Immobilization of Heavy Metals in Biochar Derived from Biosolids: Effect of Temperature and Carrier Gas
<p>Total concentration of heavy metals (Cr, Mn, Co, Ni, Cu, Zn, Cd, Pb and As mg kg<sup>−1</sup>) in biochar produced from biosolids at three different temperatures (400 °C, 500 °C and 600 °C) in CO<sub>2</sub> and N<sub>2</sub> carrier gases. The error bars represent the standard deviation (<span class="html-italic">n</span> = 3).</p> "> Figure 2
<p>The percent distribution of various heavy metals in biosolids sample and biochar derived from biosolids, where F1—exchangeable; F2—reducible; F3—oxidizable; F4—residual fraction BC—Biochar produced under CO<sub>2</sub>; BN—Biochar produced under N<sub>2</sub> carrier gas at 400 °C, 500 °C and 600 °C.</p> "> Figure 3
<p>Principal component analyses (PCA) of total concentration heavy metal indicating 49.5% variation in PC1 and 22% variation in PC2 values were grouped according to pyrolysis conditions.</p> "> Figure 4
<p>Principal component analyses (PCA) of bioavailable metal concentration indicated a 34.5% variation in PC1 and a 27.1% variation in the PC2 values grouped according to pyrolysis condition.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Biochar Preparation
2.1.1. Biosolids Collection
2.1.2. Biochar Production
2.2. Analysis of Heavy Metals
2.2.1. Determination of Total Concentration of Heavy Metals
2.2.2. Sequential Extraction of Heavy Metals
2.2.3. Evaluation of Risk Assessment Code
2.2.4. Determination of Bioavailability of Heavy Metals in Biochar Derived from Biosolids
2.3. Data Analysis and Statistical Significance
3. Results and Discussion
3.1. Total Concentration of Heavy Metals
3.2. Chemical Fractionation of Heavy Metals
3.2.1. Effects of Pyrolysis Temperature and Carrier Gases
3.2.2. Environmental Risk Assessment
3.3. Bioavailable Heavy Metals in Biosolids and Biosolids Derived Biochar
3.4. Principal Component Analysis (PCA) of Biochar Quality
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patel, S.; Kundu, S.; Halder, P.; Veluswamy, G.; Pramanik, B.; Paz-Ferreiro, J.; Surapaneni, A.; Shah, K. Slow pyrolysis of biosolids in a bubbling fluidised bed reactor using biochar, activated char and lime. J. Anal. Appl. Pyrolysis 2019, 144, 104697. [Google Scholar] [CrossRef]
- Kończak, M.; Oleszczuk, P. Co-pyrolysis of sewage sludge and biomass in carbon dioxide as a carrier gas affects the total and leachable metals in biochars. J. Hazard. Mater. 2020, 400, 123144. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ferreiro, J.; Nieto, A.; Méndez, A.; Askeland, M.P.J.; Gascó, G. Biochar from biosolids pyrolysis: A review. Int. J. Environ. Res. Public Health 2018, 15, 956. [Google Scholar] [CrossRef]
- Singh, R.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef]
- Jin, J.; Li, Y.; Zhang, J.; Wu, S.; Cao, Y.; Liang, P.; Zhang, J.; Wong, M.H.; Wang, M.; Shan, S. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. J. Hazard. Mater. 2016, 320, 417–426. [Google Scholar] [CrossRef]
