Effects of Taurine and Enzymatic Cottonseed Protein Concentrate Supplementation in Low-Fishmeal Diet on Growth, Liver Antioxidant Capacity, and Intestinal Health of Golden Pompano (Trachinotus ovatus)
<p>Relative mRNA expressions of golden pompano fed with the experimental diets in muscle. The data include triplicate means. Means in the same row that have distinct superscript letters are substantially different, as determined by Duncan’s test (<span class="html-italic">p</span> < 0.05).</p> "> Figure 2
<p>Relative mRNA expressions of antioxidant-related genes of golden pompano fed with the experimental diets in hepatic. The data include triplicate means. Means in the same row that have distinct superscript letters are substantially different, as determined by Duncan’s test (<span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>Relative mRNA expressions of immune-related and physical barrier-related genes of golden pompano fed with the experimental diets in intestinal. The data include triplicate means. Means in the same row that have distinct superscript letters are substantially different, as determined by Duncan’s test (<span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>Venus map of OTUs of the intestinal flora of golden pompano fed with the experimental diets. The data include triplicate means. Means in the same row that have distinct superscript letters are substantially different, as determined by Duncan’s test (<span class="html-italic">p</span> < 0.05).</p> "> Figure 5
<p>Heatmap of phylum of the intestinal flora of golden pompano fed with the experimental diets.</p> "> Figure 6
<p>Heatmap of the genera of the intestinal flora of golden pompano fed with the experimental diets.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Preparation of Experimental Diets
2.3. Fish Rearing and Experimental Conditions
2.4. Calculations
2.5. Sample Collection
2.6. Parameters Measurement and Analysis
2.6.1. Proximate Composition Analysis
2.6.2. Enzyme Activity Assay Analysis
2.6.3. Gene Expression Level Analysis
2.6.4. Intestinal Microbiota Communities
2.7. Statistical Analysis
3. Results
3.1. Growth, Body Indices, and Feed Performance
3.2. Effects of Muscle Genes
3.3. Plasma Parameters
3.4. Hepatic Enzyme Activities
3.5. Effects of Hepatic Antioxidant Genes
3.6. Intestinal Enzymes Activities Measurements
3.7. Effects of Intestinal Immune-Related and Physical Barrier-Related Genes
3.8. Intestinal Microflora
3.8.1. Analysis of Microbial OUT and Alpha Diversity of Intestinal Flora
3.8.2. Analysis of Differences between Groups of Intestinal Bacteria
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2022.
- Johnson, R.B.; Kim, S.-K.; Watson, A.M.; Barrows, F.T.; Kroeger, E.L.; Nicklason, P.M.; Giles, W.G.; Place, A.R. Effects of dietary taurine supplementation on growth, feed efficiency, and nutrient composition of juvenile sablefish (Anoplopoma fimbria) fed plant based Feeds. Aquaculture 2015, 445, 79–85. [Google Scholar] [CrossRef]
- Sun, H.; Tang, J.; Yao, X.; Wu, Y.; Wang, X.; Liu, Y. Effects of replacement of fish meal with fermented cottonseed meal on growth performance, body composition and haemolymph indexes of Pacific white shrimp, Litopenaeus vannamei Boone, 1931. Aquac. Res. 2016, 47, 2623–2632. [Google Scholar] [CrossRef]
