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Abstract: Electronic health records (EHRs) can be used to make critical decisions, to study the
effects of treatments, and to detect hidden patterns in patient histories. In this paper, we present a
framework to identify and analyze EHR-data-driven tasks and activities in the context of
interactive visualization tools (IVTs)—that is, all the activities, sub-activities, tasks, and sub-tasks
that are and can be supported by EHR-based IVTs. A systematic literature survey was conducted to
collect the research papers that describe the design, implementation, and/or evaluation of
EHR-based IVTs that support clinical decision-making. Databases included PubMed, the ACM
Digital Library, the IEEE Library, and Google Scholar. These sources were supplemented by gray
literature searching and reference list reviews. Of the 946 initially identified articles, the survey
analyzes 19 IVTs described in 24 articles that met the final selection criteria. The survey includes an
overview of the goal of each IVT, a brief description of its visualization, and an analysis of how
sub-activities, tasks, and sub-tasks blend and combine to accomplish the tool's main higher-level
activities of interpreting, predicting, and monitoring. Our proposed framework shows the gaps in
support of higher-level activities supported by existing IVTs. It appears that almost all existing
IVTs focus on the activity of interpreting, while only a few of them support predicting and
monitoring —this despite the importance of these activities in assisting users in finding patients
that are at high risk and tracking patients’ status after treatment.

Keywords: interactive visualizations; electronic health records; visualization tools; design
framework; activities and tasks

1. Introduction

An electronic health record (EHR) contains patient data, such as demographics, prescriptions,
medical history, diagnosis, surgical notes, and discharge summaries. Healthcare providers use EHRs
to make critical decisions, study the effects of treatments, determine the effectiveness of treatments,
and monitor patient improvement after a particular treatment. In addition to these benefits, EHRs
can potentially aid clinical researchers in detecting hidden trends and missing events, revealing
unexpected sequences, reducing the incidence of medical errors, and establishing quality control
[1,2]. Recently, several healthcare organizations have used systems that incorporate EHR data to
improve the quality of care; these systems are intended to replace traditional paper-based medical
records [3]. However, a few studies reveal that these EHR-based systems hardly improve the quality
of care. One of the reasons for this is that they do not allow for human-data interaction in a manner
that fits and supports the needs of healthcare providers [4,5]. A set of technologies and techniques
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that can improve the efficacy and utility of these EHR-based systems can be found in information
visualization [5], or broadly speaking interactive visualization tools (IVTs).

IVTs can be defined as computational technologies that use visual representations (i.e.,
visualizations) to amplify human cognition when working with data [6,7]. IVTs can help people who
use them gain better insight by providing the means to explore the data at various levels of
granularity and abstraction. An important feature of IVTs that makes them suitable for the
exploration of EHRs is the ability to show relevant data quickly by mapping it to visualizations [5].
Another feature is interaction. Making the visualization interactive allows healthcare providers to
perform various data-driven tasks and activities. Interaction helps users accomplish their overall
goals by dynamically changing the mapping, view, and scope of EHR data. In recent years, a
number of EHR-based IVTs have been developed and deployed to support healthcare providers in
performing data-driven activities.

To provide a clear and systematic approach in examining EHR-based IVTs for clinical decision
support, this paper provides a framework for analyzing tasks and activities supported by these
tools. To do so, we will first provide a brief survey of some of the existing IVTs that support the
exploration and querying of EHR data and examine overall patterns in these tools. This survey does
not include EHR-based IVTs that are designed for clinical documentation, administration, and
billing processes.

There are a few studies that review EHR-based IVTs and their applications. Rind et al. [5]
reviewed and compared state-of-the-art information visualization tools that involve EHR data using
four criteria: (1) data types that they cover, (2) support for multiple variables, (3) support for one
versus multiple patient records, and (4) support for user intents. Lesselroth and Pieczkiewicz [8]
surveyed different visualization techniques for EHRs. They cover a large number of visualization
tools (e.g., Lifelines, MIVA, WBIVS, and VISITORS). Their survey is organized into five sections: (1)
multimedia, (2) smart dashboards to improve situational awareness, (3) longitudinal and
problem-oriented views to tell clinical narratives, (4) iconography and context links to support
just-in-time information, and (5) probability analysis and decision heuristics to support decision
analysis and bias identification. Combi et al. [9] reviewed a few visualization tools (e.g., IPBC,
KHOSPAD, KNAVE II, Paint Strips, and VISITORS) and described them based on the following
features: subject cardinality (single/multiple patients), concept cardinality (single/multiple
variables), abstraction level (raw data, abstract concepts, knowledge), and temporal granularity
(single, single but variable, multiple). Finally, in a book chapter, Aigner et al. [10] described
strategies to visualize (1) clinical guidelines seen as plans (e.g.,, GEM Cutter, DELT/A), (2) patients’
data seen as multidimensional information space (e.g., Midgaard, VIE-VISU, Gravi++), and (3)
patients” data related to clinical guidelines (e.g., Tallis Tester, CareVis).

A careful examination of the above surveys shows that a systematic analysis of IVTs with a
focus on how they support EHR-data-driven tasks and activities is lacking. The purpose of the
current paper is to fill this gap. Here, we present a framework for analyzing how IVTs can support
different EHR-based tasks and activities. The framework can help designers and researchers to
conceptualize the functionalities of EHR-based IVTs in an organized manner. In addition, this paper
is suggestive of how this framework can be used to evaluate existing EHR-based IVTs and design
new ones systematically. This paper also leads to the development of best practices for designing
similar frameworks in similar areas.

The rest of this paper is organized as follows. Section 2 discusses how the proposed framework
is formed and examines the relationships among the three concepts of activities, tasks, and low-level
interactions in the context of the framework. Section 3 presents our strategy for searching relevant
literature and explains our selection criteria. Section 4 provides a brief survey of a set of IVTs and
outlines their main goal(s). In this section, using the proposed analytical framework, we identify the
tasks and activities that IVTs support. Finally, Section 5 discusses how the framework can be used to
evaluate the surveyed EHR-based IVTs.
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2. A Proposed Activity and Task Analysis Framework

In the context of IVTs, user-tool interaction can be conceptualized as actions that are performed
by users and consequent reactions that occur via the tool’s interface. This bi-directional relationship
between the user and the tool supports the flow of information between the two. Interaction allows
for human-information discourse [11]. Furthermore, it allows users to adjust different features of the
IVT to suit their analytical needs. Interaction can be characterized at different levels of granularity
[7,12]. As displayed in Figure 1, an activity can be conceptualized at the highest level, where it is
composed of multiple lower-level tasks (e.g., ranking, categorizing, and identifying) that work
together to accomplish the activity's overall goal. An activity and a task can consist of multiple
sub-activities and sub-tasks, respectively. At the lower level, tasks can be considered to have visual
and interactive aspects; tasks that are supported by visual processing are called visual tasks. For
instance, consider a scenario in which a user is working with a stacked bar chart that aggregates
laboratory test results. The user needs to understand the distribution of a specific test of a collection
of patients after surgery over time. Some of the visual tasks that the user may need to perform can
include defecting the time when the test is at its peak and observing the average test result at different
times. Interactive tasks require users to act upon visualizations. For instance, in the example above,
the user may want to cluster the test results based on different time granularities (e.g., over an hour,
over a day, or over a month). Each interactive task is made up of a number of lower-level actions
(i.e., interactions) that are carried out to complete the task.

In most complex situations, activities, sub-activities, tasks, and sub-tasks are combined to
support users in accomplishing their overall goal. It is important to note two perspectives from
which we can view human-data discourse. From a top-down perspective, users’ goals flow from
higher-level activities that need to be accomplished. From here, we go down to a number of tasks
and sub-tasks (visual and interactive), and then to a set of low-level interactions. From a bottom-up
perspective, the performance of a series of low-level interactions that users perform with visual
representations gives emergence to tasks. Similarly, the performance of a sequence of tasks gives
emergence to activities all the way up until an overall goal is accomplished.

