Classification of Photogrammetric and Airborne LiDAR Point Clouds Using Machine Learning Algorithms
<p>Orthophoto of Istanbul Technical University Ayazaga Campus.</p> "> Figure 2
<p>Samples from the point clouds. (<b>a</b>) LiDAR point cloud. (<b>b</b>) Photogrammetric point cloud.</p> "> Figure 3
<p>Structure-from-Motion (SfM) [<a href="#B18-drones-05-00104" class="html-bibr">18</a>].</p> "> Figure 4
<p>The workflow of the study.</p> "> Figure 5
<p>Results of the classification for each algorithm. These are the results obtained on the whole dataset.</p> "> Figure 6
<p>The training duration of the algorithms.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Photogrammetric Data Processing
2.3. Classification Methods
2.3.1. Logistic Regression (LR)
2.3.2. Linear Discriminant Analysis (LDA)
2.3.3. K-Nearest Neighbors (K-NN)
2.3.4. Decision Tree Classifier (DTC)
2.3.5. Naïve Bayes (NB)
2.3.6. Multilayer Perceptron (MLP)
2.3.7. Adaboost (ADB)
2.3.8. Random Forest (RF)
2.3.9. Support Vector Machines (SVM)
2.4. Geometric Features
2.5. Experiment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geng, X.; Ji, S.; Lu, M.; Zhao, L. Multi-Scale Attentive Aggregation for LiDAR Point Cloud Segmentation. Remote Sens. 2021, 13, 691. [Google Scholar] [CrossRef]
- Akyol, O.; Duran, Z. Low-cost laser scanning system design. J. Russ. Laser Res. 2014, 35, 244–251. [Google Scholar] [CrossRef]
- Donmez, S.O.; Ipbuker, C. Investigation on Agent Based Models for Image Classification of Land Use and Land Cover Maps. In Proceedings of the 39th Asian Conference on Remote Sensing (ACRS): Remote Sensing Enabling Prosperity, Kuala Lumpur, Malaysia, 15–19 October 2018; pp. 2005–2008. [Google Scholar]
- Atik, S.O.; Ipbuker, C. Integrating Convolutional Neural Network and Multiresolution Segmentation for Land Cover and Land Use Mapping Using Satellite Imagery. Appl. Sci. 2021, 11, 5551. [Google Scholar] [CrossRef]
- Guo, B.; Huang, X.; Zhang, F.; Sohn, G. Classification of airborne laser scanning data using JointBoost. ISPRS J. Photogramm. Remote Sens. 2015, 100, 71–83. [Google Scholar] [CrossRef]
- Weinmann, M.; Jutzi, B.; Hinz, S.; Mallet, C. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS J. Photogramm. Remote Sens. 2015, 105, 286–304. [Google Scholar] [CrossRef]
- Munoz, D.; Bagnell, J.A.; Vandapel, N.; Hebert, M. Contextual classification with functional max-margin markov networks. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 975–982. [Google Scholar]
- Serna, A.; Marcotegui, B.; Goulette, F.; Deschaud, J.E. Paris-rue-Madame database: A 3D mobile laser scanner dataset for benchmarking urban detection, segmentation and classification methods. In Proceedings of the 4th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2014), Angers, France, 6–8 March 2014. [Google Scholar]
- Vosselman, G.; Coenen, M.; Rottensteiner, F. Contextual segment-based classification of airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 2017, 128, 354–371. [Google Scholar] [CrossRef]