- Li, M.H.; Robinson, E.H. Use of Cottonseed Meal in Aquatic Animal Diets: A Review. N. Am. J. Aquac. 2006, 68, 14–22. [Google Scholar] [CrossRef]
- Estruch, G.; Martínez-Llorens, S.; Tomás-Vidal, A.; Monge-Ortiz, R.; Jover-Cerdá, M.; Brown, P.B.; Peñaranda, D.S. Impact of high dietary plant protein with or without marine ingredients in gut mucosa proteome of gilthead seabream (Sparus aurata L.). J. Proteom. 2020, 216, 103672. [Google Scholar] [CrossRef]
- Gomes, E.F.; Rema, P.; Gouveia, A.; Teles, A.O. Replacement of fish meal by plant proteins in diets for rainbow trout (Oncorhynchus mykiss): Effect of the quality of the fishmeal based control diets on digestibility and nutrient Balances. Water Sci. Technol. 1995, 31, 205–211. [Google Scholar] [CrossRef]
- Wang, K.Z.; Feng, L.; Jiang, W.D.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.Y.; Tang, L.; Zhang, Y.A.; Zhou, X.Q. Dietary gossypol reduced intestinal immunity and aggravated inflammation in On-growing grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2019, 86, 814–831. [Google Scholar] [CrossRef]
- Wang, Z.; Tao, J.; Xie, R.; Zhang, Y.; Zhang, H.; Chen, N.; Li, S. Effects of Fish Meal Replacement with Composite Mixture of Soybean Protein Hydrolysates and Other Plant Proteins on Growth Performance, Antioxidant Capacity, and Target of Rapamycin Pathway in Largemouth Bass. N. Am. J. Aquac. 2023, 85, 178–187. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, Z.; Lin, H.; Ma, Z.; Wang, J.; Wang, Y.; Yu, W. Rhizoma curcumae Longae ameliorates high dietary Carbohydrate-induced hepatic oxidative stress, inflammation in golden pompano Trachinotus ovatus. Fish Shellfish Immunol. 2022, 130, 31–42. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Ren, Y.; Zhang, M.; Liang, J. Lipotoxic Effects of Gossypol Acetate Supplementation on Hepatopancreas Fat Accumulation and Fatty Acid Profile in Cyprinus Carpio. Aquac. Nutr. 2022, 2022, 2969246. [Google Scholar] [CrossRef]
- Xu, X.; Yang, H.; Zhang, C.; Bian, Y.; Yao, W.; Xu, Z.; Wang, Y.Y.; Li, X.Q.; Leng, X.J. Effects of replacing fishmeal with cottonseed protein concentrate on growth performance, flesh quality and gossypol deposition of largemouth bass (Micropterus salmoides). Aquaculture 2022, 548, 737551. [Google Scholar] [CrossRef]
- Hemansi; Chakraborty, S.; Yadav, G.; Kuhad, R.C. Comparative Study of Cellulase Production Using Submerged and Solid-State Fermentation. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 99–113. [Google Scholar]
- Li, J.; Gao, T.; Hao, Z.; Guo, X.; Zhu, B. Anaerobic solid-state fermentation with Bacillus subtilis for digesting free gossypol and improving nutritional quality in cottonseed meal. Front. Nutr. 2022, 9, 1017637. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. Study on Solid Fermentation Techniques of Cottonseed Protein and Effects of Application of Its Product in Carassius auratus. Master’s Thesis, Nanjing Aquaculture University, Nanjing, China, 2014. [Google Scholar]
- Matias, A.C.; Dias, J.; Barata, M.; Araujo, R.L.; Bragança, J.; Pousão-Ferreira, P. Taurine modulates protein turnover in several tissues of meagre Juveniles. Aquaculture 2020, 528, 735478. [Google Scholar] [CrossRef]
- El-Sayed, A.M. Is dietary taurine supplementation beneficial for farmed fish and shrimp? A comprehensive Review. Rev. Aquac. 2014, 6, 241–255. [Google Scholar] [CrossRef]