In this paper, we present an activity and task analysis framework for examining EHR-based
IVTs (i.e., ones that involve EHRs as their main source of data with which users perform data-driven
tasks and activities). To identify what activities, sub-activities, tasks, and sub-tasks are supported in
EHR-based IVTs, we have examined a number of such tools that have been developed by different
researchers and have been reported in the literature (see Wang et al. [13]; Wongsuphasawat et al.
[14]; Wongsuphasawat and Gotz [15]; Malik et al. [16]; Fails [17]; Klimov et al. [18];
Wongsuphasawat [19]; Monroe et al. [20]; Brodbeck et al. [21]; Chittaro et al. [22]; Rind et al. [23];
Plaisant et al. [24]; Faiola and Newlon [25]; Pieczkiewicz et al. [26]; Bade et al. [27]; Hinum et al. [28];
Rind et al. [29]; and Ordonez et al. [30]; Gresh et al. [31]; Horn et al. [32]). To conceptualize and
develop the elements of the framework, our focus is the identification of activities and tasks that are
independent of any specific technology or platform. To be consistent, we re-interpret how activities
and tasks are named by the authors of the afore-listed sources in light of the unified language of our
proposed framework. The activity and task terms we use might differ from the language of the
existing literature since the authors have described their tools using their own vocabulary.
Unfortunately, the language that different authors use is not consistent. Such inconsistency makes it
difficult to analyze how well and comprehensively such tools support EHR-based tasks and how
they can be improved. In the next section, we define and categorize the higher-level activities that
result from interaction and combination of different sub-activities, tasks, and sub-tasks.

2.1. Higher-Level Activities: Interpreting, Predicting, and Monitoring

After reviewing numerous papers [33-49], we have concluded that, broadly speaking, all
EHR-data-driven healthcare activities can be organized under three main categories: interpreting
[33-37], predicting [38-43], and monitoring [44-49). Interpreting refers to the activity of detecting
patterns from patients’” medical records and making sense of the relationships among different
features. Predicting refers to the activity of anticipating patient outcomes and creating new
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hypotheses by analyzing patient history and status [50]. Lastly, monitoring refers to the activity of
repetitive testing with the aim of adjusting and guiding the management of recurrent or chronic
diseases [51].

activity predicting
A
( Y oo
sub-activities discovering
A
{ 1 LE 1]
tasks ordering specifying
A A
( AR 1 e
sub-tasks ranking classifying
' . ' . LE 1]
interactions
(actions filtering drilling eoo
and
reactions) \ \
< "y
Vis » Vis » Vis > eoo
R1 R2 R3

Figure 1. Relationships among activities, tasks, and interactions. Top-down view: activity is made up
of sub-activities, tasks, sub-tasks, and interactions. Bottom-up view: activity emerges over time,
through performance of tasks and interactions. Visualizations are depicted as Vis and reactions as
Ry. Source: adapted from [7].

2.2. Hierarchical Structure of Activities, Sub-Activities, Tasks, and Sub-Tasks

In this section, we identify sub-activities, tasks, and sub-tasks that blend and combine together
to give rise to the three activities of interpreting, predicting, and monitoring. Interpreting, as a
higher-level activity, can be comprised of four sub-activities: (i) understanding (e.g., gaining insight
into patient medical records), (ii) discovering (e.g., finding patients with interesting medical event
patterns), (iii) exploring (e.g., observing patient data in different temporal granularities), and (iv)
overviewing (e.g., providing compact visual summaries of all event sequences found in the data).
Likewise, predicting can be comprised of two sub-activities: (i) learning (e.g., generating new
hypotheses from the data), and (ii) discovering (e.g., recognizing the deterioration of the disease).
Finally, momnitoring is composed of (i) investigating (e.g., examining the development of a patient
after treatment), (ii) analyzing (e.g., studying the aggregated event sequences for quality assurance),
and (iii) evaluating (e.g., assessing the quality of care based on clinical parameters). At the next level
of the hierarchy, as shown in Figure 2, each sub-activity can be composed of a number of visual (e.g.,
specifying, recognizing, and detecting) as well as interactive tasks (e.g., locating, ordering, querying, and
clustering). Moreover, as shown in Table 1, each task consists of different sub-tasks; for instance,
ordering can be carried out by a combination of sub-tasks such as ranking, aggregating, identifying, and

classifying.
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Figure 2. Overview of the proposed activity and task analysis framework. The visual tasks are
represented as blue and interactive tasks are represented as yellow.

Table 1. Shows the breakdown of the interactive and visual tasks.

Task

Sub-tasks

Ordering

Aggregating, Classifying, Identifying, Ranking

Locating

Aggregating, Aligning, Classifying, Identifying, Ranking

Querying

Classifying, Identifying, Ranking,

.GZJ Organizing Aggregating, Classifying, Identifying, Highlighting
-—

Q

g Summarizing Aggregating, Classifying, Identifying

-—

k= Clustering Classifying, Identifying, Ranking

Observing

Aggregating, Aligning, Identifying, Ranking
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Recognizing Aggregating, Aligning, Classifying, Identifying, Ranking
é Specifying Aggregating, Aligning, Classifying, Identifying, Highlighting, Ranking
>
Detecting Classifying, Identifying, Ranking
3. Methods

3.1. Search Strategy

We conducted an electronic literature search in order to collect the research papers that describe
the design, implementation, or evaluation of EHR-based IVTs. In order to assure a comprehensive
document search, we included all the keywords that are relevant to the goal of the research and also
covered all the synonyms and related terms, both for EHRs and visualization tools. We further
broadened our search by adding an * to the end of a term to make sure the search engines picked out
different variations of the term. We also added quotation marks around phrases to ensure that the
exact sequence of words is found. To ensure that relevant papers were not missed in our search, we
used a relatively large set of keywords. We used two categories of keywords. The first category

concerned visualization tools and included the following terms: “visualization*”

, “visualization
tool*”, “information visualization*”, “interactive visualization*”, “interactive visualization tool*”,
“visualization system*”, and “information visualization system*”. For the second category, EHR, we
used the following terms: “Health Record*”, “Electronic Health Record*”, “EHR*”, “Electronic
Patient Record*”, “Electronic Medical Record*”, “Patients Record*”, and “Patient Record*”. As we
were looking for papers about EHR-based visualization tools, we used the keywords shown in Table
2.

We used the following search engines based on their relevance to the field: PubMed, the ACM
Digital Library, the IEEE Library, and Google Scholar. We also looked for relevant papers in two
medical informatics journals (International Journal of Medical Informatics and Journal of the
American Medical Informatics Association). Furthermore, additional papers were collected in
conference proceedings (e.g., IEEE Conference on Visual Analytics Science and Technology (VAST),
HCIL Workshop 2015, and IEEE VisWeek Workshop on Visual Analytics in Health Care) that were
published in 2007 and later. We then manually reviewed the reference lists of the papers that met the
selection criteria to find other relevant studies that had not been identified in the database search. All
the studies included in this survey were published from 1998 until 2015. We reviewed all of the
abstracts, removed the duplicates, and shortlisted abstracts for a more detailed assessment.

Table 2. Overview of the search terms used.

