The Multi-Component Structure of Core Strength
<p>Isometric measurement of holding time, maximal voluntary contraction (MVC), and peak rate of force development (pRFD) in (<b>a</b>) flexion, (<b>b</b>) extension, and (<b>c</b>) lateral flexion positions.</p> "> Figure 2
<p>Force–time curve of isometric measurement with relevant parameters (MVC, pRFD) highlighted.</p> "> Figure 3
<p>Path diagram of principal component analysis with loadings (<span class="html-italic">r</span>) of maximal isometric voluntary contraction (MVC), peak rate of force development (pRFD), and holding time variables on three principal components (PC1, PC2, PC3). Note: Light red colored arrows indicate low negative loadings, light green colored arrows indicate low positive loadings, and dark green wide arrows indicate high positive loadings.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. Holding Time Measurement
2.2.2. Maximal Isometric Voluntary Contraction and Peak Rate of Force Development Measurement
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akuthota, V.; Nadler, S.F. Core strengthening. Arch. Phys. Med. Rehabil. 2004, 85, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Borghuis, J.; Hof, A.L.; Lemmink, K.A.P.M. The Importance of Sensory-Motor Control in Providing Core Stability. Sports Med. 2008, 38, 893–916. [Google Scholar] [CrossRef]
- Bergmark, A. Stability of the lumbar spine: A study in mechanical engineering. Acta Orthop. Scand. 1989, 60, 1–54. [Google Scholar] [CrossRef]
- Hibbs, A.E.; Thompson, K.G.; French, D.; Wrigley, A.; Spears, I. Optimizing Performance by Improving Core Stability and Core Strength. Sports Med. 2008, 38, 995–1008. [Google Scholar] [CrossRef] [PubMed]
- Enoki, S.; Hakozaki, T.; Shimizu, T. Evaluation scale and definitions of core and core stability in sports: A systematic review. Isokinet. Exerc. Sci. 2024, 32, 291–300. [Google Scholar] [CrossRef]
- Panjabi, M.M. The Stabilizing System of the Spine. Part I. Function, Dysfunction, Adaptation, and Enhancement. J. Spinal Disord. 1992, 5, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Drinkwater, E.J.; Willardson, J.M.; Cowley, P.M. The use of instability to train the core musculature. Appl. Physiol. Nutr. Metab. 2010, 35, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Colston, M.A. Core Stability, Part 1: Overview of the Concept. Int. J. Athl. Ther. Train. 2012, 17, 8–13. [Google Scholar] [CrossRef]
- Faries, M.D.; Greenwood, M. Core Training: Stabilizing the Confusion. Strength Cond. J. 2007, 29, 10–25. [Google Scholar] [CrossRef]
- De Blaiser, C. Core Stability—Clinical Assessment Tools and the Role of Core Stability in the Development of Lower Extremity Injuries. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2018. [Google Scholar]
- Kibler, W.B.; Press, J.; Sciascia, A. The Role of Core Stability in Athletic Function. Sports Med. 2006, 36, 189–198. [Google Scholar] [CrossRef]
- Granacher, U.; Gollhofer, A.; Hortobágyi, T.; Kressig, R.W.; Muehlbauer, T. The Importance of Trunk Muscle Strength for Balance, Functional Performance, and Fall Prevention in Seniors: A Systematic Review. Sports Med. 2013, 43, 627–641. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, L.; Dai, B. Trunk Neuromuscular Function and Anterior Cruciate Ligament Injuries: A Narrative Review of Trunk Strength, Endurance, and Dynamic Control. Strength Cond. J. 2022, 44, 82–93. [Google Scholar] [CrossRef]
