of concrete structures based on an improved one-stage object detection algorithm. Eng. Struct. 2022, 272, 114962. [Google Scholar] [CrossRef]
- Teng, S.; Liu, Z.; Li, X. Improved YOLOv3-based bridge surface defect detection by combining High-and low-resolution feature images. Buildings 2022, 12, 1225. [Google Scholar] [CrossRef]
- Wan, H.; Gao, L.; Yuan, Z.; Qu, H.; Sun, Q.; Cheng, H.; Wang, R. A novel transformer model for surface damage detection and cognition of concrete bridges. Expert Syst. Appl. 2022, 213, 119019. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. arXiv 2018, arXiv:1807.06521. [Google Scholar]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 2021, 151, 107398. [Google Scholar] [CrossRef]
- Liang, H.; Seo, S. Lightweight Deep Learning for Road Environment Recognition. Appl. Sci. 2022, 12, 3168. [Google Scholar] [CrossRef]
- Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Mundt, M.; Majumder, S.; Murali, S.; Panetsos, P.; Ramesh, V. Meta-learning convolutional neural architectures for multi-target concrete defect classification with the concrete defect bridge image dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11196–11205. [Google Scholar]
- Loshchilov, I.; Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983. [Google Scholar]
- Zhang, Z.; He, T.; Zhang, H.; Zhang, Z.; Xie, J.; Li, M. Bag of freebies for training object detection neural networks. arXiv 2019, arXiv:1902.04103. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. arXiv 2017, arXiv:1708.02002v2. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–24 June 2018; pp. 4510–4520. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–24 June 2018; pp. 7132–7141. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.F.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11531–11539. [Google Scholar]
- Zhang, C.; Lin, G.; Liu, F.; Yao, R.; Shen, C. Canet: Class-agnostic segmentation networks with iterative refinement and attentive few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5217–5226. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Part I 14. Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YoloX: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
Anchor Layer | Anchor 1 | Anchor 2 | Anchor 3 |
---|---|---|---|
Anchor Size (Width, Height) | (20, 50) | (129, 56) | (161, 195) |
(50, 30) | (53, 179) | (75, 428) | |
(39, 94) | (355, 83) | (514,527) |
UAV Parameters | Experimental Parameters | ||
---|---|---|---|
Total Mass | 0.4 kg | Distance maintained (H) | 1 m~1.5 m |
Size (L×W×H) | 180 × 180 × 80 mm | Pitch angle (R) | −75~95° |
Maximum Resolution | 4 K/60 fps | Overall time of a single inspection | 18 Minutes |
Field of View (FOV) | 155° | Number of images | 117 |
Propeller Protection | Built-in | Wind velocity | 0~3 m/s |
Input Settings | Loss Calculation | Data Enhancement | ||||||
---|---|---|---|---|---|---|---|---|
Input shape | Batch size | Total Epoch | Loss Function | Max_lr | Min_lr | Decay Type | Mosaic | Mixup |
640 × 640 | 8 | 300 | Focal Loss | 0.01 | 0.0001 | Cosine Annealing | True | True |
Baseline | √ | √ | √ | √ | √ | √ | √ |
SENet | √ | ||||||
ECA-Net | √ | ||||||
CBAM | √ | ||||||
CANet | √ | ||||||
LRCA-Net | √ | ||||||
LRGA-Net | √ | ||||||
Parameters (Millions) | 86.01 | 86.49 | 86.15 | 87.78 | 87.52 | 87.41 | 87.3 |
mAP(%) | 57.49 | 58.57 | 58.99 | 59.74 | 59.63 | 60.77 | 61.27 |
Method | Input Size | Categories-AP | mAP(%) | F1(%) | Parameters (Millions) | G-FLOPs(G) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Exposed Bars | Corrosion Stain | Spallation | Crack | Efflorescence | |||||||
SSD | 600 × 600 | 0.49 | 0.45 | 0.43 | 0.32 | 0.17 | 37.15 | 5.8 | 26.3 | 247.51 | |
Faster-RCNN | ResNet | 600 × 600 | 0.58 | 0.57 | 0.54 | 0.51 | 0.33 | 50.53 | 17.8 | 135.8 | 374.21 |
VGG | 600 × 600 | 0.50 | 0.51 | 0.43 | 0.55 | 0.31 | 46.07 | 15.7 | 29.5 | 932.35 | |
YOLOv5 | L | 640 × 640 | 0.58 | 0.52 | 0.52 | 0.50 | 0.31 | 48.62 | 19.4 | 44.7 | 115.47 |
X | 640 × 640 | 0.62 | 0.58 | 0.55 | 0.53 | 0.35 | 52.49 | 21.6 | 83.3 | 218.36 | |
YOLOX | L | 640 × 640 | 0.63 | 0.57 | 0.54 | 0.55 | 0.40 | 53.86 | 23.5 | 35.6 | 109.32 |
X | 640 × 640 | 0.64 | 0.60 | 0.58 | 0.56 | 0.41 | 55.91 | 26.4 | 71.8 | 191.47 | |
EfficientDet | D4 | 1024 × 1024 | 0.51 | 0.53 | 0.51 | 0.50 | 0.29 | 46.88 | 13.8 | 20.7 | 113.16 |
D5 | 1280 × 1280 | 0.52 | 0.55 | 0.52 | 0.51 | 0.26 | 47.21 | 14.1 | 33.6 | 271.73 | |
D6 | 1280 × 1280 | 0.58 | 0.57 | 0.53 | 0.53 | 0.27 | 49.67 | 14.8 | 51.8 | 546.46 | |
D7 | 1536 × 1536 | 0.58 | 0.58 | 0.52 | 0.51 | 0.30 | 49.58 | 14.6 | 57.6 | 655.23 | |
Our Approach | 640 × 640 | 0.67 | 0.66 | 0.64 | 0.60 | 0.49 | 61.27 | 37.8 | 87.3 | 253.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Lee, S.-C.; Seo, S. UAV-Based Low Altitude Remote Sensing for Concrete Bridge Multi-Category Damage Automatic Detection System. Drones 2023, 7, 386. https://doi.org/10.3390/drones7060386
Liang H, Lee S-C, Seo S. UAV-Based Low Altitude Remote Sensing for Concrete Bridge Multi-Category Damage Automatic Detection System. Drones. 2023; 7(6):386. https://doi.org/10.3390/drones7060386
Chicago/Turabian StyleLiang, Han, Seong-Cheol Lee, and Suyoung Seo. 2023. "UAV-Based Low Altitude Remote Sensing for Concrete Bridge Multi-Category Damage Automatic Detection System" Drones 7, no. 6: 386. https://doi.org/10.3390/drones7060386