Efficiency Analysis of China Deep-Sea Cage Aquaculture Based on the SBM–Malmquist Model
<p>Map of China coastal provinces and seas.</p> "> Figure 2
<p>DSCA production efficiency in China from 2013 to 2021.</p> "> Figure 3
<p>Mean per capita regional gross domestic product (GDP) from 2013 to 2021 (RMB/person). Data source: National Bureau of Statistics of China official website.</p> "> Figure 4
<p>Total factor productivity changes in China’s deep–sea cage aquaculture.</p> "> Figure 5
<p>Technical efficiency changes and their decomposition indexes in China’s DSCA.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. The SBM-DEA Model
2.2.2. The Malmquist Index Model
3. Results
3.1. Calculation of DCSA Production Efficiency in China
3.1.1. Time-Varying Characteristics
3.1.2. The DSCA Redundancy
3.2. Measurement and Decomposition of TFP in China’s DSCA
3.2.1. TFP Trend
3.2.2. TFP Regional Heterogeneity
4. Conclusions and Discussion
4.1. Conclusions
4.2. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, M. Developing large-scale deep-sea aquaculture: Problems, models, and implementation paths. Manag. World 2022, 38, 39–60. [Google Scholar]
- Xu, H.; Liu, H.; Xu, Y.F. The current situation and prospects of deep-sea aquaculture development in China. China Fish. 2021, 36–39. [Google Scholar]
- Han, X. Model Experiment on Hydrodynamic Characteristics of a Semi-Submersible Deep Sea Aquaculture Platform; Dalian University of Technology: Dalian, China, 2018. [Google Scholar]
- Dong, S.L. On the Ecological Intensive Development of China’s Aquaculture. Ind. China Fish. Econ. 2015, 33, 4–9. [Google Scholar]
- Liu, H.; Xu, Y.F.; Miao, M. The Development of Deep-Sea Aquaculture in China Based on SWOT Model. Ocean Dev. Manag. 2019, 36, 45–49. [Google Scholar]
- Han, L.M.; Guo, Y.C.; Dong, S.L. Research on Developing the Yellow Sea Cold Water Mass and Establishing a National Offshore Aquaculture Pilot Zone. Pac. J. 2016, 24, 79–85. [Google Scholar]
- Mai, K.S.; Xu, H.; Xue, C.H.; Gu, W.D.; Zhang, W.B.; Li, Z.J.; Yu, B. Strategic research on exploring new space for deep sea aquaculture in China. China Eng. Sci. 2016, 18, 90–95. [Google Scholar]
- Li, D.H.; Han, L.M. Research on the Development of Strategic Emerging Marine Industries in Qingdao. Mar. Dev. Manag. 2016, 33, 18–22. [Google Scholar]
- Liang, P. Feasibility Study on the Investment of H Company’s Deep-Sea Fisheries and Aquaculture Platform Project; Dalian Maritime University: Dalian, China, 2020. [Google Scholar]
- Hou, J.; Zhou, W.F.; Wang, L.M.; Fan, W.; Yuan, Z.H. Spatial analysis of the aquaculture potential in China’s deep and distant seas. Resour. Sci. 2020, 42, 1325–1337. [Google Scholar]
- Liu, Y.X.; Liu, H.; Fang, H.; Xu, H.; Wang, L.M.; Liu, Y.J. The Current Situation and Future Vision of China’s Deep Blue Fisheries Development. J. Fish. 2022, 46, 706–717. [Google Scholar]
- Zhang, Y.; Li, D.H.; Geng, T. Research on the Development Strategy of Deep Blue Fisheries in China under the Background of Climate Change. J. Shandong Univ. Philos. Soc. Sci. Ed. 2018, 06, 121–129. [Google Scholar]
- Zhang, Y.; Chen, Y.S.; Wang, S.P. Empirical Study on the Growth Strategy of Marine Fisheries Economy—Taking Shandong as an Example. J. Shandong Univ. Philos. Soc. Sci. Ed. 2021, 03, 152–160. [Google Scholar]
- Xu, J.; Han, L.M.; Zhang, Y. The industrial characteristics and policy support of deep-sea aquaculture in China. China Fish. Econ. 2021, 39, 98–107. [Google Scholar]