Terms Used

“Visualization*” +“Health Record*”

“Visualization*” + “Electronic Health Record*”

“Visualization*” + “EHR*”

“Visualization*” + “Electronic Patient Record*”

“Visualization*” + “Electronic Medical Record*”

“Visualization*” + “Patients Record*”

“Visualization*” + “Patient Record*”
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“Visualization tool*” +“Health Record*”

“Visualization tool*” + “Electronic Health Record*”

“Visualization tool*” + “EHR*”

“Visualization tool*” + “Electronic Patient Record*”

“Visualization tool*” + “Electronic Medical Record*”

“Visualization tool*” + “Patients Record*”

“Visualization tool*” + “Patient Record*”

“Information visualization*” +“Health Record*”

“Information visualization*” + “Electronic Health Record*”

“Information visualization*” + “EHR*”

“Information visualization*” + “Electronic Patient Record*”

“Information visualization*” + “Electronic Medical Record*”

“Information visualization*” + “Patients Record*”

“Information visualization*” + “Patient Record*”

“Interactive visualization*” +“Health Record*”

“Interactive visualization*” + “Electronic Health Record*”

“Interactive visualization*” + “EHR*”

“Interactive visualization*” + “Electronic Patient Record*”

“Interactive visualization*” + “Electronic Medical Record*”

“Interactive visualization*” + “Patients Record*”

“Interactive visualization*” + “Patient Record*”

“Interactive visualization tool*” +“Health Record*”

“Interactive visualization tool*” + “Electronic Health Record*”

“Interactive visualization tool*” + “EHR*”

“Interactive visualization tool*” + “Electronic Patient Record*”

“Interactive visualization tool*” + “Electronic Medical Record*”

“Interactive visualization tool*” + “Patients Record*”

“Interactive visualization tool*” + “Patient Record*”

“Visualization system*” + “Health Record*”

7 of 28
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“Visualization system*” + “Electronic Health Record*”

“Visualization system*” + “EHR*”

“Visualization system*” + “Electronic Patient Record*”

“Visualization system*” + “Electronic Medical Record*”

“Visualization system*” + “Patients Record*”

“Visualization system*” + “Patient Record*”

“Information visualization system*” + “Health Record*”

“Information visualization system*” + “Electronic Health Record*”

“Information visualization system*” + “EHR*”

%77

“Information visualization system*” + “Electronic Patient Record*”

“Information visualization system*” + “Electronic Medical Record*”

“Information visualization system*” + “Patients Record*”

“Information visualization system*” + “Patient Record*”

3.2. Selection Criteria

Out of all the studies that survived the initial filtering, we only included those that described an
interactive visualization tool and provided a detailed description of the tool’s visualization and its
interaction design in order to analyze how the tool can support different EHR-data-driven tasks and
activities. All the papers related to the visualization of any administrative tasks with patient data,
medical guidelines, genetics data, and syndromic surveillance were excluded from our survey as we
only focused on clinical EHR data. We also excluded the studies that were solely focused on the
visualization of free text (e.g., the patient’s progress notes) and medical images (e.g., magnetic
resonance imaging, and X-ray images).

3.3. Results

A total of 912 articles were identified from our initial search of electronic databases. A search of
the gray literature and manually searching references from articles resulted in an additional 34
papers. We removed a total number of 205 duplicates that were included in the 946 articles, both
within and between search engines. We then reviewed all the abstracts and excluded 685 further
articles. Next, we read the full text of 56 remaining articles and excluded the ones that did not meet
the selection criteria. Finally, 24 studies remained for the analysis. The results of the selection
procedure are displayed in the flow diagram in Figure 3.
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Articles identified Articles identified
through database through other
search sources
(n=912) (n=34)
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Articles identified through all
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Duplicate articles
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(n=741)
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based on initial
assessment
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Articles included for
further assessment
(n=56)

Articles excluded
based on selection
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(n=32)
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Y

Articles included in
the survey

(n=24)

Figure 3. Search results and how we selected the 24 articles that described 19 IVTs.

4. Survey of the Interactive Visualization Tools

In this section, we provide a survey of 19 IVTs that are described in the chosen articles and use
our proposed activity and task framework to analyze them. The survey includes an overview of the
goal of the IVT, a brief description of its visualization, and an analysis of how sub-activities, tasks,
and sub-tasks blend and combine to accomplish the tool's main higher-level activities of
interpreting, predicting and, monitoring. A very important criterion to differentiate IVTs is whether
they support activities that involve multiple patient records or exploration of an individual patient.
We divide our survey into two different types of IVTs based on this criterion: population-based tools
and single-patient tools. Initially, studies were focused on single-patient tools, but since 2010, most
of the IVTs are developed to support large numbers of patient records. Our survey includes more
population-based tools, as it seems that these are more prevalent than single-patient tools. For the
first type, we survey 14 tools, and, for the second type, we survey five tools.

4.1. Population-Based Tools

Population-based IVTs support data-driven activities that involve multiplicity of patient
records in aggregate form and simultaneously. Although these types of tools display fewer details
about a particular patient, they provide users with the ability to recognize patterns, detect
anomalies, find desired records, and cluster and aggregate records into different groups. In this
section, we survey fourteen population-based IVTs.
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4.1.1. Lifelines2

Lifelines2 [13,52] enables users to explore and analyze a set of temporal categorical patient
records interactively. As shown in Figure 4, each record is represented by a horizontal strip
containing patient ID and multiple events in patient history that occur at various times. Each event
shows up as a color-coded triangle icon on a horizontal timeline. Lifelines2 allows the detection of
temporal patterns and trends across EHRs to facilitate hypothesis generation and identify
cause-and-effect relationships between patient records.

This tool supports the activity of interpreting by allowing users to get a better understanding of
clinical problems and discovering patients with interesting medical event patterns. It also supports
monitoring by investigating the impact of hospital protocol changes in patient care. It allows for
temporal ordering of event sequences, observing the distribution of temporal events, and locating
records with particular event sequences. These tasks (ordering, observing, locating) are supported by
sub-tasks such as ranking, aggregating, and identifying.
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Figure 4. Lifelines2: Interactive visualization tool for temporal categorical data. Source: Image

courtesy of the University of Maryland Human-Computer Interaction Lab, http://hcil.umd.edu.

4.1.2. Lifeflow.

Lifeflow [14,53] provides a visual summary of the exploration and analysis of event sequences
in EHR data. While in Lifelines2, due to limited screen space, it is not possible to see all records
simultaneously; Lifeflow gives users the ability to answer questions that require an overview of all
the records. To convert from Lifelines2 view to Lifeflow, a data structure called “tree of sequences”
is created by aggregating all the records. This structure is then converted into a Lifeflow view with
each node representing an event bar. Figure 5 shows Lifeflow visualization where all the records are
vertically stacked on the horizontal timeline and all the events are represented using color-coded
triang]les.
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In this IVT, the sub-activities of exploring and overviewing medical events support the activity of
interpreting, while analyzing aggregated event sequences for quality assurance supports the activity
of monitoring. Recognizing patterns and temporal ordering of aggregated event sequences are two
tasks that enable Lifeflow to support exploring, overviewing, and analyzing sub-activities. Finally,
sub-tasks such as aggregating, identifying, and classifying work together to accomplish higher-level
tasks.
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Figure 5. Lifeflow: Interactive visualization tool that provides an overview of event sequences.
Source: Image courtesy of the University of Maryland Human-Computer Interaction Lab,
http://hcil.umd.edu.

4.1.3. Eventflow

Eventflow [20] provides users with the ability to query, explore, and visualize interval data
interactively. It allows pattern recognition by visualizing events in both a timeline that displays all
individual records and an aggregated overview that shows common and rare patterns. As displayed
in Figure 6, all the records are shown on a scrollable timeline browser. On the horizontal timeline,
point-based events are displayed as triangles, while interval events are represented by the connected
rectangles. In the center, an aggregated display gives users an overview of all event sequences in
EHR data. The aggregation method works exactly like the one in Lifeflow, but it has been extended
to work for interval events in the Eventflow. All the records with the same event sequence are
aggregated into a single bar and the average time between two events among the records in the
group is represented by the horizontal gap between two bars.

This tool supports interpreting by providing an overview of all event sequences found in the
data and exploring medical events (point-based events as well as interval events). The overviewing
and exploring sub-activities can be accomplished by recognizing temporal patterns and simplifying
temporal event sequences. Monitoring can be accomplished by investigating aggregated event
sequences. The investigating sub-activity is supported by detecting anomalies in the data. Eventflow
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supports predicting by learning new hypotheses where this sub-activity can be carried out by tasks
such as specifying temporal patterns and simplifying temporal event sequences. Aggregating,

identifying, classifying are the lowest-level sub-tasks for Eventflow.
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Figure 6. Eventflow: Interactive visualization tool for analysis of event sequences for both
point-based and interval events. Source: image courtesy of the University of Maryland Human-
Computer Interaction Lab, http://hcil.umd.edu.