- Hongmanee, P.; Wongmaneeprateep, S.; Boonyoung, S.; Yuangsoi, B. The optimal dietary taurine supplementation in zero fish meal diet of juvenile snakehead fish (Channa Striata). Aquaculture 2022, 553, 738052. [Google Scholar] [CrossRef]
- Ma, Q.W.; Guo, H.Y.; Zhu, K.C.; Guo, L.; Liu, B.S.; Zhang, N.; Liu, B.; Yang, J.W.; Jiang, S.G.; Zhang, D.C. Dietary taurine intake affects growth and taurine synthesis regulation in golden pompano, Trachinotus ovatus (Linnaeus 1758). Aquaculture 2021, 530, 735918. [Google Scholar] [CrossRef]
- Shen, G.P.; Ding, Z.N.; Dai, T.; Feng, J.H.; Dong, J.Y.; Xia, F.; Xu, J.J.; Ye, J.D. Effect of dietary taurine supplementation on metabolome variation in plasma of Nile Tilapia. Animal 2021, 15, 100167. [Google Scholar] [CrossRef]
- Ben-Azu, B.; Adebayo, O.G.; Jarikre, T.A.; Oyovwi, M.O.; Edje, K.E.; Omogbiya, I.A.; Emuesiri, A.T.; Moke, G.E.; Chijioke, B.S.; Odili, O.S.; et al. Taurine, an essential β-amino acid insulates against ketamine-induced experimental psychosis by enhancement of cholinergic neurotransmission, inhibition of oxidative/nitrergic imbalances, and suppression of COX-2/iNOS immunoreactions in Mice. Metab. Brain Dis. 2022, 37, 2807–2826. [Google Scholar] [CrossRef]
- Song, W.; Kong, X.; Hua, Y.; Chen, Y.; Zhang, C.; Chen, Y. Identification of antibacterial peptides generated from enzymatic hydrolysis of cottonseed Proteins. LWT 2020, 125, 109199. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhao, J.; Xie, D.; de Cruz, C.R.; Zhao, J.; Xu, H.; Xu, Q. Effects of Replacing Fish Meal with Enzymatic Cottonseed Protein on the Growth Performance, Immunity, Antioxidation, and Intestinal Health of Chinese Soft-Shelled Turtle (Pelodiscus sinensis). Aquac. Nutr. 2023, 2023, 6628805. [Google Scholar] [CrossRef]
- Zhang, Q.; Liang, H.; Xu, P.; Xu, G.; Zhang, L.; Wang, Y.; Ren, M.C.; Chen, X. Effects of Enzymatic Cottonseed Protein Concentrate as a Feed Protein Source on the Growth, Plasma Parameters, Liver Antioxidant Capacity and Immune Status of Largemouth Bass (Micropterus salmoides). Metabolites 2022, 12, 1233. [Google Scholar] [CrossRef]
- Tutman, P.; Glavić, N.; Kožul, V.; Skaramuca, B.; Glamuzina, B. Preliminary Information on Feeding and Growth of Pompano, Trachinotus ovatus (Linnaeus, 1758) (Pisces; Carangidae) in Captivity. Aquac. Int. 2004, 12, 387–393. [Google Scholar] [CrossRef]
- Wang, Z.; Liao, S.; Wang, J.; Wang, Y.; Huang, Z.; Yu, W.; Huang, X.L.; Lin, H.Z.; Luo, M.L.; Cheng, Z.Y.; et al. Effects of Fermented Cottonseed Meal Substitution for Fish Meal on Intestinal Enzymatic Activity, Inflammatory and Physical-Barrier-Related Gene Expression, and Intestinal Microflora of Juvenile Golden Pompano (Trachinotus ovatus). Fishes 2023, 8, 466. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, C.; Xu, F.; Luo, X.B.; Huang, X.L.; Huang, Z.; Yu, W.; Xun, P.W.; Wu, Y.; Lin, H.Z. Effects of partial replacement of fish meal with porcine meat meal on growth performance, antioxidant status, intestinal morphology, gut microflora and immune response of juvenile golden pompano (Trachinotus ovatus). Aquaculture 2022, 561, 738646. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Liang, Y. Characterization of Growth-Related Genes from Trachinotus ovatus and Their Expression Responses to the Feed Types. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2018. [Google Scholar]