- Cabo, C.; Ordóñez, C.; Sáchez-Lasheras, F.; Roca-Pardiñas, J.; de Cos-Juez, J. Multiscale Supervised Classification of Point Clouds with Urban and Forest Applications. Sensors 2019, 19, 4523. [Google Scholar] [CrossRef] [Green Version]
- Becker, C.; Rosinskaya, E.; Häni, N.; d’Angelo, E.; Strecha, C. Classification of aerial photogrammetric 3D point clouds. Photogramm. Eng. Remote Sens. 2018, 84, 287–295. [Google Scholar] [CrossRef]
- Lin, C.H.; Chen, J.Y.; Su, P.L.; Chen, C.H. Eigen-feature analysis of weighted covariance matrices for LiDAR point cloud classification. ISPRS J. Photogramm. Remote Sens. 2014, 94, 70–79. [Google Scholar] [CrossRef]
- Chen, B.; Shi, S.; Gong, W.; Zhang, Q.; Yang, J.; Du, L.; Song, S. Multispectral LiDAR point cloud classification: A two-step approach. Remote Sens. 2017, 9, 373. [Google Scholar] [CrossRef] [Green Version]
- Atik, M.E.; Duran, Z.; Seker, D.Z. Machine Learning-Based Supervised Classification of Point Clouds Using Multiscale Geometric Features. ISPRS Int. J. Geo-Inf. 2021, 10, 187. [Google Scholar] [CrossRef]
- Reymann, C.; Lacroix, S. Improving LiDAR point cloud classification using intensities and multiple echoes. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; IEEE: Manhattan, NY, USA, 2015; pp. 5122–5128. [Google Scholar]
- Atik, M.E.; Duran, Z. Classification of Aerial Photogrammetric Point Cloud Using Recurrent Neural Networks. Fresenius Environ. Bull. 2021, 30, 4270–4275. [Google Scholar]
- Duran, Z.; Aydar, U. Digital modeling of world’s first known length reference unit: The Nippur cubit rod. J. Cult. Herit. 2012, 13, 352–356. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Atik, M.E.; Ozturk, O.; Duran, Z.; Seker, D.Z. An automatic image matching algorithm based on thin plate splines. Earth Sci. Inform. 2020, 13, 869–882. [Google Scholar] [CrossRef]
- Cox, D.R. The regression analysis of binary sequences. J. R. Stat. Soc. Ser. B 1958, 20, 215–232. [Google Scholar] [CrossRef]
- Peng, C.Y.J.; Lee, K.L.; Ingersoll, G.M. An introduction to logistic regression analysis and reporting. J. Educ. Res. 2002, 96, 3–14. [Google Scholar] [CrossRef]
- Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Zhang, N.; Zhu, J. Privacy-preserving access control scheme for outsourced data in cloud. In Workshop on E-Business; Springer: Cham, Switzerland, 2016; pp. 215–224. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Machine Learning Basics. In Deep Learning; MIT Press: Cambridge, UK, 2016; Volume 1, pp. 99–166. [Google Scholar]
- Duda, R.O.; Hart, P.E. Pattern Classification and Scene Analysis; Wiley: New York, NY, USA, 1973; Volume 3, pp. 731–739. [Google Scholar]
- Domingos, P.; Pazzani, M. On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 1997, 29, 103–130. [Google Scholar] [CrossRef]