- Prieske, O.; Muehlbauer, T.; Granacher, U. The Role of Trunk Muscle Strength for Physical Fitness and Athletic Performance in Trained Individuals: A Systematic Review and Meta-Analysis. Sports Med. 2015, 46, 401–419. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Soh, K.G.; Sun, H.; Nasiruddin, N.J.M.; Du, C.; Zhai, X. Effect of Core Training on Skill Performance Among Athletes: A Systematic Review. Front. Physiol. 2022, 13, 915259. [Google Scholar] [CrossRef] [PubMed]
- Zemková, E. Strength and Power-Related Measures in Assessing Core Muscle Performance in Sport and Rehabilitation. Front. Physiol. 2022, 13, 861582. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Wirth, K.; Hartmann, H.; Mickel, C.; Szilvas, E.; Keiner, M.; Sander, A. Core Stability in Athletes: A Critical Analysis of Current Guidelines. Sports Med. 2016, 47, 401–414. [Google Scholar] [CrossRef]
- Schmidtbleicher, D. Strukturanalyse der motorischen Eigenschaft Kraft. Lehre Leichtathlet. 1984, 35, 1785–1792. [Google Scholar]
- Poór, O.; Zemková, E. The Effect of Training in the Preparatory and Competitive Periods on Trunk Rotational Power in Canoeists, Ice-Hockey Players, and Tennis Players. Sports 2018, 6, 113. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Fimland, M.S.; Navarsete, J.; Kroken, T.; Tillaar, R.v.D. Muscle Activity, and the Association between Core Strength, Core Endurance and Core Stability. J. Nov. Physiother. Phys. Rehabil. 2015, 1, 28–34. [Google Scholar] [CrossRef]
- Silfies, S.P.; Ebaugh, D.; Pontillo, M.; Butowicz, C.M. Critical review of the impact of core stability on upper extremity athletic injury and performance. Braz. J. Phys. Ther. 2015, 19, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Siff, M.C. Biomechanical Foundations of Strength and Power Training. In Biomechanics in Sport; Zatsiorsky, V.M., Ed.; Blackwell: Hoboken, NJ, USA, 2000; pp. 103–139. [Google Scholar]
- McGuigan, M. Testing and Evaluation of Strength and Power; Routledge: New York, NY, USA, 2020. [Google Scholar]
- Zazulak, B.; Cholewicki, J.; Reeves, P.N. Neuromuscular Control of Trunk Stability: Clinical Implications for Sports Injury Prevention. J. Am. Acad. Orthop. Surg. 2008, 16, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Zemková, E.; Hamar, D. Sport-Specific Assessment of the Effectiveness of Neuromuscular Training in Young Athletes. Front. Physiol. 2018, 9, 264. [Google Scholar] [CrossRef] [PubMed]
- Zemková, E. Assessment of Power and Strength of Trunk Muscles: From the Lab to the Field. Sci. Rev. Phys. Cult. 2017, 7, 103–117. [Google Scholar]
- Roth, R. Biomechanical Studies on the Interrelation Between Trunk Muscle Strength and Sports Performance. Ph.D. Thesis, University of Basel, Basel, Switzerland, 2019. [Google Scholar]
- Saeterbakken, A.H.; Stien, N.; Andersen, V.; Scott, S.; Cumming, K.T.; Behm, D.G.; Granacher, U.; Prieske, O. The Effects of Trunk Muscle Training on Physical Fitness and Sport-Specific Performance in Young and Adult Athletes: A Systematic Review and Meta-Analysis. Sports Med. 2022, 52, 1599–1622. [Google Scholar] [CrossRef]
- Zemková, E. Science and practice of core stability and strength testing. Phys. Act. Rev. 2018, 6, 181–193. [Google Scholar] [CrossRef]
- Reed, C.A.; Ford, K.R.; Myer, G.D.; Hewett, T.E. The Effects of Isolated and Integrated ‘Core Stability’ Training on Athletic Performance Measures. Sports Med. 2012, 42, 697–706. [Google Scholar] [CrossRef]
