Has Finance Promoted High-Quality Development in China’s Fishery Economy?—A Perspective on Formal and Informal Finance
Abstract
:1. Introduction
2. Literature Review
2.1. Relevant Theoretical Foundations
2.2. Key Issues in Financial Support for China’s Fishery Economy
2.3. The Financial Support System for China’s Fishery Economy
3. Methods and Data
3.1. Model Setting
3.1.1. Baseline Model
3.1.2. Mediation Effect Model
3.1.3. Threshold Model
3.2. Variables
3.2.1. Dependent Variables
3.2.2. Independent Variables
3.2.3. Mediating Variable
3.2.4. Threshold Variable
3.2.5. Control Variables
3.3. Datas
4. Results
4.1. Baseline Estimations
4.2. Robustness Test
4.2.1. Substituting the Independent Variables
4.2.2. Changing the Estimation Method of the Dependent Variables
5. Further Analysis
5.1. Threshold Effect of Economic Scale
5.1.1. Threshold Effect to Formal Finance
5.1.2. Threshold Effect to Informal Finance
5.2. The Mediating Effect of Industrial Uncertainty
6. Discussion
6.1. Support of Formal Finance for High-Quality Development in China’s Fishery Economy
6.2. Support of Informal Finance for High-Quality Development in China’s Fishery Economy
6.3. Complementary Effects of Formal and Informal Finance
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Z.Y.; Zhang, D. The high-quality development of Chinese fisheries from the perspective of the all-encompassing approach to food: Current situation, problems and improvement strategies. Chin. Fish. Econ. 2023, 41, 1–13. [Google Scholar] [CrossRef]
- Lu, Q.; Chen, X.J. Development of Chinese fishery industry in 40 years of reform and opening up and production forecast in the 14th five-year plan. J. Shanghai Ocean. Univ. 2021, 30, 339–347. [Google Scholar] [CrossRef]
- Shaw, E.S. Financial Deepening in Economic Development; Oxford University Press: New York, NY, USA, 1973. [Google Scholar]
- McKinnon, R.I. The Order of Economic Liberalization: Financial Control in the Transition to a Market Economy; Johns Hopkins University Press: Baltimore, MD, USA, 1993. [Google Scholar]
- Shaw, P.E.; Newby, L. Sustainable Wealth Creation at the Local Level in an Age of Globalization. Reg. Stud. 1998, 32, 863–871. [Google Scholar] [CrossRef]
- Lin, J.Y.; Sun, X.F.; Jiang, Y. Toward a theory of optimal financial structure in economic development. Econ. Res. J. 2009, 21, 45–49. Available online: https://ssrn.com/abstract=1471136 (accessed on 12 September 2024).
- Lin, J.Y.; Zhang, Q.; Liu, M.X. Financial structure and economic growth: The case of manufacturing industry. J. World Econ. 2003, 1, 3–21. Available online: http://www.escience.cn/system/download/64000 (accessed on 12 September 2024).
- Lin, J.Y.; Sun, X. Banking structure and economic growth: Evidence from China. Front. Econ. China 2009, 4, 479–504. [Google Scholar] [CrossRef]
- Liang, P.P.; Yu, L.P. Empirical study on the fishery performance in China: Based on 1999–2010 panel data. Sci.-Technol. Manag. 2014, 16, 21–26. [Google Scholar] [CrossRef]
- Pomeroy, R.; Arango, C.; Lomboy, C.G.; Box, S. Financial Inclusion to Build Economic Resilience in Small-scale Fisheries. Mar. Policy 2020, 118, 103982. [Google Scholar] [CrossRef]
- Shiiba, N.; Wu, H.H.; Huang, M.C.; Tanaka, H. How Blue Financing can Sustain Ocean Conservation and Development: A Proposed Conceptual Framework for Blue Financing Mechanism. Mar. Policy 2022, 139, 104575. [Google Scholar] [CrossRef]
- Badriyah, S.M.; Mahmudah, S.; Soemarmi, A.; Kamello, T. Leasing Agreement on Financing SMEs in Fisheries Industry. J. Leg. Ethical Regul. Issues 2019, 22, 1–7. Available online: https://www.xueshufan.com/publication/2962967357 (accessed on 12 September 2024).