- Zhong, W.; Yu, J.; Li, Y.; Li, Y.X.; Yang, Z.X.; Song, F.; Fu, S.L.; Chen, Y.H.; Wang, L. Effects of Dietary Fat Levels on Muscle Quality, Antioxidant Capacity and Expression of Related Genes of Golden Pompano (Trachinotus ovatus). J. Feed Ind. 2023, 44, 98–106. [Google Scholar]
- Xie, J.; Chen, X.; Niu, J. Cloning, functional characterization and expression analysis of nuclear factor erythroid-2-related factor-2 of golden pompano (Trachinotus ovatus) and its response to air-Exposure. Aquac. Rep. 2021, 19, 100580. [Google Scholar] [CrossRef]
- Liu, M.J.; Guo, H.Y.; Liu, B.; Zhu, K.C.; Guo, L.; Liu, B.S.; Zhang, N.; Yang, J.W.; Jiang, S.G.; Zhang, D.C. Gill oxidative damage caused by acute ammonia stress was reduced through the HIF-1α/NF-κb signaling pathway in golden pompano (Trachinotus ovatus). Ecotoxicol. Environ. Saf. 2021, 222, 112504. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.J.; Luo, Z.; Xiong, B.X.; Liu, X.; Zhao, Y.H.; Hu, G.F.; Lv, G.J. Effect of waterborne copper exposure on growth, hepatic enzymatic activities and histology in Synechogobius Hasta. Ecotoxicol. Environ. Saf. 2010, 73, 1286–1291. [Google Scholar] [CrossRef]
- Rotman, F.; Stuart, K.; Drawbridge, M. Effects of taurine supplementation in live feeds on larval rearing performance of California yellowtail Seriola lalandi and white seabass Atractoscion Nobilis. Aquac. Res. 2017, 48, 1232–1239. [Google Scholar] [CrossRef]
- Velasquez, A.; Pohlenz, C.; Barrows, F.T.; Gaylord, T.G.; Gatlin III, D.M. Assessment of taurine bioavailability in pelleted and extruded diets with red drum Sciaenops Ocellatus. Aquaculture 2015, 449, 2–7. [Google Scholar] [CrossRef]
- Peterson, B.C.; Li, M.H. Effect of supplemental taurine on juvenile channel catfish Ictalurus punctatus growth Performance. Aquac. Nutr. 2018, 24, 310–314. [Google Scholar] [CrossRef]
- Matsunari, H.; Takeuchi, T.; Takahashi, M.; Mushiake, K. Effect of dietary taurine supplementation on growth performance of yellowtail juveniles Seriola quinqueradiata. Fish. Sci. 2005, 71, 1131–1135. [Google Scholar] [CrossRef]
- Gibson Gaylord, T.; Barrows, F.T.; Teague, A.M.; Johansen, K.A.; Overturf, K.E.; Shepherd, B. Supplementation of taurine and methionine to All-plant protein diets for rainbow trout (Oncorhynchus mykiss). Aquaculture 2007, 269, 514–524. [Google Scholar] [CrossRef]
- Zhao, H.F.; Feng, L.; Jiang, W.D.; Liu, Y.; Jiang, J.; Wu, P.; Zhao, J.; Kuang, S.Y.; Tang, L.; Tang, W.N.; et al. Flesh Shear Force, Cooking Loss, Muscle Antioxidant Status and Relative Expression of Signaling Molecules (Nrf2, Keap1, TOR, and CK2) and Their Target Genes in Young Grass Carp (Ctenopharyngodon idella) Muscle Fed with Graded Levels of Choline. PLoS ONE 2015, 10, e0142915. [Google Scholar] [CrossRef]
- Yan, L. Effects of Dietary Taurine Supplementation on the Growth Performanceand Health Status of Intestinal, Gill and Body, and Flesh Quality of Younggrass Carp (Ctenopharyngodon idella) and the Related Mechanisms. Master’s thesis, Sichuan Agricultural University, Ya’an, China, 2017. [Google Scholar]