- Kim, J.H.; Choi, K.D.; Kim, S.K. A Data Envelopment Analysis Model for Evaluation of Efficiency of Deep-Sea Fishing Industry. J. Fish. Bus. Adm. 2008, 39, 49–65. [Google Scholar]
- Hassanpour, B.; Ismail, M.M.; Mohamed, Z.; Kamarulzaman, N.H. Sources of productivity growth in rainbow trout aquaculture in Iran: Technical efficiency change or technological progress? Aquac. Econ. Manag. 2010, 14, 218–234. [Google Scholar] [CrossRef]
- Vassdal, T.; Sorensen, H.M.; Holstr, R. Technical Progress and Regress in Norwegian Salmon Farming: A Malmquist Index Approach. Mar. Resour. Econ. 2011, 26, 329–341. [Google Scholar] [CrossRef]
- Kiet, T.N.; Timothy, C.G. Fisher. Efficiency analysis and the effect of pollution on shrimp farms in the Mekong River delta. Aquac. Econ. Manag. 2014, 18, 325–343. [Google Scholar]
- Wang, P.P. Research on Efficiency Evaluation and Improvement Strategies for China’s Seawater Aquaculture Industry Considering Unexpected Output; Ocean University of China: Qingdao, China, 2015. [Google Scholar]
- Ji, J.Y.; Zeng, Q. Analysis of the spatiotemporal evolution of green technology efficiency in China’s marine aquaculture industry based on global DEA. Chin. Manag. Sci. 2016, 24, 774–778. [Google Scholar]
- Qin, H.; Zhang, Y.; Lu, Y.Y. Measurement of Ecological and Economic Efficiency of Seawater Aquaculture in China Based on SBM Model. Agric. Technol. Econ. 2018, 09, 67–79. [Google Scholar]
- Liu, Y. Research on Dynamic efficiency of input and output of mariculture in China—Based on panel data analysis of 9 provinces and cities from 2004 to 2013. Mar. Dev. Manag. 2015, 32, 94–99. [Google Scholar]
- Zhang, Y.; Ji, J.Y. Decomposition and influencing factor analysis of green total factor productivity in China’s aquaculture industry. Sci. Technol. Manag. Res. 2022, 42, 206–213. [Google Scholar]
- Zhang, C.; Zhang, W.H.; Gao, Z.P. Research on Technical Efficiency and Total Factor Productivity of China’s Aquaculture Industry. Agric. Technol. Econ. 2014, 06, 38–45. [Google Scholar]
- Díaz, P.A.; Pérez-Santos, I.; Basti, L.; Garreaud, R.; Pinilla, E.; Barrera, F.; Tello, A.; Schwerter, C.; Arenas-Uribe, S.; Soto-Riquelme, C.; et al. How local and climate change drivers shaped the formation, dynamics and potential recurrence of a massive fish-killer microalgal bloom in Patagonian fjord. Sci. Total Environ. 2023, 865, 161288. [Google Scholar] [CrossRef]
- John, U.; Supraha, L.; Gran-Stadniczeñko, S.; Bunse, C.; Cembella, A.; Eikrem, W.; Janouskovec, J.; Klemm, K.; Kühne, N.; Naustvoll, L.; et al. Spatial and biological oceanographic insights into the massive fish-killing bloom of the haptophyte Chrysochromulina leadbeateri in northern Norway. Harmful Algae 2023, 118, 102287. [Google Scholar] [CrossRef]
- Fisheries and Fisheries Office. Notice of the Ministry of Agriculture and Rural Affairs on Issuing the “14th Five Year Plan for National Fisheries Development”; Ministry of Agriculture and Rural Affairs: Beijing, China, 2022.
- Fisheries Administration Bureau of the Ministry of Agriculture and Rural Affairs. Fishing Industry in China Statistical Yearbook; Agricultural Publishing House: Beijing, China, 2014; pp. 35–61.
- Fisheries Administration Bureau of the Ministry of Agriculture and Rural Affairs. Fishing Industry in China Statistical Yearbook; Agricultural Publishing House: Beijing, China, 2015; pp. 35–61. [Google Scholar]
- Fisheries Administration Bureau of the Ministry of Agriculture and Rural Affairs. Fishing Industry in China Statistical Yearbook; Agricultural Publishing House: Beijing, China, 2016; pp. 35–61.