4.1.4. Caregiver

Caregiver [21] is an IVT that supports therapeutic decision making, intervention, and
monitoring. As displayed in Figure 7, the tool has three different views where the upper view
displays the duration and size of the patient groups that are chosen by physicians to receive
interventions. A common timeline for each patient is shown in the lower view of the chosen
attributes. Caregiver allows users to create new cohorts from the search results based on a
combination of values of any number of variables.

In this tool, the activity of interpreting can be accomplished by discovering trends, critical
incidents, and cause—effect relationships. Caregiver also supports predicting by allowing users to
learn about the deterioration in the status of a disease. It supports these sub-activities (discovering and
learning) by specifying temporal relationships and clustering. Specifying and clustering can be carried
out by sub-tasks such as identifying, classifying, and ranking.

4.1.5. CoCo

CoCo [16,54] is an IVT for comparing cohorts of sequences of events recorded in EHRs. It
provides users with overview and event-level statistics of the chosen dataset along with a list of
available metrics to generate new hypotheses. It consists of a file manager pane, a dataset statistics
pane, an event legend, a list of available metrics, the main window, and options for filtering and
sorting the results (as shown in Figure 8). The summary panel includes high-level statistics
containing the total number of records and events in each record.

CoCo supports the activity of interpreting by allowing users to explore and investigate two
groups of temporal event sequences simultaneously. The activity of predicting can be accomplished
by learning new hypotheses from the statistical analysis while comparing the event sequences (i.e.,
detecting differences among groups of patients). Ranking, classifying, and identifying are the
lowest-level sub-tasks in CoCo.
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http://hcil.umd.edu.

University

4.1.6. Similan

of Maryland

Human—-Computer Interaction Lab,

Similan [19] is a tool that provides users with the ability to discover and explore similar records
in the temporal categorical dataset. Records are ranked by their similarity to a target record that can
be either a reference record or a user's specified sequence of events. The similarity measure considers
the transposition of events, addition, removal, and temporal differences of matching to estimate the
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similarity of temporal sequences. Simian lets users to visually compare the selected target with a set
of records and rank those records based on the matching score, as shown in the left side middle
panel in Figure 9.

In this IVT, interpreting can be carried out by exploring and discovering similar records in
temporal categorical data where these sub-activities themselves are supported by detecting
(calculating similarity measure among records) and recognizing similarity among records. Predicting
is accomplished by discovering patients with similar symptoms to a certain target patient. The
sub-activity discovering can be carried out by tasks such as temporal ordering and dynamic query.
Finally, sub-tasks such as ranking, identifying, and classifying work together to accomplish
higher-level tasks.
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Figure 9. Similan: interactive visualization tool for the exploration of similar records in the temporal
categorical data. Source: image courtesy of the University of Maryland Human-Computer
Interaction Lab, http://hcil.umd.edu.

4.1.7. Outflow

Outflow [15,55] is a graph-based visualization that shows the eventual outcome across the
event sequences in patient records. It aggregates and displays event progression pathways and their
corresponding properties, such as cardinality, outcomes, and timing. The tool allows users to
interactively analyze the event sequences and detect their correlation with external factors (e.g.,
beyond the collection of event types that specify an event sequence). The tool is a state transition
diagram, which is represented by a directed acyclic graph. The states (nodes) are unique
combinations of patient symptoms that are mapped to rectangles, where the height of each rectangle
is proportional to the number of patients. The graph is divided into different layers vertically, where
layer i consists of all states in the graph with i symptoms. These layers are arranged from left to right,
displaying patient history from past to future. Edges display transitions among symptoms where
each edge encodes the number of patents that are involved in the transition and the average time
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interval between different states. The end state that is represented by a trapezoid followed by a circle
is used to mark points where the patient paths have ended. Finally, the color of the edges and end
states represents the average outcome for the corresponding group of patients.

In this tool, sub-activities of exploring and overviewing event sequences work together to
accomplish the activity of interpreting. Outtlow also supports predicting by allowing users to
discover the progression of temporal event sequences. The sub-activities of exploring, overviewing, and
discovering can be accomplished by summarizing temporal event sequences, specifying temporal
relationships, and detecting patterns from statistical summaries. Finally, aggregating, identifying, and
classifying are the lowest-level sub-tasks.

4.1.8.IPBC

IPBC [22] (interactive parallel bar charts) is an interactive 3D visualization of temporal data.
IPBC applies visual data mining to a real medical problem such as the management of multiple
hemodialysis sessions. It provides users with the ability to make various decisions regarding such
things as therapy, management, and medical research. Each time series is displayed as a 3D bar chart
where one of the horizontal axes shows time and the vertical axis represents the value, as displayed
in Figure 10. Lined up bar charts on the second horizontal axis enable users to view all the series
simultaneously.

IPBC supports interpreting by allowing users to explore patient data interactively. Monitoring
can be carried out by evaluating the quality of care based on certain clinical parameters. The
sub-activities of exploring and evaluating are supported by specifying temporal relationships and
recognizing similar patterns where these tasks themselves can be accomplished by sub-tasks such as
identifying, classifying, and ranking.

Figure 10. IPBC: 3D visualization tool for analysis of numerical data from multiple hemodialysis
sessions. Source: reprinted from Journal of Visual Languages & Computing, 14, Chittaro L, Combi C,
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Trapasso G, Data mining on temporal data: a visual approach and its clinical application to hemodialysis,
591-620, Copyright (2003), with permission from Elsevier.

4.1.9. Gravi++.

Gravi++ [28] allows users to explore and analyze multiple categorical variables using interactive
visual clustering. This tool uses a spring-based layout to place both patient and variable icons across
the visualization, where the value of a variable for a patient identifies the distance between that
patient's icon and the variable’s icon. Gravi++ provides users with the ability to detect clusters since
patients with similar values are placed together on screen. In order to visualize the exact values of
each variable for each patient, the tool shows each patient’s value as a circle around variables. The
patient icons are represented by spheres while the variable icons are encoded by squares. Moreover,
the tool can encode different patient attributes using patient icons; for instance, the size of the sphere
can be mapped to the body mass index of the patient and its color can encode the patient’s gender or
therapeutic outcome.

This tool supports the activity of interpreting by allowing users to explore patient data and
discover clusters of similar patients. Monitoring can be accomplished by investigating the
development of a patient after a certain treatment. The sub-activities of exploring, discovering, and
investigating are supported by tasks such as recognizing patterns and specifying temporal
relationships. Finally, identifying and classifying are the lowest-level sub-tasks that are supported by
the tool.

4.1.10. PatternFinder

PatternFinder [17] is a query-based tool for data visualization and visual query that can help
users search and discover temporal patterns within multivariate categorical data. PatternFinder
allows users to specify queries for temporal events with time span and value constraints and enables
them to look for temporally ordered events/values/trends as well as the existence of events. Also,
users can set a range of possible time spans among the events to specify how far apart the events are
from each other. The tool has two main panels: the pattern design and query specification panel and
the result visualization panel. The leftmost part of the pattern design panel is the Person/People
panel that enables users to limit the types of patients by name, by choosing from a list of patients, or
by typing a text string. Any modifications that are done in this panel are dynamic queries that lead to
an immediate update of the results in the result visualization panel. The temporal panel that is
placed to the right of the Person/People panel enables users to form temporal pattern queries by
chaining the events together. Users are able to search for the presence of events, the temporal
sequence of events (e.g., an emergency doctor's visit followed by a hospitalization), the temporal
sequence of values (e.g., 200 or below cholesterol followed by 240 or higher), and the temporal value
patterns (e.g., monotonically decreasing). The result visualization panel displays a graphical table of
all the matches where each row shows a single pattern match for one patient. Pattern matches are
represented as a timeline in a "ball-and-chain" visualization fashion where the event points are
shown as circles and time spans are displayed by blue bars between the events. The color of the
event point in the result visualization panel matches the color of the associated event in the query
specification panel. All the events that match the query pattern specified by users are linked together
by horizontal lines.

In this tool, the activity of interpreting is supported by discovering patterns and exploring patient
data dynamically, where these sub-activities themselves can be carried out by tasks such as specifying
temporal relationships and issuing dynamic queries. Identifying and ranking are the two low-level
sub-tasks that work together to support the aforementioned tasks.