- Dong, K.; Yu, T.; Chun, B. Effects of Core Training on Sport-Specific Performance of Athletes: A Meta-Analysis of Randomized Controlled Trials. Behav. Sci. 2023, 13, 148. [Google Scholar] [CrossRef]
- Oyama, S.; Palmer, T.G. Effectiveness of Core Exercise Training Programs Designed to Enhance Ball-Throwing Velocity in Overhead Athletes: A Systematic Review. Strength Cond. J. 2022, 45, 177–187. [Google Scholar] [CrossRef]
- Ríos-Calonge, J.D.L.; Barbado, D.; Prat-Luri, A.; Juan-Recio, C.; Heredia-Elvar, J.R.; Elvira, J.L.L.; Vera-Garcia, F.J. Are trunk stability and endurance determinant factors for whole-body dynamic balance in physically active young males? A multidimensional analysis. Scand. J. Med. Sci. Sports 2024, 34, e14588. [Google Scholar] [CrossRef]
- Roth, R.; Donath, L.; Zahner, L.; Faude, O. Muscle Activation and Performance During Trunk Strength Testing in High-Level Female and Male Football Players. J. Appl. Biomech. 2016, 32, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Spudić, D.; Vodičar, J.; Vodičar, M.; Hadžić, V. Isometric Trunk Strength Assessment of Athletes: Effects of Sex, Sport, and Low Back Pain History. J. Sport Rehabil. 2022, 31, 38–46. [Google Scholar] [CrossRef]
- McGill, S.M.; Childs, A.; Liebenson, C. Endurance times for low back stabilization exercises: Clinical targets for testing and training from a normal database. Arch. Phys. Med. Rehabil. 1999, 80, 941–944. [Google Scholar] [CrossRef] [PubMed]
- Evans, K.; Refshauge, K.M.; Adams, R. Trunk muscle endurance tests: Reliability, and gender differences in athletes. J. Sci. Med. Sport 2007, 10, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Biering-Sørensen, F. Physical Measurements as Risk Indicators for Low-Back Trouble Over a One-Year Period. Spine 1984, 9, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Tse, M.A.; McManus, A.M.; Masters, R.S. Development and Validation of a Core Endurance Intervention Program: Implications for Performance in College-Age Rowers. J. Strength Cond. Res. 2005, 19, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Bourban, P.; Hübner, K.; Tschopp, M.; Marti, B. Grundkraftanforderungen im Spitzensport: Ergebnisse eines 3-teiligen Rumpfkrafttests. Schweiz. Z. Sportmed. Sport. 2001, 49, 73–78. [Google Scholar]
- Tomčić, J.; Šarabon, N.; Marković, G. Factorial Structure of Trunk Motor Qualities and Their Association with Explosive Movement Performance in Young Footballers. Sports 2021, 9, 67. [Google Scholar] [CrossRef]
- Bucke, J.; Mattiussi, A.; May, K.; Shaw, J. The reliability, variability and minimal detectable change of multiplanar isometric trunk strength testing using a fixed digital dynamometer. J. Sports Sci. 2024, 42, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Giraudeau, B.; Mary, J.Y. Planning a reproducibility study: How many subjects and how many replicates per subject for an expected width of the 95 per cent confidence interval of the intraclass correlation coefficient. Stat. Med. 2001, 20, 3205–3214. [Google Scholar] [CrossRef]
- James, L.P.; Talpey, S.W.; Young, W.B.; Geneau, M.C.; Newton, R.U.; Gastin, P.B. Strength Classification and Diagnosis: Not All Strength Is Created Equal. Strength Cond. J. 2022, 45, 333–341. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.N.; Aagaard, P.; Blazevich, A.; Folland, J.J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef] [PubMed]