- Environment Protection Authority Victoria. Guidelines for Environmental Management: Biosolids Land Application; EPA Vicroria: Carlton, VIC, Australia, 2004; ISBN 0-7306-7641-2. [Google Scholar]
- Yuan, H.; Lu, T.; Huang, H.; Zhao, D.; Kobayashi, N.; Chen, Y. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. J. Anal. Appl. Pyrolysis 2015, 112, 284–289. [Google Scholar] [CrossRef]
- Lu, T.; Yuan, H.; Wang, Y.; Huang, H.; Chen, Y. Characteristic of heavy metals in biochar derived from sewage sludge. J. Mater. Cycles Waste Manag. 2016, 18, 725–733. [Google Scholar] [CrossRef]
- Zielińska, A.; Oleszczuk, P.; Charmas, B.; Skubiszewska-Zięba, J.; Pasieczna-Patkowska, S. Effect of sewage sludge properties on the biochar characteristic. J. Anal. Appl. Pyrolysis 2015, 112, 201–213. [Google Scholar] [CrossRef]
- Zhang, Z.; Ju, R.; Zhou, H.; Chen, H. Migration characteristics of heavy metals during sludge pyrolysis. Waste Manag. 2021, 120, 25–32. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef]
- Guizani, C.; Sanz, F.E.; Salvador, S. Effects of CO2 on biomass fast pyrolysis: Reaction rate, gas yields and char reactive properties. Fuel 2014, 116, 310–320. [Google Scholar] [CrossRef]
- Jindarom, C.; Meeyoo, V.; Rirksomboon, T.; Rangsunvigit, P. Thermochemical decomposition of sewage sludge in CO2 and N2 atmosphere. Chemosphere 2007, 67, 1477–1484. [Google Scholar] [CrossRef] [PubMed]
- Kończak, M.; Pan, B.; Ok, Y.S.; Oleszczuk, P. Carbon dioxide as a carrier gas and mixed feedstock pyrolysis decreased toxicity of sewage sludge biochar. Sci. Total Environ. 2020, 723, 137796. [Google Scholar] [CrossRef] [PubMed]
- Igalavithana, A.D.; Yang, X.; Zahra, H.R.; Tack, F.M.; Tsang, D.C.; Kwon, E.E.; Ok, Y.S. Metal (loid) immobilization in soils with biochars pyrolyzed in N2 and CO2 environments. Sci. Total Environ. 2018, 630, 1103–1114. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.-P.; Zhao, J.-T.; Wang, Z.-Q.; Wang, J.-F.; Fang, Y.-T.; Huang, J.-J. Effect of CO2 on pyrolysis behaviors of lignite. J. Fuel Chem. Technol. 2013, 41, 257–264. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Z.; Zheng, Q.; Lang, Q.; Xia, Y.; Peng, N.; Gai, C. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis. Bioresour. Technol. 2018, 247, 282–290. [Google Scholar] [CrossRef]
- Aktar, S.; Hossain, M.A.; Rathnayake, N.; Patel, S.; Gasco, G.; Mendez, A.; de Figueiredo, C.; Surapaneni, A.; Shah, K.; Paz-Ferreiro, J. Effects of temperature and carrier gas on physico-chemical properties of biochar derived from biosolids. J. Anal. Appl. Pyrolysis 2022, 164, 105542. [Google Scholar] [CrossRef]
- Lorentzen, E.M.; Kingston, H.S. Comparison of microwave-assisted and conventional leaching using EPA method 3050B. Anal. Chem. 1996, 68, 4316–4320. [Google Scholar] [CrossRef]