4.1.11. TimeRider

TimeRider [23] offers an animated scatter plot to help users discover patterns in irregularly
sampled patient data covering several time spans. As shown in Figure 11, time is represented by
either traces or animation in TimeRider. Color, shape, and size of marks are used to encode up to
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three additional variables. Users can compare patient records of different time spans by
synchronizing patients' age, calendar date, and the start and end of the treatment.

This tool supports interpreting by allowing users to detect trends, clusters, and correlations and
providing them with an overview to visually compare patient data in parallel. The sub-activities of
detecting and overviewing can be carried out by tasks such as specifying temporal relationships,
clustering, and recognizing patterns. Identifying and aligning are the sub-tasks that work together to
support the aforementioned tasks.
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Figure 11. TimeRider: Interactive visualization tool for pattern recognition in patient cohort data.
Source: reprinted by permission from Springer Nature: Springer, Ergonomics and Health Aspects of
Work with Computers, Visually Exploring Multivariate Trends in Patient Cohorts Using Animated Scatter
Plots, Rind A, Aigner W, Miksch S, et al., copyright (2011).

4.1.12. VISITORS

VISITORS [18,56] is an IVT that allows for exploration, analysis, and retrieval of raw temporal
data. The tool uses raw numerical data (e.g., white blood cell counts) across time to derive temporal
abstractions (e.g., durations of low, normal, or high blood-cell-count levels for patients). It then uses
lower-level temporal abstractions in conjunction with raw data to generate higher-level abstractions.
Finally, patient groups’ values are aggregated and displayed. Figure 12 shows this tool’s
visualization environment, where raw numerical data is represented by line charts, whereas
categorical data is displayed as tick marks or bars on a horizontal zoomable timeline.

In this tool, the activity of interpreting is supported by exploring patient data in different
temporal granularities. The sub-activity of exploring can be carried out by tasks such as specifying
relationships, observing the distribution of aggregated values of a group of patients, and locating
records based on specific time and value constraints. VISITORS supports the activity of monitoring
by sub-activities, such as investigating treatment effects, clinical trial results, and quality of clinical
management processes. The latter sub-activity, investigating, can be carried out by the task of
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recognizing patterns as well as all the other tasks needed to support the activity of interpreting.
Finally, aggregating, classifying, aligning, and identifying are the lowest-level sub-tasks that are
supported by this tool.
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Figure 12. VISITORS: Interactive visualization tool for the exploration of multiple patient records.
(A) displays lists of patients. (B) displays a list of time intervals. (C) displays the data for a group of
58 patients over the current time interval. Panel 1 shows the white blood cell raw counts for the
patients, while Panels 2 and 3 display the states of monthly distribution of platelet and haemoglobin
in higher abstraction, respectively. Abstractions are encoded in medical ontologies displayed in
panels (D). Source: reprinted from Journal of Artificial Intelligence in Medicine, 49, Klimov D, Shahar
Y, Taieb-Maimon M, Intelligent visualization and exploration of time-oriented data of multiple patients,
11-31., copyright (2010), with permission from Elsevier.

4.1.13. Prima

Prima [31] is a population-based IVT that allows users to explore the categorical and numerical
data by constructing different linked views. This helps users to not only understand the large set of
patient records but also discover patterns and trends in the dataset. The aggregated window
provides an overview of the categorical variables by showing the proportions of patients in each
category for those variables using stacked bar charts. This window enables users to filter patients by
applying a color “brush”. It also displays correlations among different categorical variables through
interactive coloring. Another view displays a histogram of numerical variables. The data can also be
explored with a 2D scatter plot. Another view of the data is called multiple category tables. It shows
the values of either a single variable or multiple categories. Finally, the tool incorporates the Kaplan—
Meier curve to estimate the survival function from the patient data.

Prima supports the activity of interpreting by allowing users to explore patient data
interactively, where this sub-activity itself can be accomplished by recognizing patterns and specifying
temporal relationships. Finally, aggregating and ranking are the lowest-level sub-tasks that are
supported by the tool.
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4.1.14. WBIVS

WBIVS [26] is a web-based interactive tool that visualizes numerical and categorical variables
for lung transplant home monitoring data. Numerical variables are displayed in line plots, while
categorical variables are visualized in matrix plots. The tool visualizes ten variables in total. When a
data point gets selected, all the other data points that belong to the same time period will get
highlighted in the other charts. Moreover, users can find details about the last two chosen data
points on the right part of the graph.

This tool supports the interpreting activity by allowing users to explore patient data interactively
and discover patterns. Monitoring is supported by investigating treatment effects. The exploring and
discovering sub-activities can be accomplished by tasks such as specifying temporal relationships
among data points and organizing data for pattern recognition. These tasks can be composed of
lowest-level sub-tasks, such as identifying, classifying, and highlighting.

4.2. Single-Patient Tools

Single-patient IVTs provide visualizations of one single-patient record at a time. These tools
enable users to overview a given patient’s historical data, detect important events in the patient’s
history, and recognize trends. In this section, we survey five single-patient IVTs.

4.2.1. Midgaard

Midgaard [27] allows for exploration of the intensive care units’ data at different levels of
abstraction from overview to details. It uses visualizations to display numerical variables of
treatment plans. It incorporates a complex semantic zoom method for numerical variables by
calculating their categorical abstractions based on the available screen area and zoom level.
Midgaard provides users with the ability to switch between different views such as a colored
background, colored bars, area charts, or augmented line charts based on the level of details. The
tool can progressively switches to a more detailed view to display all the individual data points
when users zoom in or switch back to more compact graphical elements when they zoom out.

Midgaard can also visualize medical treatment plans using colored bars where each bar can
contain further bars displaying sub-plans. It allows users to navigate and zoom by interacting with
two time axes that are placed below the visualization area. The bottom axis displays a temporal
overview of the patient record while the middle axis allows users to see specific time intervals in
more detail.

The activity of interpreting is supported by exploring patient data at different levels of
abstraction, where this sub-activity itself can be accomplished by tasks such as recognizing
fluctuations in data. Identifying and classifying are the two sub-tasks that are supported by this tool.

42.2.MIVA

MIVA [25] (Medical information visualization assistant) is a tool that transforms and organizes
biometric data into temporal resolutions to provide healthcare providers with contextual
knowledge. It allows users to prioritize and customize visualizations based on specific clinical
problems. It visualizes the data using point plots to display temporal changes in numerical values,
where each variable is represented by a separate plot, as shown in Figure 13. MIVA enables users to
detect changes in multiple physiological data points over time for faster and more accurate
diagnosis. Users can control the data source, time resolutions, and time periods to narrow down the
assessment of a patient’s condition.

This tool supports the activity of interpreting by enabling users to carry out sub-activities such
as exploring longitudinal relationships in patient data where this sub-activity can be accomplished by
tasks such as specifying temporal relationships and recognizing patterns. At the level of sub-tasks, this
tool supports identifying as well as classifying.
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Figure 13. MIVA: Interactive visualization tool to show the temporal change of numerical values
where each variable is represented by an individual point plot. Source: image courtesy of Antony
Faiola.

4.2.3. VIE-VISU

VIE-VISU [32] uses a set of glyphs to display changes in a patient's status over time in intensive
care. Each glyph’s geometrical shape and color encodes categorical variables, while the numerical
variables are represented by size of the glyph's elements. Every glyph can encode 15 variables that
are classified by physiological systems. For instance, the respiratory parameters are mapped to a
rectangle in the middle of the glyph; circulatory parameters are mapped to a triangle on top of the
glyph, and the fluid balance parameters are shown by two smaller rectangles at the bottom of the
glyph. By default, the tool displays 24 glyphs, one per hour.

The activity of interpreting can be accomplished by overviewing a patient’s status, where this
sub-activity is supported by tasks such as recognizing patterns. This tool supports monitoring by
evaluating changes in patient’s status over time. The task of identifying temporal relationships
supports the sub-activity of evaluating. Finally, aggregating and classifying are two sub-tasks that can
be carried out by the tool.