- Dey, L.; Chakraborty, S.; Biswas, A.; Bose, B.; Tiwari, S. Sentiment analysis of review datasets using naive bayes and k-nn classifier. Int. J. Inf. Eng. Elec. Bus. 2016, 8, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Alpaydin, E. Introduction to Machine Learning, 2nd ed.; MIT Press: London, UK, 2010. [Google Scholar]
- Abdullah, M.H.A.; Othman, M.; Kasim, S.; Saharuddin, S.S.; Mohamed, S.A. A Spiking Neural Networks Model with Fuzzy-Weighted k-Nearest Neighbour Classifier for Real-World Flood Risk Assessment. In International Conference on Soft Computing and Data Mining; Springer: Berlin/Heidelberg, Germany, 2020; pp. 222–230. [Google Scholar]
- Freund, Y.; Schapire, R.E. Experiments with a new boosting algorithm. In Proceedings of the Thirteenth International Conference on International Conference on Machine Learning, Bari, Italy, 3–6 July 1996; Volume 96, pp. 148–156. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Cepni, S.; Atik, M.E.; Duran, Z. Vehicle Detection Using Different Deep Learning Algorithms from Image Sequence. Balt. J. Mod. Comput. 2020, 8, 347–358. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
Class | LiDAR | Photogrammetric |
---|---|---|
Building | 100,000 | 100,000 |
High vegetation | 100,000 | 100,000 |
Low vegetation | 100,000 | 100,000 |
Ground | 100,000 | 100,000 |
Total | 400,000 | 400,000 |
Feature | Explanation | Feature | Explanation |
---|---|---|---|
1st eigenvalue | PCA1 | ||
2st eigenvalues | PCA2 | ||
3st eigenvalue | Height value | Zi | |
Sum of eigenvalues | Surface density | Number of neighbour/neighbourhood area | |
Anisotropy | Volume density | Number of neighbour/neighbourhood volume | |
Planarity | Number of neighbours | Other features | |
Linearity | 1st order moment | ||
Surface variation | Roughness | ||
Sphericity | Mean curvature | ||
Verticality | Gaussian curvature | ||
Normal change rate |
Algorithm | Accuracy | Precision | Recall | F1 Score | Computation Time (Seconds) |
---|---|---|---|---|---|
LR | 0.87 | 0.87 | 0.87 | 0.87 | 2.8 |
LDA | 0.79 | 0.80 | 0.79 | 0.80 | 0.4 |
K-NN | 0.95 | 0.96 | 0.95 | 0.95 | 1.2 |
DTC | 0.89 | 0.90 | 0.89 | 0.89 | 0.4 |
GNB | 0.80 | 0.83 | 0.80 | 0.81 | 0.05 |
MLP | 0.96 | 0.96 | 0.96 | 0.96 | 135.3 |
ADB | 0.50 | 0.30 | 0.50 | 0.38 | 3.8 |
RF | 0.91 | 0.92 | 0.91 | 0.92 | 1.0 |
SVM | 0.91 | 0.91 | 0.91 | 0.91 | 28.2 |
Algorithm | Accuracy | Precision | Recall | F1 Score | Computation Time (Seconds) |
---|---|---|---|---|---|
LR | 0.84 | 0.84 | 0.84 | 0.84 | 2.8 |
LDA | 0.79 | 0.79 | 0.79 | 0.79 | 0.4 |
K-NN | 0.83 | 0.83 | 0.83 | 0.83 | 1.2 |
DTC | 0.79 | 0.79 | 0.79 | 0.79 | 0.4 |
GNB | 0.25 | 0.31 | 0.25 | 0.28 | 0.05 |
MLP | 0.90 | 0.90 | 0.90 | 0.90 | 135.3 |
ADB | 0.76 | 0.76 | 0.76 | 0.76 | 3.8 |
RF | 0.78 | 0.81 | 0.78 | 0.80 | 1.0 |
SVM | 0.81 | 0.83 | 0.81 | 0.82 | 28.2 |
LR | LDA | K-NN | DTC | GNB | MLP | ADB | RF | SVM | |
---|---|---|---|---|---|---|---|---|---|
Building | 0.88 | 0.71 | 1.00 | 0.94 | 0.94 | 1.00 | 0.2 | 0.93 | 0.98 |
High vegetation | 0.92 | 0.98 | 0.98 | 0.74 | 0.91 | 0.95 | 0.5 | 0.81 | 0.93 |
Ground | 0.82 | 0.71 | 0.95 | 1.00 | 0.77 | 1.00 | 0.5 | 1.00 | 0.87 |