- U.S.EPA. Method 3050B Acid Digestion of Sediments, Sludges, and Soils 1.0 Scope and Application; Environmental Protection Agency: Washington, DC, USA, 1996. [Google Scholar]
- Ure, A.; Quevauviller, P.; Muntau, H.; Griepink, B. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- Huang, H.; Yuan, X.; Zeng, G.; Zhu, H.; Li, H.; Liu, Z.; Jiang, H.; Leng, L.; Bi, W. Quantitative evaluation of heavy metals’ pollution hazards in liquefaction residues of sewage sludge. Bioresour. Technol. 2011, 102, 10346–10351. [Google Scholar] [CrossRef]
- Leng, L.; Yuan, X.; Huang, H.; Jiang, H.; Chen, X.; Zeng, G. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 2014, 167, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, K.; Zhan, W.; Huang, L.; Liu, Y.; Li, T.; Yang, Z.; Liao, Q.; Chen, R.; Zhang, C. Highly effective stabilization of Cd and Cu in two different soils and improvement of soil properties by multiple-modified biochar. Ecotoxicol. Environ. Saf. 2021, 207, 111294. [Google Scholar] [CrossRef] [PubMed]
- Rayment, G.E.; Lyons, D.J. Soil Chemical Methods: Australasia; CSIRO Publishing: Clayton, VIC, Australia, 2011; Volume 3. [Google Scholar]
- Yang, Y.; Meehan, B.; Shah, K.; Surapaneni, A.; Hughes, J.; Fouché, L.; Paz-Ferreiro, J. Physicochemical properties of biochars produced from biosolids in Victoria, Australia. Int. J. Environ. Res. Public Health 2018, 15, 1459. [Google Scholar] [CrossRef]
- International Biochar Initiative. Standardized Product Sefinition and Product Testing Guidelines for Biochar that Is Used in Soil; International Biochar Initiative: Norfolk, VA, USA, 2015. [Google Scholar]
- Lu, H.; Zhang, W.; Wang, S.; Zhuang, L.; Yang, Y.; Qiu, R. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2013, 102, 137–143. [Google Scholar] [CrossRef]
- Li, B.; Ding, S.; Fan, H.; Ren, Y. Experimental Investigation into the Effect of Pyrolysis on Chemical Forms of Heavy Metals in Sewage Sludge Biochar (SSB), with Brief Ecological Risk Assessment. Materials 2021, 14, 447. [Google Scholar] [CrossRef]
- Wang, J.; Shi, L.; Zhai, L.; Zhang, H.; Wang, S.; Zou, J.; Shen, Z.; Lian, C.; Chen, Y. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review. Ecotoxicol. Environ. Saf. 2021, 207, 111261. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.-S.; Tang, C.-S.; Gu, K.; Shi, B. Remediation of heavy-metal-contaminated soils by biochar: A review. Environ. Geotech. 2019, 9, 135–148. [Google Scholar] [CrossRef]
- Xu, Y.; Qi, F.; Bai, T.; Yan, Y.; Wu, C.; An, Z.; Luo, S.; Huang, Z.; Xie, P. A further inquiry into co-pyrolysis of straws with manures for heavy metal immobilization in manure-derived biochars. J. Hazard. Mater. 2019, 380, 120870. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, B.; Liu, H.; Zhao, Y.; Li, L. Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars. Environ. Technol. Innov. 2022, 26, 102288. [Google Scholar] [CrossRef]