- Triantaphyllopoulos, K.A.; Cartas, D.; Miliou, H. Factors influencing GH and IGF-I gene expression on growth in teleost fish: How can aquaculture industry Benefit? Rev. Aquac. 2020, 12, 1637–1662. [Google Scholar] [CrossRef]
- Zanou, N.; Gailly, P. Skeletal muscle hypertrophy and regeneration: Interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) Pathways. Cell. Mol. Life Sci. 2013, 70, 4117–4130. [Google Scholar] [CrossRef]
- Roberts, S.B.; Goetz, F.W. Myostatin protein and RNA transcript levels in adult and developing brook Trout. Mol. Cell. Endocrinol. 2003, 210, 9–20. [Google Scholar] [CrossRef]
- Ahmed, Z.; Donkor, O.; Street, W.A.; Vasiljevic, T. Calpains- and cathepsins-induced myofibrillar changes in post-mortem fish: Impact on structural softening and release of bioactive Peptides. Trends Food Sci. Technol. 2015, 45, 130–146. [Google Scholar] [CrossRef]
- Zhou, C. Effects of dietary leucine levels on intestinal antioxidant status and immune response for juvenile golden pompano (Trachinotus ovatus) involved in Nrf2 and NF-κB signaling Pathway. Fish Shellfish Immunol. 2020, 107, 336–345. [Google Scholar] [CrossRef]
- Habte-Tsion, H.M.; Ren, M.; Liu, B.; Ge, X.; Xie, J.; Chen, R.; Zhou, Q.L.; Pan, L. Threonine influences the absorption capacity and Brush-border enzyme gene expression in the intestine of juvenile blunt snout bream (Megalobrama amblycephala). Aquaculture 2015, 448, 436–444. [Google Scholar] [CrossRef]
- Yu, W.; Yang, Y.; Lin, H.; Huang, X.L.; Huang, Z.; Li, T.; Zhou, C.; Ma, Z.; Xun, P.W.; Yang, Q.P. Effects of taurine on growth performance, digestive enzymes, antioxidant capacity and immune indices of Lateolabrax maculatus. South China Fish. Sci. 2021, 17, 78–86. [Google Scholar]
- Zhang, M.; Li, M.; Wang, R.; Qian, Y. Effects of acute ammonia toxicity on oxidative stress, immune response and apoptosis of juvenile yellow catfish Pelteobagrus fulvidraco and the mitigation of exogenous Taurine. Fish Shellfish. Immunol. 2018, 79, 313–320. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, X.; Liu, X.; Chen, M.K.; Han, Y.Z.; Jiang, C. Effects of taurine level in feeds on immunity and digestive enzymes in redfin puffer immunity and digestive enzymes. J. Dalian Ocean. Univ. 2019, 34, 101–108. [Google Scholar]
- Liu, Y.; Yang, P.; Hu, H.; Li, Y.; Dai, J.; Zhang, Y.; Ai, Q.; Xu, W.; Zhang, W.; Mai, K. The tolerance and safety assessment of taurine as additive in a marine carnivorous fish, Scophthalmus maximus L. Aquac. Nutr. 2018, 24, 461–471. [Google Scholar] [CrossRef]
- Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay. BioMed Res. Int. 2014, 2014, 761264. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Yao, X.; Qu, K.; Liu, Y.; Tan, B.; Xie, S. Effects of taurine supplementation in low fishmeal diet on growth, immunity and intestinal health of Litopenaeus Vannamei. Aquac. Rep. 2023, 32, 101713. [Google Scholar] [CrossRef]
- Sun, T.; Gao, J.; Han, D.; Shi, H.; Liu, X. Fabrication and characterization of solid lipid Nano-formulation of astraxanthin against DMBA-induced breast cancer via Nrf-2-Keap1 and NF-kB and mTOR/Maf-1/PTEN Pathway. Drug Deliv. 2019, 26, 975–988. [Google Scholar] [CrossRef]
- Sun Jang, J.; Piao, S.; Cha, Y.-N.; Kim, C. Taurine Chloramine Activates Nrf2, Increases HO-1 Expression and Protects Cells from Death Caused by Hydrogen Peroxide. J. Clin. Biochem. Nutr. 2009, 45, 37–43. [Google Scholar] [CrossRef]