- Haff, G.G.; Ruben, R.P.; Lider, J.; Twine, C.; Cormie, P. A Comparison of Methods for Determining the Rate of Force Development During Isometric Midthigh Clean Pulls. J. Strength Cond. Res. 2015, 29, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Martinopoulou, K.; Donti, O.; Sands, W.A.; Terzis, G.; Bogdanis, G.C. Evaluation of the Isometric and Dynamic Rates of Force Development in Multi-Joint Muscle Actions. J. Hum. Kinet. 2022, 81, 135–148. [Google Scholar] [CrossRef] [PubMed]
- West, S.G.; Finch, J.F.; Curran, P.J. Structural equation models with nonnormal variables: Problems and remedies. In Structural Equation Modeling: Concepts, Issues, and Applications; Hoyle, R.H., Ed.; Sage: Thousand Oaks, CA, USA, 1995; pp. 56–75. [Google Scholar]
- Hopkins, W.G. Measures of Reliability in Sports Medicine and Science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, G.; Nevill, A.M. Statistical Methods For Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef] [PubMed]
- McGraw, K.O.; Wong, S.P. Forming inferences about some intraclass correlation coefficients. Psychol. Methods 1996, 1, 30–46. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163, Erratum in J. Chiropr. Med. 2017, 16, 346. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.P. Quantifying Test-Retest Reliability Using the Intraclass Correlation Coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Geneau, M.C.; Carey, D.L.; Gastin, P.B.; Robertson, S.; James, L.P. Classification of Force-Time Metrics Into Lower-Body Strength Domains. J. Strength Cond. Res. 2024, 38, 1561–1567. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.T. Principle Components Analysis; Springer: New York, NY, USA, 1986. [Google Scholar]
- Rojas-Valverde, D.; Pino-Ortega, J.; Gómez-Carmona, C.D.; Rico-González, M. A Systematic Review of Methods and Criteria Standard Proposal for the Use of Principal Component Analysis in Team’s Sports Science. Int. J. Environ. Res. Public Health 2020, 17, 8712. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, H.F.; Rice, J. Little Jiffy, Mark Iv. Educ. Psychol. Meas. 1974, 34, 111–117. [Google Scholar] [CrossRef]
- Cattell, R.B. The Scree Test For The Number of Factors. Multivar. Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, H.F. A second generation little jiffy. Psychometrika 1970, 35, 401–415. [Google Scholar] [CrossRef]
- Welch, N.; Richter, C.; Moran, K.; Franklyn-Miller, A. Principal Component Analysis of the Associations Between Kinetic Variables in Cutting and Jumping, and Cutting Performance Outcome. J. Strength Cond. Res. 2021, 35, 1848–1855. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Mattes, K.; Wollesen, B.; Manzer, S. Asymmetries of Maximum Trunk, Hand, and Leg Strength in Comparison to Volleyball and Fitness Athletes. J. Strength Cond. Res. 2018, 32, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Miltner, O.; Siebert, C.; Tschaepe, R.; Maus, U.; Kieffer, O. Volleyballspezifische Rumpfmuskelkraft bei professionellen und nicht professionellen Volleyballspielern. JBJS Open Access 2009, 148, 204–209. [Google Scholar] [CrossRef]
- Shinkle, J.; Nesser, T.W.; Demchak, T.J.; McMannus, D.M. Effect of Core Strength on the Measure of Power in the Extremities. J. Strength Cond. Res. 2012, 26, 373–380. [Google Scholar] [CrossRef]