- Fisheries Administration Bureau of the Ministry of Agriculture and Rural Affairs. Fishing Industry in China Statistical Yearbook; Agricultural Publishing House: Beijing, China, 2017; pp. 35–61.
- Fisheries Administration Bureau of the Ministry of Agriculture and Rural Affairs. Fishing Industry in China Statistical Yearbook; Agricultural Publishing House: Beijing, China, 2018; pp. 35–61.
- Fisheries Administration Bureau of the Ministry of Agriculture and Rural Affairs. Fishing Industry in China Statistical Yearbook; Agricultural Publishing House: Beijing, China, 2019; pp. 35–61.
- Fisheries Administration Bureau of the Ministry of Agriculture and Rural Affairs. Fishing Industry in China Statistical Yearbook; Agricultural Publishing House: Beijing, China, 2020; pp. 35–61.
- Fisheries Administration Bureau of the Ministry of Agriculture and Rural Affairs. Fishing Industry in China Statistical Yearbook; Agricultural Publishing House: Beijing, China, 2021; pp. 35–61.
- Fisheries Administration Bureau of the Ministry of Agriculture and Rural Affairs. Fishing Industry in China Statistical Yearbook; Agricultural Publishing House: Beijing, China, 2022; pp. 35–61.
- Farrell, M.J. The Measurement of Productive Efficiency. J. R. Stat. Soc. Ser. A Gen. 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Sun, C.Z.; Ma, Q.F.; Zhao, L.S. Research on the Changes in Green Efficiency of Water Resources in China Based on the SBM Malmquist Productivity Index Model. Resour. Sci. 2018, 40, 993–1005. [Google Scholar]
- Tone, K. A Slacks-based Measure of Efficiency in Data Envelopment Analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Solow, R.M. Production function and the theory of economic growth. Q. J. Econ. 2000, 70, 65–94. [Google Scholar] [CrossRef]
- Malmquist, S. Index Numbers and Indifference Surfaces. Trab. Estad. 1953, 4, 209–242. [Google Scholar] [CrossRef]
- Caves, D.W.; Christensen, L.R.; Diewert, W.E. The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity. Econometrica 1982, 50, 1393–1414. [Google Scholar] [CrossRef]
Tiered Indicator | Specific Indicator | Unit | Data Source |
---|---|---|---|
Input | Number of employees engaged in DSCA | persons | Chinese National Enterprise Credit Information Publicity System |
Registered capital of DSCA enterprises | thousand RMB | Chinese National Enterprise Credit Information Publicity System | |
Volume of deep-water cages | m3 | China Fishery Statistical Yearbook | |
Output | Output volume of DSCA | ton | China Fishery Statistical Yearbook |
Year | Statistical Measures | Input Indicators | Output Indicator | ||
---|---|---|---|---|---|
Number of Employees Engaged in DSA (Persons) | Registered Capital of DSA Enterprises (Thousand RMB) | Volume of Deep-Water Cages (m3) | Output Volume of DSA (ton) | ||
2013 | mean | 38.1 | 46,307.7 | 519,103.4 | 9235.6 |
standard deviation | 93.1 | 52,743.1 | 523,125.8 | 9335.9 | |
2014 | mean | 40.1 | 50,057.7 | 756,971.6 | 11,092.1 |
standard deviation | 96.3 | 53,224.9 | 565,303.0 | 11,900.5 | |
2015 | mean | 41.3 | 52,807.7 | 1,170,129.0 | 13,216.4 |
standard deviation | 98.0 | 58,411.9 | 1,379,534.0 | 13,719.1 | |
2016 | mean | 43.4 | 54,807.7 | 1,334,471.0 | 14,912.1 |