- Zhu, R.; Wu, X.Q.; Zhao, X.Y.; Qu, Z.H.; Quan, Y.N.; Lu, M.H.; Liu, Z.Y.; Wu, L.F. Taurine can improve intestinal function and integrity in juvenile Rhynchocypris lagowskii Dybowski fed High-dose Glycinin. Fish Shellfish Immunol. 2022, 129, 127–136. [Google Scholar] [CrossRef]
- He, M.; Liu, L.P.; Qu, H.C.; Zhang, X.X.; Gao, J.Z. Effects of taurine on the growth and digestive enzyme activity of the flower eel Anguilla anguilla (Anguilla anguilla). J. Shanghai Ocean. Univ. 2017, 26, 227–234. [Google Scholar]
- Feidantsis, K.; Kaitetzidou, E.; Mavrogiannis, N.; Michaelidis, B.; Kotzamanis, Y.; Antonopoulou, E. Effect of Taurine-enriched diets on the Hsp expression, MAPK activation and the antioxidant defence of the European sea bass (Dicentrarchus Labrax). Aquac. Nutr. 2014, 20, 431–442. [Google Scholar] [CrossRef]
- Rymuszka, A.; Adaszek, Ł. Pro- and anti-inflammatory cytokine expression in carp blood and head kidney leukocytes exposed to cyanotoxin stress—An in vitro Study. Fish Shellfish Immunol. 2012, 33, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.B.; Peng, Z.X.; Yan, L.; Gao, X.; Zhai, Z.J.; Wang, W.; Ren, T.J.; Han, Y.Z. Effects of Taurine Supplementation in Low Fishmeal Diet on Intestinal Structure, Immunity and Antioxidant Capacity of Sebastes schlegeli. Siliao Gongye 2022, 43, 35–40. [Google Scholar]
- Tak, P.P.; Firestein, G.S. NF-κB: A key role in inflammatory Diseases. J. Clin. Investig. 2001, 107, 7–11. [Google Scholar] [CrossRef]
- Pan, J.H.; Feng, L.; Jiang, W.D.; Wu, P.; Kuang, S.Y.; Tang, L.; Zhang, Y.A.; Zhou, X.Q.; Liu, Y. Vitamin E deficiency depressed fish growth, disease resistance, and the immunity and structural integrity of immune organs in grass carp (Ctenopharyngodon idella): Referring to NF-κB, TOR and Nrf2 Signaling. Fish Shellfish Immunol. 2017, 60, 219–236. [Google Scholar] [CrossRef]
- Kotzamanis, Y.; Kumar, V.; Tsironi, T.; Grigorakis, K.; Ilia, V.; Vatsos, I.; . Vatsos, I.; Brezas, A.; Eys, J.V.; Gisbert, E. Taurine supplementation in High-soy diets affects fillet quality of European sea bass (Dicentrarchus Labrax). Aquaculture 2020, 520, 734655. [Google Scholar] [CrossRef]
- Gumbiner, B.M. Breaking through the tight junction Barrier. J. Cell Biol. 1993, 123, 1631–1633. [Google Scholar] [CrossRef]
- Fanning, A.S.; Jameson, B.J.; Jesaitis, L.A.; Anderson, J.M. The Tight Junction Protein ZO-1 Establishes a Link between the Transmembrane Protein Occludin and the Actin Cytoskeleton. J. Biol. Chem. 1998, 273, 29745–29753. [Google Scholar] [CrossRef]
- Patel, R.M.; Myers, L.S.; Kurundkar, A.R.; Maheshwari, A.; Nusrat, A.; Lin, P.W. Probiotic Bacteria Induce Maturation of Intestinal Claudin 3 Expression and Barrier Function. Am. J. Pathol. 2012, 180, 626–635. [Google Scholar] [CrossRef]
- Tamura, A.; Kitano, Y.; Hata, M.; Katsuno, T.; Moriwaki, K.; Sasaki, H.; Hayashi, H.; Suzuki, Y.; Noda, T.; Furuse, M.; et al. Megaintestine in Claudin-15–Deficient Mice. Gastroenterology 2008, 134, 523–534.e3. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q. Dietary Taurine Intake Affects Growth and Taurine Synthesis Regulation in Trachinotus ovatus. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2021. [Google Scholar]
Item | Diets | ||
---|---|---|---|
CSM-T | CSM-C | CSM-TC | |