- Carvalho, D.d.S.; Ocarino, J.M.; Cruz, A.d.C.; Barsante, L.D.; Teixeira, B.G.; Resende, R.A.; Fonseca, S.T.; Souza, T.R. The trunk is exploited for energy transfers of maximal instep soccer kick: A power flow study. J. Biomech. 2021, 121, 110425. [Google Scholar] [CrossRef]
- Ortega-Becerra, M.; Pareja-Blanco, F.; Jiménez-Reyes, P.; Cuadrado-Peñafiel, V.; González-Badillo, J.J. Determinant Factors of Physical Performance and Specific Throwing in Handball Players of Different Ages. J. Strength Cond. Res. 2018, 32, 1778–1786. [Google Scholar] [CrossRef]
- Bauer, J.; Gruber, M.; Muehlbauer, T. Correlations between core muscle strength endurance and upper-extremity performance in adolescent male sub-elite handball players. Front. Sports Act. Living 2022, 4, 1050279. [Google Scholar] [CrossRef]
- Ma, S.; Soh, K.G.; Japar, S.B.; Liu, C.; Luo, S.; Mai, Y.; Wang, X.; Zhai, M. Effect of core strength training on the badminton player’s performance: A systematic review & meta-analysis. PLoS ONE 2024, 19, e0305116. [Google Scholar] [CrossRef]
Variable | Flexion | Extension | Lateral Flexion Right | Lateral Flexion Left | ||||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | M | SD | |
Holding time (s) | 220.52 | 137.98 | 160.76 | 48.92 | 65.19 | 28.36 | 72.88 | 28.68 |
pRFD (N/s) | 1869.29 | 943.53 | 1570.98 | 819.25 | 743.69 | 354.94 | 745.08 | 450.52 |
Timepoint pRFD (ms) | 1569.44 | 297.95 | 1548.62 | 293.29 | 1402.33 | 366.41 | 1475.30 | 455.11 |
Time to pRFD (ms) | 211.37 | 37.60 | 205.71 | 43.82 | 223.57 | 63.57 | 213.30 | 64.00 |
MVC (N) | 296.70 | 101.76 | 314.73 | 85.30 | 150.73 | 70.49 | 164.68 | 72.85 |
Timepoint MVC (ms) | 3310.36 | 739.23 | 3682.03 | 917.84 | 3097.13 | 757.26 | 3396.68 | 776.78 |
Time to MVC (ms) | 1959.49 | 672.02 | 2343.52 | 832.81 | 1934.42 | 657.20 | 2129.48 | 706.13 |
Start point (ms) | 1350.87 | 286.06 | 1338.51 | 296.03 | 1162.71 | 372.92 | 1267.21 | 469.29 |
Start force (N) | 56.66 | 23.87 | 55.65 | 25.66 | 37.84 | 24.96 | 44.83 | 34.70 |
Variable | ICC | 95% CI | CV (%) | SEM |
---|---|---|---|---|
MVC | ||||
Flexion | 0.99 | (0.97, 0.99) | 5.51 | 12.46 |
Extension | 0.96 | (0.93, 0.98) | 8.38 | 17.06 |
Lateral flexion right | 0.98 | (0.96, 0.99) | 11.67 | 10.71 |
Lateral flexion left | 0.96 | (0.93, 0.98) | 11.62 | 14.20 |
pRFD | ||||
Flexion | 0.88 | (0.79, 0.94) | 29.14 | 386.83 |
Extension | 0.84 | (0.73, 0.91) | 29.24 | 408.40 |
Lateral flexion right | 0.83 | (0.69, 0.91) | 23.94 | 236.42 |
Lateral flexion left | 0.88 | (0.80, 0.94) | 24.41 | 201.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schulte, S.; Bopp, J.; Zschorlich, V.; Büsch, D. The Multi-Component Structure of Core Strength. J. Funct. Morphol. Kinesiol. 2024, 9, 249. https://doi.org/10.3390/jfmk9040249
Schulte S, Bopp J, Zschorlich V, Büsch D. The Multi-Component Structure of Core Strength. Journal of Functional Morphology and Kinesiology. 2024; 9(4):249. https://doi.org/10.3390/jfmk9040249
Chicago/Turabian StyleSchulte, Sarah, Jessica Bopp, Volker Zschorlich, and Dirk Büsch. 2024. "The Multi-Component Structure of Core Strength" Journal of Functional Morphology and Kinesiology 9, no. 4: 249. https://doi.org/10.3390/jfmk9040249
APA StyleSchulte, S., Bopp, J., Zschorlich, V., & Büsch, D. (2024). The Multi-Component Structure of Core Strength. Journal of Functional Morphology and Kinesiology, 9(4), 249. https://doi.org/10.3390/jfmk9040249