- Wang, X.; Chang, V.W.-C.; Li, Z.; Chen, Z.; Wang, Y. Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: Synergistic effects on biochar properties and the environmental risk of heavy metals. J. Hazard. Mater. 2021, 412, 125200. [Google Scholar] [CrossRef] [PubMed]
- Sobue, K.; Sugahara, A.; Nakata, T.; Imai, H.; Magaino, S.i. Effect of free carbon dioxide on corrosion behavior of copper in simulated water. Surf. Coat. Technol. 2003, 169, 662–665. [Google Scholar] [CrossRef]
- Shen, X.; Zeng, J.; Zhang, D.; Wang, F.; Li, Y.; Yi, W. Effect of pyrolysis temperature on characteristics, chemical speciation and environmental risk of Cr, Mn, Cu, and Zn in biochars derived from pig manure. Sci. Total Environ. 2020, 704, 135283. [Google Scholar] [CrossRef]
- Yang, T.; Meng, J.; Jeyakumar, P.; Cao, T.; Liu, Z.; He, T.; Cao, X.; Chen, W.; Wang, H. Effect of pyrolysis temperature on the bioavailability of heavy metals in rice straw-derived biochar. Environ. Sci. Pollut. Res. 2021, 28, 2198–2208. [Google Scholar] [CrossRef]
- de Figueiredo, C.C.; Chagas, J.K.M.; da Silva, J.; Paz-Ferreiro, J. Short-term effects of a sewage sludge biochar amendment on total and available heavy metal content of a tropical soil. Geoderma 2019, 344, 31–39. [Google Scholar] [CrossRef]
Metal Contamination | Potential Ecological Risk | Biosolids/Biochar Contamination | |||
---|---|---|---|---|---|
≤ 1 | Clean | ≤ 40 | Low | ≤ 150 | Low |
1 < ≤ 3 | Low | 40 < ≤ 80 | Moderate | 150 < ≤ 300 | Moderate |
3 < ≤ 6 | Moderate | 80 < ≤ 160 | Considerate | 300 < ≤ 600 | Considerate |
6 < ≤ 9 | Considerate | 160 < ≤ 320 | High | > 600 | High |
> 9 | High | > 320 | Very high | - | - |
Heavy Metals | Biosolids | C1 Grade | C2 Grade | International Biochar Guidelines |
---|---|---|---|---|
Cr | 72.21 ± 1.45 | 400 | 3000 | 93–1200 |
Co | 3.65 ± 0.25 | N/A | N/A | 34 |
Mn | 321.18 ± 4.98 | N/A | N/A | N/A |
Ni | 33.01 ± 0.99 | 60 | 270 | 47–420 |
Cu | 1029.19 ± 3.26 | 100 | 2000 | 143–6000 |
Zn | 1424.36 ± 21.71 | 200 | 2500 | 416–7400 |
Cd | 1.37 ± 0.01 | 1 | 10 | 1.4–39 |
Pd | 17.51 ± 0.34 | 300 | 500 | 121–300 |
As | 3.09 ± 0.64 | 20 | 60 | 13–100 |
Source | Variable | Mean Square | F-Value | p-Value |
---|---|---|---|---|
Temperature | Cr | 403.452 | 10.640 | 0.001 |
Mn | 90,135.494 | 245.138 | <0.001 | |
Co | 0.329 | 1.590 | 0.231 | |
Ni | 359.825 | 81.367 | <0.001 | |
Cu | 623,198.247 | 229.409 | <0.001 | |
Zn | 627,775.130 | 96.969 | <0.001 | |
Cd | 3.414 | 8.899 | 0.002 | |
Pb | 28.254 | 2.716 | 0.093 | |
As | 6.212 | 27.544 | <0.001 | |
Environment | Cr | 111.083 | 2.930 | 0.104 |
Mn | 2860.507 | 7.780 | 0.012 | |
Co | 0.589 | 2.849 | 0.109 | |
Ni | 43.113 | 9.749 | 0.005 | |
Cu | 7594.857 | 2.796 | 0.112 | |
Zn | 10,085.836 | 1.558 | 0.228 | |
Cd | 3.414 | 8.899 | 0.008 | |
Pb | 289.140 | 27.799 | <0.001 | |
As | 2.512 | 11.138 | 0.004 | |
Temperature × Environment | Cr | 13.829 | 0.365 | 0.699 |
Mn | 21,376.306 | 58.136 | <0.001 | |
Co | 0.065 | 0.315 | 0.734 | |
Ni | 8.663 | 1.959 | 0.170 | |