standard deviation | 97.2 | 57,736.5 | 1,531,034.0 | 15,489.2 | |
2017 | mean | 45.5 | 72,182.7 | 1,523,076.0 | 16,879.0 |
standard deviation | 96.5 | 80,647.3 | 1,966,942.0 | 17,455.1 | |
2018 | mean | 49.8 | 82,495.2 | 1686903.0 | 19,259.1 |
standard deviation | 104.5 | 87,772.4 | 1,901,204.0 | 17,131.2 | |
2019 | mean | 52.6 | 108,745.2 | 2,423,027.0 | 25,668.4 |
standard deviation | 103.7 | 97,115.2 | 2,161,856.0 | 20,204.6 | |
2020 | mean | 54.4 | 126,870.2 | 4,779,485.0 | 36,660.4 |
standard deviation | 103.3 | 134,327.0 | 4,512,130.0 | 32,680.6 | |
2021 | mean | 55.4 | 129,120.2 | 4,959,322.0 | 42,168.1 |
standard deviation | 105.4 | 137,696.4 | 4,097,889.0 | 34,898.8 |
Year | Bohai Sea | Yellow Sea | East China Sea | South China Sea | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Liaoning | Mean | Shandong | Mean | Jiangsu | Zhejiang | Fujian | Mean | Guangdong | Guangxi | Hainan | Mean | |
2013 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.080 | 1.000 | 0.693 | 1.000 | 0.690 | 1.000 | 0.897 |
2014 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.176 | 1.000 | 0.725 | 1.000 | 0.400 | 1.000 | 0.800 |
2015 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.256 | 1.000 | 0.752 | 1.000 | 0.364 | 1.000 | 0.788 |
2016 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.313 | 1.000 | 0.771 | 1.000 | 0.444 | 1.000 | 0.815 |
2017 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.377 | 1.000 | 0.792 | 1.000 | 0.515 | 1.000 | 0.838 |
2018 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.593 | 1.000 | 0.864 | 1.000 | 0.629 | 1.000 | 0.876 |
2019 | 1.000 | 1.000 | 0.453 | 0.453 | 1.000 | 0.309 | 1.000 | 0.770 | 0.582 | 0.323 | 0.725 | 0.543 |
2020 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.479 | 1.000 | 0.826 | 1.000 | 1.000 | 0.778 | 0.926 |
2021 | 1.000 | 1.000 | 0.965 | 0.965 | 1.000 | 0.390 | 1.000 | 0.797 | 1.000 | 1.000 | 0.667 | 0.889 |
Mean | 1.000 | 1.000 | 0.935 | 0.935 | 1.000 | 0.330 | 1.000 | 0.777 | 0.954 | 0.596 | 0.908 | 0.819 |
Region | Province | Efficiency | Slack Variables | |||
---|---|---|---|---|---|---|
Input Redundancy Ratios | Output Insufficiency Ratio | |||||
Number of Employees Engaged in DSCA (Persons) | Volume of Deep-Water Cages (in Cubic Meters) | Registered Capital (in RMB) of DSCA Enterprises | Output Volume (in Tons) of DSCA | |||
Bohai Sea | Liaoning | 1 | 0.00% | 0.00% | 0.00% | 0.00% |
Mean | 1 | 0.00% | 0.00% | 0.00% | 0.00% | |
Yellow Sea | Shandong | 0.935 | 2.56% | 0.00% | 8.01% | 5.50% |
Mean | 0.935 | 2.56% | 0.00% | 8.01% | 5.50% | |
East China Sea | Jiangsu | 1 | 0.00% | 0.00% | 0.00% | 0.00% |
Zhejiang | 0.330 | 21.63% | 36.51% | 20.96% | 68.31% | |
Fujian | 1 | 0.00% | 0.00% | 0.00% | 0.00% | |
Mean | 0.777 | 7.21% | 12.17% | 6.99% | 22.77% | |
South China Sea | Guangdong | 0.954 | 7.02% | 16.34% | 9.40% | 7.33% |
Guangxi | 0.596 | 5.33% | 39.11% | 7.05% | 36.20% | |
Hainan | 0.908 | 9.16% | 30.81% | 14.49% | 19.27% | |
Mean | 0.819 | 7.17% | 28.76% | 10.31% | 20.93% |
Regions | Provinces | 2013–2014 | 2014–2015 | 2015–2016 | 2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | 2020–2021 | Geomean | Average Rate of Change | Standard Deviation |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bohai Sea | Liaoning | 0.760 | 1.591 | 1.041 | 1.001 | 0.798 | 2.221 | 0.477 | 1.014 | 1.010 | 1% | 0.549 |