4.2 4. Lifelines

Lifelines [24] offers a visualization environment to show patient history on a zoomable timeline,
where a patient's medical record is displayed by a set of events and lines. Episodes and events in a
patient record are represented by a set of multiple line segments as shown in Figure 14. Color can be
used to encode the states of categorical variables. This IVT provides an overview of a patient history
to recognize trends, specify important events, and detect omissions in data.

The activity of interpreting is supported by understanding patient’s status where this
sub-activity itself can be carried out by tasks such as recognizing patterns and specifying temporal
relationships. The tool supports monitoring by allowing users to carry out sub-activities such as
investigating trends and anomalies in patient data. The investigating sub-activity is supported by
outlining and summarizing the patient data. Finally, aggregating, classifying, and identifying are the
sub-tasks that are supported by the tool.
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Figure 14. Lifelines: interactive visualization tool that displays patient’s medical histories on a
timeline. Source: image courtesy of the University of Maryland Human-Computer Interaction Lab,
http://hcil.umd.edu.

4.2.5. VisuExplore

VisuExplore [29,57] displays patient data in different views aligned with a horizontal timeline,
where each view shows multiple variables. This IVT uses common visualization techniques that
make it easy to use and learn. In this tool, numerical data are displayed using bar charts and line
plots, whereas categorical data are represented using event charts and timeline charts, as shown in
Figure 15.

In this tool, the activity of interpreting is supported by exploring temporal data of patients with
chronic diseases, where this sub-activity can be carried out by tasks such as specifying temporal
relationships. Finally, aligning and identifying are two sub-tasks that can be carried out by the tool.

5. Discussion and Limitations

In this paper, we have presented and proposed a framework to identify and analyze
EHR-data-driven tasks and activities in the context of IVTs—that is, all the activities, sub-activities,
tasks, and sub-tasks that are supported by EHR-based IVTs. Using a survey of 19 EHR-based IVTs,
we demonstrate how these IVTs support activities by identifying the combination of sub-activities,
tasks, and sub-tasks that work together to help users carry out the three higher-level activities as
displayed in Table 3. Interpreting is supported by all IVTs surveyed in this paper. Eventflow,
Similan, CoCo, Outflow, and Caregiver are the only IVTs that support predicting, whereas
Lifelines2, Lifeflow, Eventflow, Gravi++, IPBC, TimeRider, VISITORS, WBIVS, VIE-VISU, Lifelines,
CoCo, and Visu-Explore are the tools that facilitate monitoring. Going down from high-level
activities, recognizing patterns and specifying temporal relationships are the most common
sub-activities that help users with the activity of interpreting in most of the IVTs. The existing
EHR-based IVTs support predicting by giving users the ability to perform sub-activities such as
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learning new hypotheses, discovering patients with similar symptoms to a target patient, and detecting
early deterioration of a disease. Finally, the most common sub-activities that facilitate monitoring
are evaluating the quality of care and investigating the development of a patient's status after

treatment.
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Figure 15. VisuExplore: interactive visualization tool that displays patient data in various views on a
timeline. Source: reprinted by permission from Springer Nature: Springer, Human-Computer
Interaction, Patient Development at a Glance: An Evaluation of a Medical Data Visualization, Pohl M,
Wiltner S, Rind A, et al., copyright (2011).

Our proposed framework can offer a number of benefits for designers, researchers, and
evaluators of EHR-based IVTs. Firstly, the framework can help the designer to conceptualize
activities, tasks, and sub-tasks of EHR-based IVTs systematically. Secondly, it can assist researchers
in making sense of IVTs by providing them with all the activities that can be accomplished by
carrying out different sets of sub-activities, tasks, and sub-tasks. Thirdly, this framework can be used
by evaluators to identify the gaps in support of higher-level activities supported by existing IVTs. It
appears that almost all existing IVTs focus on the activity of interpreting, while only a few of them
support predicting despite the importance of this activity in supporting users to find the patients
that are at high risk and identify the risk factors of various diseases. Also, some of the EHR-based
IVTs do not pay enough attention to monitoring, even though this activity is beneficial in
investigating the quality of clinical management processes. All these higher-level activities should be
an integral part of a properly designed EHR-based IVT since healthcare providers use such tools to
(1) better understand patients' condition, (2) anticipate the course of a specific disease, and (3) track
patients' condition after treatment. Most of the tools surveyed in this paper can only satisfy a certain
aspect of users' needs. According to a recent survey in the US, 40% of the clinicians are not satisfied
with the existing EHR-based system [58]. Therefore, a framework is needed to guide the designer of
an IVT in choosing which activities, tasks, and sub-tasks the tool should support. Using questions
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such as, "What activities can users accomplish by executing a set of tasks?" or "What tasks should be
supported to provide users with the ability to perform their activities?", we demonstrate how the
proposed framework can be used by designers of EHR-based IVTs to systematically conceptualize
and design the tasks and activities of such tools. Given the framework, all designers need to know is,
which low-level sub-tasks, tasks, and sub-activities to select and how to blend and combine them to
support higher-level activities and allow users to accomplish their overall goal. For instance, if a
designer wants to design an IVT to monitor an infant's condition in the neonatal intensive care unit,
they can choose different sets of sub-activities, such as investigating the effect of a specific treatment
or evaluating changes in infant's status over time. Then, the designer selects a combination of tasks
such as the temporal ordering of event sequences or displaying the distribution of temporal events to
support the chosen sub-activities. Finally, a set of sub-tasks, such as ranking, aggregating, and
identifying, are chosen to support the selected tasks.

We believe a successful EHR-based tool should be capable of doing more than just storing,
retrieving, and exchanging patient data. It should support more complex activities, tasks, and
sub-tasks to allow healthcare providers to accomplish their goals. Our proposed framework
promises a new means for designers of EHR-based IVTs to understand the effectiveness of
incorporating such activities, tasks, and sub-tasks in their tool. The use of our framework in
EHR-based IVTs will also help physicians to make better treatment decisions and track changes in a
patient's condition over time.

This paper has three key limitations. First, we do not investigate the completeness and accuracy
of the data sources that IVTs are using as our survey relies on the descriptions of the IVTs found in
publications and video tutorials. Second, as the main goal of this paper is the analysis of EHR-based
IVTs, we exclude tools that are mainly dependent on statistical and machine learning methods.
Finally, we do not consider commercial tools in this paper. This is because online descriptions of
such tools do not systematically and thoroughly cover the features of these tools, ie., their
visualizations, interactions, and results.

The findings of this paper will lead to the development of best practices for creating similar
frameworks in other domains. A possible area of future research involves developing frameworks
for visual analytics tools that incorporate automated analysis techniques along with interactive
visualizations to support the increasingly large and complex datasets in EHRs.

Table 3. Evaluation summary of the 19 existing tools based on the proposed framework.

IVTs Interpreting Predicting Monitoring
Sub-activit discovering, no investigatin
y understanding, & &
. . locating,
o Tasks locating, ob'servmg, n/a observing,
Lifelines 2 ordering )
ordering
L . aggregating,
2 t tif
e Sub-tasks 88 &G ¥den g n/a identifying,
2 ranking X
o ranking
%
@ Sub-activity  exploring, overviewing no analyzing
< ;
g Tasks ordering, recognizing n/a r:;jerirzli
'Z: Lifeflow i q &
E . lassifvi aggregating,
o Sub-tasks aggregja tmgr ¢ ‘a551 yme n/a classifying,
~ identifying . .
identifying
Sub-activity  exploring, overviewing learning investigating
. vl
Tasks recognizing, Spectlyme, detecting
Eventflow summarizing summarizing
Sub-tasks aggreg.atmg., CI.assﬁymg, aggre.gaFmg, aggre.gafmg,
identifying classifying, classifying,
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identifying identifying
Sub-activity  discovering, exploring discovering no
Tasks detecting, recognizing orderl.ng, n/a
o querying
Similan ; e
identifying, classifyin identifying,
Sub-tasks yime ¢ ymng classifying, n/a
ranking .
ranking
Sub-activity exploring learning investigating
Tasks detecting detecting detecting
CoC dentifvi identifvi
o~ classifying, identifying, iden LY iden : fy1 i
Sub-tasks . classifying, classifying,
ranking . .
ranking ranking
Sub-activity  exploring, overviewing discovering no
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Tasks & Specllying, specifying, n/a
summarizing .
Outflow summarizing
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. specifying
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Sub-tasks aggregating, ranking n/a n/a
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aggregating,
Sub-tasks aggregatm.g, .ahgmng, n/a ahg.mr.lg,
classifying classifying,
identifying
Sub-activity  discovering, exploring no investigating
Tasks organizing, specifying n/a Osrgeacriléziig'
WBIVS 1p 'fy' &
o e classifying,
Sub-tasks Classﬁy.lng, }.ug.hhghtmg, n/a highlighting,
identifying . e
identifying
Sub-activity exploring no no
Midgard Tasks recognizing n/a n/a
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Sub-activity exploring no no
MIVA Tasks recognizing, specifying n/a n/a
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(7)) .. . . .
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Author Contributions: All authors have read and agree to the published version of the manuscript.
Conceptualization, N.R., S.A, and K.S.; methodology, N.R., S.A, and K.S.; investigation, N.R., S.A. and K.S.;
writing—original draft preparation, N.R., S.A. and K.S.; writing—review and editing, N.R., S.A, and K.S;
supervision, K.S.