Cu | 27,649.237 | 10.178 | 0.001 | |
Zn | 27,618.833 | 4.266 | 0.030 | |
Cd | 3.414 | 8.899 | 0.002 | |
Pb | 74.942 | 7.205 | 0.005 | |
As | 0.386 | 1.711 | 0.209 |
Cr | Mn | Co | Ni | Cu | Zn | As | Cd | Pb | |
---|---|---|---|---|---|---|---|---|---|
Temperature | |||||||||
F1 | 10.08 (0.000) | 17.16 (0.000) | 13.99 (0.000) | 0.87 (0.429) | 70.75 (0.000) | 11.00 (0.000) | 26.33 (0.000) | 16.65 (0.000) | 01.21 (0.314) |
F2 | 3.008 (0.064) | 05.60 (0.009) | 01.98 (0.155) | 2.25 (0.123) | 4.41 (0.021) | 2.38 (0.110) | 30.42 (0.000) | 37.72 (0.000) | 1.86 (0.173) |
F3 | 32.53 (0.000) | 7.81 (0.002) | 08.03 (0.002) | 34.13 (0.000) | 33.73 (0.000) | 26.17 (0.000) | 0.98 (0.389) | 2.06 (0.145) | 2.06 (0.144) |
F4 | 4.49 (0.020) | 39.77 (0.000) | 118.96 (0.000) | 105.68 (0.000) | 43.39 (0.000) | 9.91 (0.000) | 49.55 (0.000) | 22.34 (0.000) | 38.48 (0.000) |
Environment | |||||||||
F1 | 0.07 (0.792) | 1.07 (0.309) | 0.42 (0.521) | 0.09 (0.927) | 106.13(0.000) | 1.02 (0.031) | 0.05 (0.831) | 5.17 (0.030) | 1.63 (0.212) |
F2 | 6.33 (0.017) | 0.48 (0.493) | 0.61 (0.441) | 1.55 (0.223) | 1.157 (0.291) | 1.344 (0.255) | 3.28 (0.083) | 2.27 (0.142) | 3.25 (0.081) |
F3 | 0.83 (0.371) | 00.33 (0.570) | 06.08 (0.020) | 00.14 (0.709) | 03.87 (0.050) | 0.22 (0.640) | 2.48 (0.126) | 8.99 (0.005) | 35.47 (0.000) |
F4 | 28.33 (0.000) | 16.98 (0.000) | 59.83 (0.000) | 60.09 (0.000) | 50.40 (0.000) | 11.07 (0.002) | 34.98 (0.000) | 0.36 (0.555) | 17.27 (0.000) |
Temperature × Environment | |||||||||
F1 | 11.19 (0.000) | 05.52 (0.009) | 07.78 (0.002) | 06.43 (0.005) | 66.99 (0.000) | 08.15 (0.001) | 04.15 (0.026) | 5.78 (0.008) | 4.67 (0.017) |
F2 | 7.82 (0.002) | 1.25 (0.302) | 0.41 (0.672) | 0.46 (0.637) | 6.72 (0.004) | 2.45 (0.104) | 01.32 (0.283) | 2.36 (0.112) | 0.32 (0.733) |
F3 | 1.85 (0.174) | 4.68 (0.017) | 1.43 (0.256) | 0.07 (0.994) | 1.12 (0.341) | 3.01 (0.065) | 0.12 (0.890) | 5.16 (0.012) | 14.06 (0.000) |
F4 | 15.78 (0.000) | 3.15 (0.057) | 6.41 (0.005) | 7.06 (0.003) | 7.04 (0.003) | 13.35 (0.000) | 8.45 (0.001) | 15.95 (0.000) | 7.47 (0.002) |
Heavy Metals | Cr | Mn | Co | Ni | Cu | Zn | Cd | Pb | As |
---|---|---|---|---|---|---|---|---|---|
Biosolids | 32 ± 6/HR | 34 ± 2/HR | 32 ± 5/HR | 43 ± 5/HR | 3 ± 4/LR | 15 ± 1/MR | 25 ± 5/MR | 10 ± 2/MR | 35 ± 5/HR |
BC400 | 31 ± 9/HR | 20 ± 2/MR | 77 ± 20/VHR | 33 ± 6/MR | 2 ± 1/LR | 12 ± 4/MR | 36 ± 15/MR | 11 ± 3/MR | 16 ± 6/MR |
BC500 | 16 ± 3/MR | 12 ± 1/MR | 68 ± 21/VHR | 13 ± 4/MR | 1 ± 1/LR | 5 ± 1/LR | 5 ± 1/LR | 5 ± 1/LR | 8 ± 3/LR |
BC600 | 20 ± 3/MR | 4 ± 2/LR | 34 ± 23/HR | 20 ± 8/MR | 1 ± 1/LR | 4 ± 2/LR | 4 ± 1/LR | 7 ± 1/LR | 3 ± 1/LR |
BN400 | 26 ± 2/MR | 10 ± 6/MR | 62 ± 27/VHR | 20 ± 2/MR | 1 ± 1/VLR | 6 ± 1/LR | 5 ±1/LR | 11 ± 1/MR | 14 ± 1/MR |
BN500 | 22 ± 1/MR | 17 ± 5/MR | 91 ± 25/VHR | 27 ± 11/MR | 4 ± 1/LR | 11 ± 5/MR | 5 ± 1/LR | 22 ± 10/MR | 13 ± 2/MR |
BN600 | 19 ± 2/MR | 7 ± 3/LR | 39 ± 7/HR | 14 ± 1/MR | 2 ± 1/LR | 3 ± 1/LR | 3 ± 1/LR | 13 ± 9/MR | 4 ± 1/LR |