Ingredients | |||
Fishmeal | 20 | 20 | 20 |
Soy protein concentrate | 16 | 16 | 16 |
Soybean meal | 4 | 4 | 4 |
Fermented cottonseed meal | 20.50 | 18.54 | 19.52 |
Corn starch | 11.70 | 11.70 | 11.70 |
Porcine blood cell protein powder | 2 | 2 | 2 |
Beer yeast powder | 2 | 2 | 2 |
Fish oil | 8.9 | 8.9 | 8.9 |
Vitamin and mineral premix 1 | 1 | 1 | 1 |
Ca(H2PO4)2 | 0.5 | 0.5 | 0.5 |
Choline chloride | 0.5 | 0.5 | 0.5 |
Lecithin | 1 | 1 | 1 |
Microcrystalline cellulose | 10.20 | 10.66 | 10.43 |
Betaine | 0.5 | 0.5 | 0.5 |
Lysine | 0.5 | 0.5 | 0.5 |
Methionine | 0.2 | 0.2 | 0.2 |
Enzymatic cottonseed protein concentrate | 0 | 2 | 1 |
Taurine | 0.5 | 0 | 0.25 |
Total | 100 | 100 | 100 |
Nutrient levels | |||
Crude protein | 43.76 | 43.39 | 43.66 |
Crude fiber | 10.29 | 10.42 | 10.49 |
Crude lipid | 11.9 | 11.81 | 11.9 |
Ash | 10.21 | 10.43 | 10.42 |
Energy (kJ/g) | 16.8 | 16.7 | 16.8 |
Nitrogen free extract | 23.84 | 23.95 | 23.52 |
Gene | Sequence | Reference |
---|---|---|
β-Actin-qF | TACGAGCTGCCTGACGGACA | [9] |
β-Actin-qR | GGCTGTGATCTCCTTCTGCA | |
GH-qF | GCCAGTCAGGACGGAG | [29] |
GH-qR | AGGAGGCGGGGCTACA | |
GHR1-qF | GGTGGAGTTCATTGAGGTGGAT | [29] |
GHR1-qR | TGGTGGCTGACAGGTTGG | |
GHR2-qF | CACCACCTCTACCTCCTCTG | [29] |
GHR2-qR | CCCTCTTCGGCGTTCATA | |
IGF1-qF | GACGCTTACAGGAGGAGAA | [29] |
IGF1-qR | GCTGCTGGATGTGTTCAC | |
IGF2-qF | CTGTGACCTCAACCTGCT | [29] |
IGF2-qR | CTCTGCCACTCCTCGTATT | |
myoG-qF | AACCAGAGGCTGCCCAAGG | [30] |
myoG-qR | GCTGTCCCGTCTCAGTGTCC | |
MSTN-qF | GACGGGAACAGGCACATACG | [30] |
MSTN-qR | GCAGCCACACGGTCAACACT | |
CatL-qF | CCACTGGCACCTCTGCAAGA | [30] |
CatL-qR | GCCCGTAGCACTGTTTGCCC | |
catB-qF | TCTGCCTGGGACTTCTGGACCA | [30] |
catB-qR | ACACTTGAGGACGCACTGAG | |
Nrf2-qF | TTGCCTGGACACAACTGCTGTTAC | [31] |
Nrf2-qR | TCTGTGACGGTGGCAGTGGAC | |
Keap1-qF | CAGATAGACAGCGTGGTGAAGGC | [31] |
Keap1-qR | GACAGTGAGACAGGTTGAAGAACTCC | |
HO-1-qF | AGAAGATTCAGACAGCAGCAGAACAG | [31] |
HO-1-qR | TCATACAGCGAGCACAGGAGGAG | |
SOD-qF | CCTCATCCCCCTGCTTGGTA | [32] |
SOD-qR | CCAGGGAGGGATGAGAGGTG | |
GSH-Px-qF | GCTGAGAGGCTGGTGCAAGTG | [33] |
GSH-Px-qR | TTCAAGCGTTACAGCAGGAGGTTC | |
CAT-qF | GGATGGACAGCCTTCAAGTTCTCG | [32] |
CAT-qR | TGGACCGTTACAACAGTGCAGATG | |
ZO-1-qF | TTTGTGGCAGGAGTTCT | [25] |
ZO-1-qR | TTCTTGTTGGGGATGAT | |
Claudin-15-qF | AAGGTATGAAATAGGAGAAGGGC | [25] |
Claudin-15-qR | TGGTTTGATAAGGCAGAGGGTA | |
Occludin-qF | TACGCCTACAAGACCCGCA | [25] |
Occludin-qR | CACCGCTCTCTCTGATAAA | |
Claudin-3-qF | CTCCTCTGCTGCTCCTGTCC | [25] |
Claudin-3-qR | CGTAGTCTTTCCTTTCTAACCCTG | |
NF-κB-qF | TGCGACAAAGTCCAGAAAGAT | [9] |
NF-κB-qR | CTGAGGGTGGTAGGTGAAGGG | |
TNF-α-qF | CGCAATCGTAAAGAGTCCCA | [9] |
TNF-α-qR | AAGTCACAGTCGGCGAAATG | |
IL-10-qF | CTCCAGACAGAAGACTCCAGCA | [9] |
IL-10-qR | GGAATCCCTCCACAAAACGAC | |
IL-8-qF | TGCATCACCACGGTGAAAAA | [9] |
IL-8-qR | GCATCAGGGTCCAGACAAATC | |
il-1β-qF | CGGACTCGAACGTGGTCACATTC | [9] |
il-1β-qR | AATATGGAAGGCAACCGTGCTCAG |
Item | Initial Weight | Final Weight | SR (%) | WGR (%) | SGR (% Day−1) | Per Fish FI (g/Fish) | FCR | PER (%) | VSI (%) | HSI (%) | CF (g/cm3) |
---|---|---|---|---|---|---|---|---|---|---|---|
CSM-T | 141.87 ± 0.43 | 891.6 ± 24.06 | 96 ± 2.3 | 554.83 ± 12.97 | 3.36 ± 0.04 | 20.1 ± 0.6 b | 1.37 ± 0.06 | 1.78 ± 0.09 | 7 ± 0.53 | 1.43 ± 0.06 | 3.97 ± 0.31 |