Funding: This research received no external funding.

Acknowledgments: We would like to thank all authors and publishers who shared images of their tools with
us.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References

1.  Tang, P.C.; McDonald, C.J. Electronic health record systems. In Biomedical Informatics: Computer Applications
in Health Care and Biomedicine; Health Informatics; Shortliffe, E.H., Cimino, J.J., Eds.; Springer: New York,
NY, USA, 2006; pp. 447-475, ISBN 978-0-387-36278-6.

2. Christensen, T.; Grimsmo, A. Instant availability of patient records, but diminished availability of patient
information: A multi-method study of GP’s use of electronic patient records. BMC Med. Inform. Decis. Mak.
2008, 8, 12.

3. Boonstra, A.; Versluis, A.; Vos, ].F. Implementing electronic health records in hospitals: A systematic
literature review. BMC Health Serv. Res. 2014, 14, 370.

4. Himmelstein, D.U.; Wright, A.; Woolhandler, S. Hospital computing and the costs and quality of care: A
national study. Am. ]. Med. 2010, 123, 40—46.



Multimodal Technologies and Interact. 2020, 4, 7 26 of 28

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Rind, A.; Wang, T.D.; Aigner, W.; Miksch, S.; Wongsuphasawat, K.; Plaisant, C.; Shneiderman, B.
Interactive information visualization to explore and query electronic health records. HCI 2013, 5, 207-298.
Sears, A.; Jacko, J.A. The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies and
Emerging Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; ISBN 978-1-4106-1586-2.

Sedig, K., Parsons, P. Design of visualizations for human-information interaction: A pattern-based
framework. Synth. Lect. Vis. 2016, 4, 1-185.

Lesselroth, B.].; Pieczkiewicz, D.S. Data Visualization Strategies for the Electronic Health Record; Nova Science
Publishers, Inc.: Hauppauge, NY, USA, 2011; ISBN 978-1-61209-270-6.

Combi, C.; Keravnou-Papailiou, E.; Shahar, Y. Temporal Information Systems in Medicine; Springer Science &
Business Media: Berlin, Germany, 2010; ISBN 978-1-4419-6543-1.

Aigner, W.; Kaiser, K.; Miksch, S. Visualization techniques to support authoring, execution, and
maintenance of clinical guidelines. In Computer-Based Medical Guidelines and Protocols: A Primer and Current
Trends; 10S Press: Amsterdam, The Netherlands, 2008; Volume 139, pp. 140-159.

Ola, O,; Sedig, K. Discourse with visual health data: Design of human-data interaction. Multimodal Technol.
Interact. 2018, 2, 10.

Sedig, K.; Parsons, P. Interaction design for complex cognitive activities with visual representations: A
pattern-based approach. AIS Trans. Hum. Comput. Interact. 2013, 5, 84-133.

Wang, T.D.; Plaisant, C.; Quinn, A.J.; Stanchak, R.; Murphy, S.; Shneiderman, B. Aligning temporal data by
sentinel events: Discovering patterns in electronic health records. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems-ACM, New York, NY, USA, 5-10 April 2008; pp. 457-466.
Wongsuphasawat, K.; Guerra Gémez, J.A.; Plaisant, C.; Wang, T.D.; Taieb-Maimon, M.; Shneiderman, B.
LifeFlow: Visualizing an overview of event sequences. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems-ACM, New York, NY, USA, 7-12 May 2011; pp. 1747-1756.
Wongsuphasawat, K.; Gotz, D. Exploring flow, factors, and outcomes of temporal event sequences with the
Outflow visualization. IEEE Trans. Vis. Comput. Graph. 2012, 18, 2659-2668.

Malik, S.; Du, F.; Monroe, M.; Onukwugha, E.; Plaisant, C.; Shneiderman, B. An evaluation of visual
analytics approaches to comparing cohorts of event sequences. In Proceedings of the EHRVis Workshop on
Visualizing Electronic Health Record Data at VIS, Paris, France, 9 November 2014; Volume 14.

Fails, J.A.; Karlson, A.; Shahamat, L.; Shneiderman, B. A visual interface for multivariate temporal data:
Finding patterns of events across multiple histories. In Proceedings of the 2006 IEEE Symposium On Visual
Analytics Science And Technology IEEE, Baltimore, MD, USA, 31 October-2 November 2006; pp. 167-174.
Klimov, D.; Shahar, Y.; Taieb-Maimon, M. Intelligent selection and retrieval of multiple time-oriented
records. J. Intell. Inf. Syst. 2010, 35, 261-300.

Wongsuphasawat, K. Finding comparable patient histories: A temporal categorical similarity measure
with an interactive visualization. In Proceedings of the IEEE Symposium on Visual Analytics Science and
Technology (VAST), Atlantic City, NJ, USA, 11-16 October 2009.

Monroe, M.; Lan, R.; Lee, H.; Plaisant, C.; Shneiderman, B. Temporal event sequence simplification. IEEE
Trans. Vis. Comput. Graph. 2013, 19, 2227-2236.

Brodbeck, D.; Gasser, R.; Degen, M.; Reichlin, S.; Luthiger, ]. Enabling large-scale telemedical disease
management through interactive visualization. Eur. Notes Med. Inform. 2005, 1, 1172-1177.

Chittaro, L.; Combi, C.; Trapasso, G. Data mining on temporal data: A visual approach and its clinical
application to hemodialysis. J. Vis. Lang. Comput. 2003, 14, 591-620.

Rind, A.; Aigner, W.; Miksch, S.; Wiltner, S.; Pohl, M.; Drexler, F.; Neubauer, B.; Suchy, N. Visually
exploring multivariate trends in patient cohorts using animated scatter plots. In Ergonomics and Health
Aspects of Work with Computers; Robertson, M.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 139-
148.

Plaisant, C.; Mushlin, R.; Snyder, A.; Li, ].; Heller, D.; Shneiderman, B. LifeLines: Using visualization to
enhance navigation and analysis of patient records. Proc. Am. Med. Inform. Assoc. Annu. Fall Symp. 1998, 76—
80. d0i:10.1007/978-1-4614-7485-2_28.

Faiola, A.; Newlon, C. Advancing critical care in the ICU: A human-centered biomedical data visualization
systems. In Proceedings of the International Conference on Ergonomics and Health Aspects of Work with
Computers; Springer: Berlin/Heidelberg, Germany, 2011; pp. 119-128.



Multimodal Technologies and Interact. 2020, 4, 7 27 of 28

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Pieczkiewicz, D.S.; Finkelstein, S.M.; Hertz, M.I. Design and evaluation of a web-based interactive
visualization system for lung transplant home monitoring data. Proc. AMIA Annu. Symp. Proc. Am. Med.
Inform. Assoc. 2007, 2007, 598.