Source | Variable | Mean Square | F-Value | p-Value |
---|---|---|---|---|
Temperature | Cr | 223.735 | 12.377 | <0.01 |
Mn | 219.543 | 18.662 | <0.01 | |
Co | 4912.652 | 4.984 | 0.02 | |
Ni | 193.000 | 4.442 | 0.03 | |
Cu | 5.574 | 27.444 | <0.01 | |
Zn | 67.019 | 7.747 | <0.01 | |
Cd | 681.079 | 6.238 | 0.01 | |
Pb | 21.134 | 0.398 | 0.68 | |
As | 281.775 | 11.212 | <0.01 | |
Environment | Cr | 0.002 | 0.000 | 0.99 |
Mn | 1.311 | 0.111 | 0.74 | |
Co | 338.411 | 0.343 | 0.57 | |
Ni | 21.889 | 0.504 | 0.49 | |
Cu | 5.618 | 27.661 | <0.01 | |
Zn | 0.132 | 0.015 | 0.90 | |
Cd | 631.968 | 5.788 | 0.03 | |
Pb | 364.051 | 6.849 | 0.02 | |
As | 5.614 | 0.223 | 0.64 | |
Temperature × Environment | Cr | 65.831 | 3.642 | 0.05 |
Mn | 125.412 | 10.661 | <0.01 | |
Co | 1224.309 | 1.242 | 0.31 | |
Ni | 381.372 | 8.778 | <0.01 | |
Cu | 8.773 | 43.191 | <0.01 | |
Zn | 63.500 | 7.340 | <0.01 | |
Cd | 637.366 | 5.837 | 0.01 | |
Pb | 155.907 | 2.933 | 0.08 | |
As | 23.610 | 0.939 | 0.41 |
Heavy Metals | Tr | Cf | Er | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Biosolids | BC400 | BC500 | BC600 | BN400 | BN500 | BN600 | Biosolids | BC400 | BC500 | BC600 | BN400 | BN500 | BN600 | ||
Cr | 2.00 | 4.07 | 4.56 | 2.74 | 2.24 | 1.71 | 2.93 | 1.69 | 8.13 | 9.12 | 5.47 | 4.48 | 3.43 | 5.86 | 3.38 |
Mn | 1.00 | 17.15 | 2.27 | 1.20 | 0.79 | 1.02 | 1.19 | 0.69 | 17.15 | 2.27 | 1.20 | 0.79 | 1.02 | 1.19 | 0.69 |
Ni | 6.00 | 5.03 | 6.60 | 4.07 | 2.79 | 3.99 | 3.93 | 1.72 | 30.20 | 39.63 | 24.44 | 16.76 | 23.94 | 23.59 | 10.32 |
Cu | 5.00 | 5.54 | 1.80 | 1.88 | 0.44 | 1.02 | 1.08 | 0.26 | 27.68 | 9.01 | 9.38 | 2.20 | 5.11 | 5.38 | 1.30 |
Zn | 1.00 | 6.13 | 0.25 | 0.21 | 0.15 | 0.02 | 0.20 | 0.17 | 6.13 | 0.25 | 0.21 | 0.15 | 0.02 | 0.20 | 0.17 |
As | 10.00 | 6.56 | 3.33 | 0.92 | 0.84 | 1.43 | 1.05 | 0.66 | 65.62 | 33.27 | 9.19 | 8.36 | 14.32 | 10.51 | 6.59 |
Cd | 30.00 | 5.29 | 1.84 | 0.84 | 1.92 | 0.85 | 0.74 | 0.97 | 158.64 | 55.30 | 25.08 | 57.58 | 25.59 | 22.14 | 29.12 |
Pb | 5.00 | 0.55 | 0.51 | 0.19 | 0.26 | 0.28 | 0.21 | 0.12 | 2.75 | 2.54 | 0.97 | 1.29 | 1.42 | 1.07 | 0.58 |
RI | 316.30 | 151.38 | 75.95 | 91.61 | 74.84 | 69.94 | 52.16 |
Temperature | Environment | Temperature × Environment | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
HM | Mean Square | F-Value | p-Value | Mean Square | F-Value | p-Value | Mean Square | F-Value | p-Value | |
Cr | Cf | 4.43 | 14.96 | <0.01 | 10.27 | 34.68 | <0.01 | 7.51 | 25.38 | <0.01 |
Er | 17.71 | 14.96 | <0.01 | 41.06 | 34.68 | <0.01 | 30.05 | 25.38 | <0.01 | |
Mn | Cf | 2.45 | 12.29 | <0.01 | 1.84 | 9.22 | <0.01 | 1.41 | 7.09 | <0.01 |
Er | 2.45 | 12.29 | <0.01 | 1.84 | 9.22 | <0.01 | 1.41 | 7.09 | <0.01 | |
Ni | Cf | 27.95 | 65.3 | <0.01 | 14.65 | 34.23 | <0.01 | 4.68 | 10.93 | <0.01 |
Er | 1006.22 | 65.3 | <0.01 | 527.53 | 34.23 | <0.01 | 168.4 | 10.93 | <0.01 | |
Cu | Cf | 4.8 | 55.38 | <0.01 | 3.1 | 35.69 | <0.01 | 0.37 | 4.29 | 0.02 |