Mean | 0.760 | 1.591 | 1.041 | 1.001 | 0.798 | 2.221 | 0.477 | 1.014 | 1.010 | 1% | 0.549 | |
Yellow Sea | Shandong | 0.762 | 1.196 | 0.971 | 0.646 | 0.744 | 0.973 | 0.783 | 1.043 | 0.873 | −12.7% | 0.185 |
Mean | 0.762 | 1.196 | 0.971 | 0.646 | 0.744 | 0.973 | 0.783 | 1.043 | 0.873 | −12.7% | 0.185 | |
East China Sea | Jiangsu | 1.141 | 1.167 | 1.218 | 0.627 | 0.801 | 0.967 | 1.258 | 0.959 | 0.994 | −0.6% | 0.221 |
Zhejiang | 2.039 | 1.643 | 1.154 | 1.165 | 1.523 | 1.057 | 1.188 | 0.946 | 1.300 | 30% | 0.366 | |
Fujian | 1.195 | 1.052 | 0.807 | 1.024 | 0.781 | 2.687 | 0.577 | 1.065 | 1.037 | 3.7% | 0.652 | |
Mean | 1.458 | 1.287 | 1.060 | 0.939 | 1.035 | 1.570 | 1.008 | 0.990 | 1.110 | 11% | 0.239 | |
South China Sea | Guangdong | 0.685 | 1.073 | 1.104 | 1.466 | 0.687 | 0.583 | 1.090 | 1.193 | 0.942 | −5.8% | 0.304 |
Guangxi | 0.653 | 0.961 | 1.117 | 0.934 | 1.247 | 0.848 | 1.327 | 1.205 | 1.013 | 1.3% | 0.228 | |
Hainan | 0.315 | 0.689 | 1.094 | 0.974 | 0.867 | 0.832 | 1.037 | 1.023 | 0.805 | −19.5% | 0.254 | |
Mean | 0.551 | 0.908 | 1.105 | 1.125 | 0.934 | 0.754 | 1.151 | 1.140 | 0.920 | −8% | 0.217 |
Region | Provinces | 2013–2014 | 2014–2015 | 2015–2016 | 2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | 2020–2021 | Geomean | Average Rate of Change | Standard Deviation |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bohai Sea | Liaoning | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0 | 0 |
Mean | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0 | 0 | |
Yellow Sea | Shandong | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.453 | 2.208 | 0.965 | 0.995 | −0.5% | 0.494 |
Mean | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.453 | 2.208 | 0.965 | 0.995 | −0.5% | 0.494 | |
East China Sea | Jiangsu | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0 | 0 |
Zhejiang | 2.207 | 1.454 | 1.223 | 1.207 | 1.571 | 0.520 | 1.552 | 0.814 | 1.219 | 21.9% | 0.513 | |
Fujian | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0 | 0 | |
Mean | 1.402 | 1.151 | 1.074 | 1.069 | 1.190 | 0.840 | 1.184 | 0.938 | 1.073 | 7.3% | 0.171 | |
South China Sea | Guangdong | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.582 | 1.718 | 1.000 | 1.000 | 0 | 0.311 |
Guangxi | 0.580 | 0.910 | 1.220 | 1.159 | 1.221 | 0.513 | 3.099 | 1.000 | 1.047 | 4.7% | 0.810 | |
Hainan | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.725 | 1.073 | 0.857 | 0.951 | −4.9% | 0.111 | |
Mean | 0.860 | 0.970 | 1.073 | 1.053 | 1.074 | 0.607 | 1.963 | 0.952 | 0.999 | −0.1% | 0.393 |
Region | Provinces | 2013–2014 | 2014–2015 | 2015–2016 | 2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | 2020–2021 | Geomean | Average Rate of Change | Standard Deviation |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bohai Sea | Liaoning | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0 | 0 |
Mean | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0 | 0 | |
Yellow Sea | Shandong | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.993 | 1.007 | 0.982 | 0.998 | −0.2% | 0.007 |