Bade, R.; Schlechtweg, S.; Miksch, S. Connecting time-oriented data and information to a coherent
interactive visualization. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems ACM, Vienna, Austria, 24-29 April 2004; pp. 105-112.

Hinum, K.; Miksch, S.; Aigner, W.; Ohmann, S.; Popow, C.; Pohl, M.; Rester, M. Gravi++: Interactive
information visualization to explore highly structured temporal data. . UCS 2005, 11, 1792-1805.

Rind, A.; Aigner, W.; Miksch, S.; Wiltner, S.; Pohl, M.; Turic, T.; Drexler, F. Visual exploration of
time-oriented patient data for chronic diseases: Design study and evaluation. In Proceedings of the
Symposium of the Austrian HCI and Usability Engineering Group; Springer: Berlin/Heidelberg, Germany, 2011;
pp- 301-320.

Ordonez, P.; Oates, T.; Lombardi, M.E.; Hernandez, G.; Holmes, KW.; Fackler, J.; Lehmann, C.U.
Visualization of multivariate time-series data in a neonatal ICU. IBM |. Res. Dev. 2012, 56, 7-1.

Gresh, D.L.; Rabenhorst, D.A.; Shabo, A_; Slavin, S. Prima: A case study of using information visualization
techniques for patient record analysis. In Proceedings of the IEEE Visualization (VIS 2002), Boston, MA,
USA, 27 October-1 November 2002; pp. 509-512.

Horn, W.; Popow, C.; Unterasinger, L. Support for fast comprehension of ICU data: Visualization using
metaphor graphics. Methods Inf. Med. 2001, 40, 421-424.

Lag, T.; Bauger, L.; Lindberg, M.; Friborg, O. The role of numeracy and intelligence in health-risk
estimation and medical data interpretation. J. Behav. Decis. Mak. 2014, 27, 95-108.

Groves, M.; O'Rourke, P.; Alexander, H. Clinical reasoning: The relative contribution of identification,
interpretation and hypothesis errors to misdiagnosis. Med. Teach. 2003, 25, 621-625.

Auffray, C.; Balling, R.; Barroso, I.; Bencze, L.; Benson, M.; Bergeron, J.; Bernal-Delgado, E.; Blomberg, N.;
Bock, C.; Conesa, A.; et al. Making sense of big data in health research: Towards an EU action plan. Genome
Med. 2016, 8, 71.

Komaroff, A.L. The variability and inaccuracy of medical data. Proc. IEEE 1979, 67, 1196-1207.

Kumar, M.; Stoll, N.; Kaber, D.; Thurow, K.; Stoll, R. Fuzzy filtering for an intelligent interpretation of
medical data. In Proceedings of the 2007 IEEE International Conference on Automation Science and
Engineering, Scottsdale, AZ, USA, 22-25 September 2007; pp. 225-230.

Amarasingham, R.; Patzer, R.E.; Huesch, M.; Nguyen, N.Q.; Xie, B. Implementing electronic health care
predictive analytics: Considerations and challenges. Health Aff. 2014, 33, 1148-1154.

Cohen, I.G.; Amarasingham, R.; Shah, A_; Xie, B.; Lo, B. The legal and ethical concerns that arise from using
complex predictive analytics in health care. Health Aff. 2014, 33, 1139-1147.

Kankanhalli, A.; Hahn, J.; Tan, S.; Gao, G. Big data and analytics in healthcare: Introduction to the special
section. Inf. Syst. Front. 2016, 18, 233-235.

Wang, Y.; Kung, L.; Byrd, T.A. Big data analytics: Understanding its capabilities and potential benefits for
healthcare organizations. Technol. Forecast. Soc. Chang. 2018, 126, 3-13.

Simpao, A.F.; Ahumada, L.M.; Galvez, ].A.; Rehman, M.A. A review of analytics and clinical informatics in
health care. ]. Med. Syst. 2014, 38, 45.

Raghupathi, W.; Raghupathi, V. Big data analytics in healthcare: Promise and potential. Health Inf. Sci. Syst.
2014, 2, 3.

Saeed, M; Lieu, C.; Raber, G.; Mark, R.G. MIMIC II: A massive temporal ICU patient database to support
research in intelligent patient monitoring. Proc. Comput. Cardiol. 2002, 29, 641-644.

Tia, G.; Greenspan, D.; Welsh, M.; Juang, R.R.; Alm, A. Vital signs monitoring and patient tracking over a
wireless network. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology, 27th Annual
Conference, Shanghai, China, 31 August-3 September 2005; pp. 102-105.

Hauskrecht, M.; Batal, I.; Valko, M.; Visweswaran, S.; Cooper, G.F.; Clermont, G. Outlier detection for
patient monitoring and alerting. ]. Biomed. Inform. 2013, 46, 47-55.

Anderson, H.D.; Pace, W.D.; Brandt, E.; Nielsen, R.D.; Allen, R.R.; Libby, A.M.; West, D.R.; Valuck, RJ.
Monitoring suicidal patients in primary care using electronic health records. J. Am. Board Fam. Med. 2015,
28, 65-71.



Multimodal Technologies and Interact. 2020, 4, 7 28 of 28

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Kho, A, Rotz, D.; Alrahi, K.; Cardenas, W.; Ramsey, K.; Liebovitz, D.; Noskin, G.; Watts, C. Utility of
commonly captured data from an EHR to identify hospitalized patients at risk for clinical deterioration.
AMIA Annu. Symp. Proc. 2007, 2007, 404-408.

Li, X.; Wang, Y. Adaptive online monitoring for ICU patients by combining just-in-time learning and
principal component analysis. J. Clin. Monit. Comput. 2016, 30, 807-820.

Siegel, E. Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die; John Wiley & Sons:
Hoboken, NJ, USA, 2013; ISBN 978-1-118-35685-2.

Glasziou, P.; Irwig, L.; Mant, D. Monitoring in chronic disease: A rational approach. BM] 2005, 330, 644—
648.

Wang, T.D.; Plaisant, C.; Shneiderman, B.; Spring, N.; Roseman, D.; Marchand, G.; Mukherjee, V.; Smith, M.
Temporal summaries: Supporting temporal categorical searching, aggregation and comparison. IEEE
Trans. Vis. Comput. Graph. 2009, 15, 1049-1056.

Guerra Gomez, J.; Wongsuphasawat, K.; Wang, T.D.; Pack, M.; Plaisant, C. Analyzing incident
management event sequences with interactive visualization. In Proceedings of the Transportation Research
Board 90th Annual Meeting, Compendium of Papers, Washington, DC, USA, 23-27 January 2011.

Malik, S.; Du, F.; Monroe, M.; Onukwugha, E.; Plaisant, C.; Shneiderman, B. Cohort comparison of event
sequences with balanced integration of visual analytics and statistics. In Proceedings of the 20th International
Conference on Intelligent User Interfaces; ACM: New York, NY, USA, 2015; pp. 38-49.

Wongsuphasawat, K.; Gotz, D. Outflow: Visualizing patient flow by symptoms and outcome. In
Proceedings of the IEEE VisWeek Workshop on Visual Analytics in Healthcare, Providence, RI, USA, 23 October
2011; American Medical Informatics Association: Bethesda, MD, USA, 2011; pp. 25-28.

Klimov, D.; Shahar, Y.; Taieb-Maimon, M. Intelligent visualization and exploration of time-oriented data of
multiple patients. Artif. Intell. Med. 2010, 49, 11-31.

Pohl, M.; Wiltner, S.; Rind, A.; Aigner, W.; Miksch, S.; Turic, T.; Drexler, F. Patient development at a glance:
An evaluation of a medical data visualization. In Human-Computer Interaction —INTERACT 2011; Campos,
P., Graham, N., Jorge, J.,, Nunes, N., Palanque, P., Winckler, M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2011; Volume 6949, pp. 292299, ISBN 978-3-642-23767-6.

HER Intelligence. 40% of Physicians See More EHR Challenges than Benefits. Available online:
https://ehrintelligence.com/news/40-of-physicians-see-more-ehr-challenges-than-benefits (accessed on 18
December 2019).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ @ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