Er | 120.07 | 55.38 | <0.01 | 77.39 | 35.69 | <0.01 | 9.31 | 4.29 | 0.02 | |
Zn | Cf | 0.01 | 2.29 | 0.12 | 0.05 | 7.79 | 0.01 | 0.06 | 9.49 | <0.01 |
Er | 0.01 | 2.29 | 0.12 | 0.05 | 7.79 | 0.01 | 0.06 | 9.49 | <0.01 | |
As | Cf | 9.33 | 18.73 | <0.01 | 3.77 | 7.56 | 0.01 | 3.58 | 7.19 | <0.01 |
Er | 932.66 | 18.73 | <0.01 | 376.65 | 7.56 | 0.01 | 357.88 | 7.19 | <0.01 | |
Cd | Cf | 1.51 | 3.92 | 0.03 | 4.15 | 10.73 | <0.01 | 0.76 | 1.97 | 0.16 |
Er | 1363.11 | 3.92 | 0.03 | 3733.61 | 10.73 | <0.01 | 684.45 | 1.97 | 0.16 | |
Pb | Cf | 0.16 | 16.38 | <0.01 | 0.12 | 12.23 | <0.01 | 0.05 | 4.76 | 0.02 |
Er | 4.04 | 16.38 | <0.01 | 3.02 | 12.23 | <0.01 | 1.17 | 4.76 | 0.02 | |
RI | 6628.88 | 9.3 | <0.01 | 14883.24 | 20.88 | <0.01 | 3733.76 | 5.24 | 0.01 |
Variable | Mean Square | F | p |
---|---|---|---|
Temperature | |||
DTPA- Mn | 1.196 | 0.147 | 0.864 |
DTPA-Fe | 14,690.169 | 6.391 | 0.008 |
DTPA-Cu | 1047.919 | 29.354 | <0.001 |
DTPA-Zn | 180.698 | 12.117 | <0.001 |
DTPA-Cd | 0.000 | 1.714 | 0.208 |
DTPA-Pb | 0.088 | 0.831 | 0.452 |
Environment | |||
DTPA- Mn | 5.955 | 0.733 | 0.403 |
DTPA-Fe | 6557.385 | 2.853 | 0.108 |
DTPA-Cu | 3715.281 | 104.071 | <0.001 |
DTPA-Zn | 0.033 | 0.002 | 0.963 |
DTPA-Cd | 9.20 | 0.730 | 0.404 |
DTPA-Pb | 0.169 | 1.588 | 0.224 |
Temperature × Environment | |||
DTPA-Mn | 7.931 | 0.977 | 0.396 |
DTPA-Fe | 1910.851 | 0.831 | 0.452 |
DTPA-Cu | 1040.548 | 29.147 | <0.001 |
DTPA-Zn | 24.786 | 1.662 | 0.218 |
DTPA-Cd | 0.001 | 5.416 | 0.014 |
DTPA-Pb | 2.00 | 0.200 | 1.886 |
Biosolids | BC400 | BC500 | BC600 | BN400 | BN500 | BN600 | |
---|---|---|---|---|---|---|---|
DTPA-Mn | 83.96 | 6.31 | 5.99 | 5.08 | 5.20 | 6.75 | 6.43 |
DTPA-Fe | 463.21 | 60.94 | 122.33 | 117.15 | 76.01 | 122.47 | 218.62 |
DTPA-Cu | 494.26 | 18.52 | 24.92 | 49.98 | 11.18 | 17.61 | 11.48 |
DTPA-Zn | 444.90 | 22.10 | 20.25 | 16.39 | 13.85 | 18.10 | 16.83 |
DTPA-Cd | 0.86 | 0.03 | 0.02 | 0.02 | 0.02 | 0.04 | 0.02 |
DTPA-Pb | 3.65 | 0.57 | 0.85 | 0.72 | 0.39 | 0.61 | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aktar, S.; Hossain, M.A.; Shah, K.; Mendez, A.; de Figueiredo, C.C.; Gasco, G.; Paz-Ferreiro, J. Immobilization of Heavy Metals in Biochar Derived from Biosolids: Effect of Temperature and Carrier Gas. Soil Syst. 2024, 8, 117. https://doi.org/10.3390/soilsystems8040117
Aktar S, Hossain MA, Shah K, Mendez A, de Figueiredo CC, Gasco G, Paz-Ferreiro J. Immobilization of Heavy Metals in Biochar Derived from Biosolids: Effect of Temperature and Carrier Gas. Soil Systems. 2024; 8(4):117. https://doi.org/10.3390/soilsystems8040117
Chicago/Turabian StyleAktar, Shefali, Md Afzal Hossain, Kalpit Shah, Ana Mendez, Cícero Célio de Figueiredo, Gabriel Gasco, and Jorge Paz-Ferreiro. 2024. "Immobilization of Heavy Metals in Biochar Derived from Biosolids: Effect of Temperature and Carrier Gas" Soil Systems 8, no. 4: 117. https://doi.org/10.3390/soilsystems8040117