Low vegetation | 0.86 | 0.81 | 0.89 | 0.92 | 0.69 | 0.9 | 0.00 | 0.94 | 0.88 |
LR | LDA | K-NN | DTC | GNB | MLP | ADB | RF | SVM | |
---|---|---|---|---|---|---|---|---|---|
Building | 0.8 | 0.71 | 0.95 | 1.00 | 0.69 | 0.99 | 0.00 | 0.93 | 0.84 |
High vegetation | 0.85 | 0.76 | 0.88 | 0.94 | 0.57 | 0.89 | 1.00 | 0.81 | 0.87 |
Ground | 0.88 | 0.71 | 1.00 | 0.94 | 0.97 | 1.00 | 1.00 | 1.00 | 0.98 |
Low vegetation | 0.93 | 0.99 | 0.98 | 0.67 | 0.96 | 0.95 | 0.00 | 0.94 | 0.94 |
LR | LDA | K-NN | DTC | GNB | MLP | ADB | RF | SVM | |
---|---|---|---|---|---|---|---|---|---|
Building | 0.84 | 0.71 | 0.97 | 0.97 | 0.8 | 0.99 | 0.00 | 0.96 | 0.9 |
High vegetation | 0.88 | 0.86 | 0.93 | 0.83 | 0.7 | 0.92 | 0.67 | 0.87 | 0.9 |
Ground | 0.85 | 0.71 | 0.98 | 0.97 | 0.86 | 1.00 | 0.67 | 1.00 | 0.92 |
Low vegetation | 0.89 | 0.89 | 0.94 | 0.77 | 0.81 | 0.92 | 0.00 | 0.85 | 0.91 |
LR | LDA | K-NN | DTC | GNB | MLP | ADB | RF | SVM | |
---|---|---|---|---|---|---|---|---|---|
Building | 0.77 | 0.67 | 0.78 | 0.70 | 1.00 | 0.87 | 0.63 | 0.61 | 0.65 |
High vegetation | 0.85 | 0.80 | 0.77 | 0.80 | 0.00 | 0.93 | 0.71 | 0.83 | 0.85 |
Ground | 0.82 | 0.81 | 0.84 | 0.86 | 0.25 | 0.85 | 0.84 | 0.94 | 0.86 |
Low vegetation | 0.91 | 0.89 | 0.91 | 0.82 | 0.00 | 0.94 | 0.88 | 0.87 | 0.94 |
LR | LDA | K-NN | DTC | GNB | MLP | ADB | RF | SVM | |
---|---|---|---|---|---|---|---|---|---|
Building | 0.74 | 0.68 | 0.68 | 0.76 | 0.00 | 0.81 | 0.64 | 0.86 | 0.82 |
High vegetation | 0.82 | 0.79 | 0.84 | 0.70 | 0.00 | 0.90 | 0.74 | 0.72 | 0.79 |
Ground | 0.87 | 0.80 | 0.89 | 0.80 | 1.00 | 0.93 | 0.83 | 0.65 | 0.78 |
Low vegetation | 0.93 | 0.91 | 0.89 | 0.89 | 0.00 | 0.95 | 0.84 | 0.91 | 0.86 |
LR | LDA | K-NN | DTC | GNB | MLP | ADB | RF | SVM | |
---|---|---|---|---|---|---|---|---|---|
Building | 0.75 | 0.68 | 0.73 | 0.73 | 0.00 | 0.84 | 0.63 | 0.72 | 0.73 |
High vegetation | 0.84 | 0.79 | 0.80 | 0.75 | 0.00 | 0.91 | 0.72 | 0.77 | 0.82 |
Ground | 0.85 | 0.80 | 0.87 | 0.83 | 0.40 | 0.89 | 0.84 | 0.77 | 0.82 |
Low vegetation | 0.92 | 0.90 | 0.90 | 0.85 | 0.00 | 0.95 | 0.86 | 0.89 | 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duran, Z.; Ozcan, K.; Atik, M.E. Classification of Photogrammetric and Airborne LiDAR Point Clouds Using Machine Learning Algorithms. Drones 2021, 5, 104. https://doi.org/10.3390/drones5040104
Duran Z, Ozcan K, Atik ME. Classification of Photogrammetric and Airborne LiDAR Point Clouds Using Machine Learning Algorithms. Drones. 2021; 5(4):104. https://doi.org/10.3390/drones5040104
Chicago/Turabian StyleDuran, Zaide, Kubra Ozcan, and Muhammed Enes Atik. 2021. "Classification of Photogrammetric and Airborne LiDAR Point Clouds Using Machine Learning Algorithms" Drones 5, no. 4: 104. https://doi.org/10.3390/drones5040104
APA StyleDuran, Z., Ozcan, K., & Atik, M. E. (2021). Classification of Photogrammetric and Airborne LiDAR Point Clouds Using Machine Learning Algorithms. Drones, 5(4), 104. https://doi.org/10.3390/drones5040104