CSM-C | 140.87 ± 1.39 | 880.1 ± 13.55 | 98.7 ± 1.3 | 533.3 ± 6.14 | 3.3 ± 0.02 | 19.9 ± 0.3 b | 1.41 ± 0.03 | 1.71 ± 0.04 | 7.5 ± 0.26 | 1.1 ± 0.17 | 4.33 ± 0.47 |
CSM-TC | 140.17 ± 1.87 | 961 ± 34.8 | 97.3 ± 1.3 | 605.47 ± 35.37 | 3.48 ± 0.09 | 21.8 ± 0.2 a | 1.37 ± 0.07 | 1.77 ± 0.10 | 7.23 ± 0.55 | 1.4 ± 0.26 | 4.43 ± 0.42 |
ANOVA | 0.374 | 0.120 | 0.579 | 0.137 | 0.131 | 0.025 | 0.879 | 0.833 | 0.251 | 0.078 | 0.22 |
Item | ALT (U/L) | AKP (U/L) | C3 (g/L) | C4 (g/L) |
---|---|---|---|---|
CSM-T | 4.26 ± 0.16 a | 21.5 ± 0.2 b | 0.043 ± 0.001 c | 0.0165 ± 0.0005 c |
CSM-C | 4.9 ± 0.51 a | 22.6 ± 0.4 b | 0.057 ± 0.001 b | 0.0258 ± 0.0014 b |
CSM-TC | 2.8 ± 0.43 b | 34.2 ± 0.6 a | 0.088 ± 0.002 a | 0.0328 ± 0.0011 a |
ANOVA | <0.001 | 0.013 | <0.001 | <0.001 |
Item | T-AOC/(U/mg) | SOD (U/mg) | CAT/(U/mg) | GSH-Px/(U/mg) | MDA (nmol/mg) |
---|---|---|---|---|---|
CSM-T | 0.31 ± 0.01 b | 3.73 ± 0.02 b | 1.9 ± 0.05 a | 10.78 ± 0.82 | 0.39 ± 0.07 |
CSM-C | 0.26 ± 0.01 c | 3.62 ± 0.03 b | 1.46 ± 0.02 c | 11.19 ± 0.15 | 0.38 ± 0.07 |
CSM-TC | 0.34 ± 0 a | 3.91 ± 0.07 a | 1.72 ± 0.02 b | 11.91 ± 0.26 | 0.33 ± 0 |
ANOVA | <0.001 | 0.013 | <0.001 | 0.341 | 0.717 |
Item | AMY (U/mg) | LPS (U/mg) | Chymotrypsin (U/mg) |
---|---|---|---|
CSM-T | 338.37 ± 10.28 b | 21.14 ± 0.76 | 48.46 ± 3.16 |
CSM-C | 295.54 ± 16.68 c | 21.76 ± 0.32 | 48.46 ± 0.93 |
CSM-TC | 474.26 ± 8.07 a | 25.64 ± 6.01 | 51.41 ± 1.36 |
ANOVA | <0.001 | 0.638 | 0.539 |
Item | Ace | Chao1 | Shannon | Simpson |
---|---|---|---|---|
CSM-T | 1.59 ± 0.09 b | 0.48 ± 0.04 c | 167.02 ± 3.77 a | 171.06 ± 3.17 |
CSM-C | 2.05 ± 0.01 a | 0.7 ± 0 a | 130.55 ± 8.08 b | 158.26 ± 15.86 |
CSM-TC | 1.81 ± 0.12 ab | 0.59 ± 0.01 b | 161.51 ± 15.03 ab | 169.71 ± 15.1 |
ANOVA | 0.028 | 0.002 | 0.086 | 0.749 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Liao, S.; Huang, Z.; Wang, J.; Wang, Y.; Yu, W.; Lin, H.; Ma, Z.; Cheng, Z.; Zhou, C. Effects of Taurine and Enzymatic Cottonseed Protein Concentrate Supplementation in Low-Fishmeal Diet on Growth, Liver Antioxidant Capacity, and Intestinal Health of Golden Pompano (Trachinotus ovatus). Fishes 2024, 9, 405. https://doi.org/10.3390/fishes9100405
Wang Z, Liao S, Huang Z, Wang J, Wang Y, Yu W, Lin H, Ma Z, Cheng Z, Zhou C. Effects of Taurine and Enzymatic Cottonseed Protein Concentrate Supplementation in Low-Fishmeal Diet on Growth, Liver Antioxidant Capacity, and Intestinal Health of Golden Pompano (Trachinotus ovatus). Fishes. 2024; 9(10):405. https://doi.org/10.3390/fishes9100405
Chicago/Turabian StyleWang, Zhanzhan, Shuling Liao, Zhong Huang, Jun Wang, Yun Wang, Wei Yu, Heizhao Lin, Zhenhua Ma, Zhenyan Cheng, and Chuanpeng Zhou. 2024. "Effects of Taurine and Enzymatic Cottonseed Protein Concentrate Supplementation in Low-Fishmeal Diet on Growth, Liver Antioxidant Capacity, and Intestinal Health of Golden Pompano (Trachinotus ovatus)" Fishes 9, no. 10: 405. https://doi.org/10.3390/fishes9100405
APA StyleWang, Z., Liao, S., Huang, Z., Wang, J., Wang, Y., Yu, W., Lin, H., Ma, Z., Cheng, Z., & Zhou, C. (2024). Effects of Taurine and Enzymatic Cottonseed Protein Concentrate Supplementation in Low-Fishmeal Diet on Growth, Liver Antioxidant Capacity, and Intestinal Health of Golden Pompano (Trachinotus ovatus). Fishes, 9(10), 405. https://doi.org/10.3390/fishes9100405