Mean | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.993 | 1.007 | 0.982 | 0.998 | −0.2% | 0.007 | |
East China Sea | Jiangsu | 1.277 | 1.161 | 1.254 | 0.511 | 1.196 | 0.437 | 5.091 | 0.798 | 1.092 | 9.2% | 1.503 |
Zhejiang | 0.832 | 1.027 | 1.194 | 1.009 | 0.986 | 0.789 | 1.492 | 0.999 | 1.022 | 2.2% | 0.220 | |
Fujian | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0 | 0 | |
Mean | 1.036 | 1.063 | 1.149 | 0.840 | 1.061 | 0.742 | 2.528 | 0.932 | 1.038 | 3.8% | 0.565 | |
South China Sea | Guangdong | 0.617 | 1.068 | 1.137 | 1.194 | 1.000 | 0.411 | 2.717 | 1.000 | 1.000 | 0 | 0.691 |
Guangxi | 1.066 | 0.956 | 1.041 | 0.857 | 1.083 | 0.592 | 1.923 | 1.000 | 1.014 | 1.4% | 0.382 | |
Hainan | 0.745 | 0.634 | 1.234 | 1.076 | 0.873 | 0.370 | 4.167 | 1.023 | 0.982 | −1.8% | 1.204 | |
Mean | 0.809 | 0.886 | 1.137 | 1.042 | 0.985 | 0.458 | 2.936 | 1.008 | 0.999 | −0.1% | 0.748 |
Region | Provinces | 2013–2014 | 2014–2015 | 2015–2016 | 2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | 2020–2021 | Geomean | Average Rate of Change | Standard Deviation |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bohai Sea | Liaoning | 0.760 | 1.591 | 1.041 | 1.001 | 0.798 | 2.221 | 0.477 | 1.014 | 1.010 | 1.0% | 0.549 |
Mean | 0.760 | 1.591 | 1.041 | 1.001 | 0.798 | 2.221 | 0.477 | 1.014 | 1.010 | 1.0% | 0.549 | |
Yellow Sea | Shandong | 0.762 | 1.196 | 0.971 | 0.646 | 0.744 | 2.164 | 0.352 | 1.102 | 0.879 | −12.1% | 0.544 |
Mean | 0.762 | 1.196 | 0.971 | 0.646 | 0.744 | 2.164 | 0.352 | 1.102 | 0.879 | −12.1% | 0.544 | |
East China Sea | Jiangsu | 0.894 | 1.005 | 0.971 | 1.228 | 0.670 | 2.214 | 0.247 | 1.202 | 0.910 | −9.0% | 0.565 |
Zhejiang | 1.111 | 1.101 | 0.790 | 0.957 | 0.983 | 2.574 | 0.513 | 1.165 | 1.043 | 4.3% | 0.613 | |
Fujian | 1.195 | 1.052 | 0.807 | 1.024 | 0.781 | 2.687 | 0.577 | 1.065 | 1.037 | 3.7% | 0.652 | |
Mean | 1.067 | 1.053 | 0.856 | 1.070 | 0.811 | 2.492 | 0.446 | 1.144 | 0.997 | −0.3% | 0.599 | |
South China Sea | Guangdong | 1.110 | 1.005 | 0.971 | 1.228 | 0.687 | 2.434 | 0.233 | 1.193 | 0.942 | −5.8% | 0.627 |
Guangxi | 1.057 | 1.105 | 0.880 | 0.940 | 0.944 | 2.791 | 0.223 | 1.205 | 0.953 | −4.7% | 0.729 | |
Hainan | 0.423 | 1.086 | 0.886 | 0.905 | 0.993 | 3.100 | 0.232 | 1.166 | 0.863 | −13.7% | 0.871 | |
Mean | 0.863 | 1.065 | 0.912 | 1.024 | 0.875 | 2.775 | 0.229 | 1.188 | 0.919 | −8.1% | 0.729 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, M.-F.; Fang, X.-H. Efficiency Analysis of China Deep-Sea Cage Aquaculture Based on the SBM–Malmquist Model. Fishes 2023, 8, 529. https://doi.org/10.3390/fishes8100529
Zhang Y, Li M-F, Fang X-H. Efficiency Analysis of China Deep-Sea Cage Aquaculture Based on the SBM–Malmquist Model. Fishes. 2023; 8(10):529. https://doi.org/10.3390/fishes8100529
Chicago/Turabian StyleZhang, Ying, Meng-Fei Li, and Xiao-Han Fang. 2023. "Efficiency Analysis of China Deep-Sea Cage Aquaculture Based on the SBM–Malmquist Model" Fishes 8, no. 10: 529. https://doi.org/10.3390/fishes8100529
APA StyleZhang, Y., Li, M.-F., & Fang, X.-H. (2023). Efficiency Analysis of China Deep-Sea Cage Aquaculture Based on the SBM–Malmquist Model. Fishes, 8(10), 529. https://doi.org/10.3390/fishes8100529