- Nazir, I.; Chauhan, R.S.; Khati, A.; Arya, P. Role of Credit for the Upliftment of the Fisheries Sector. Int. J. Fish. Aquat. Stud. 2018, 6, 1–4. Available online: https://www.fisheriesjournal.com/archives/2018/vol6issue2/PartA/6-1-15-444.pdf (accessed on 12 September 2024).
- Zheng, H.; Li, J.; Zhao, X. How Does Financial Policy Support the Development of China’s Fishery? Characteristics, experience and prospects. Mar. Policy 2021, 132, 104678. [Google Scholar] [CrossRef]
- Lu, C. The Fishery Industrial Structure in China Based on the Application of Shift—Share Analysis. Asian Agric. Res. 2016, 8, 8. [Google Scholar] [CrossRef]
- Cao, L.; Chen, Y.; Dong, S.; Hanson, A.; Huang, B.O.; Leadbitter, D.; Little, D.C.; Pikitch, E.K.; Qiu, Y.; Sadovy de Mitcheson, Y.; et al. Opportunity for Marine Fisheries Reform in China. Proc. Natl. Acad. Sci. USA 2017, 114, 435–442. [Google Scholar] [CrossRef]
- Qiao, X. Financial support policy for fishery development in China. Chin. Fish. Econ. 2009, 01, 59–63. [Google Scholar] [CrossRef]
- Wang, D.C.; Wu, X.; Wang, L.L. Risk Control of Marine Fishery Based on Financial Instrument Innovation. Ocean. Dev. Manag. 2017, 34, 50–54. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, T.; Chen, Z.H. On the Support of Capital Market to Marine Economy. J. Shenyang Agric. Univ. (Soc. Sci. Ed.) 2018, 20, 184–189. Available online: https://www.ncpssd.cn/cccd9af4-161a-4277-820c-0a89d2094d4f (accessed on 12 September 2024).
- An, Q.Q.; Xiao, Y. Research on the relationship between fishery loans and the growth of marine fishery economy—An empirical analysis based on VAR model. Ocean. Dev. Manag. 2015, 32, 75–78. [Google Scholar] [CrossRef]
- Xiong, D.P.; Sun, J. The fishery economic growth effect of China’s financial development—Provincial panel data GMM estimation from the perspectives of per capita GDP and labor productivity. J. Agrotech. Econ. 2014, 03, 97–107. Available online: https://www.ncpssd.cn/ab4ab6c9-37dd-42ca-8f81-800c56af5729 (accessed on 15 September 2024).
- Yu, T.; Zhao, W.L. An empirical analysis of the impact of financial development on the upgrading of China’s fishery industrial structure. J. Dalian Marit. Univ. (Soc. Sci. Ed.) 2015, 14, 20–23. Available online: https://www.ncpssd.cn/fa3a108e-362b-47fa-9da4-7dcd196035b8 (accessed on 15 September 2024).
- Su, C.-W.; Song, Y.; Umar, M. Financial Aspects of Marine Economic Growth: From the Perspective of Coastal Provinces and Regions in China. Ocean Coast. Manag. 2021, 204, 105550. [Google Scholar] [CrossRef]
- Lu, M.Q.; Yang, L. Study on supply-path of fishery finance based on requirement. J. Financ. Dev. Res. 2008, 02, 68–69. [Google Scholar] [CrossRef]
- Li, H.S.; Shan, M.J. Analysis of informal financial efficiency and its regional differences in China’s rural economy. Seeker 2014, 63–67. Available online: https://www.ncpssd.cn/1f13a787-898d-4c83-921f-7cccced7b266 (accessed on 15 September 2024).
- Wang, L.; Song, K.; Chen, X. Research on the impact of rural informal finance on farming, forestry, animal husbandry and fishery. World Agric. 2017, 10, 210–215. [Google Scholar] [CrossRef]
- Chen, Z.G.; Zhang, Y. Has rural finance promoted the agriculture large-scale operation in China: Based on the survey data of two national family farm demonstration bases. Issues Agric. Econ. 2022, 5, 83–97. [Google Scholar] [CrossRef]
- Zhao, H.H.; Huang, A.S. Influence of Rural Informal Finance on the Development of Forestry Industry—Empirical Analysis Based on 30 Chinese Provincial Panel Data. For. Econ. 2022, 44, 50–60. [Google Scholar] [CrossRef]
- Liu, X.Z.; Cao, P.Q. Informal Finance, Industrial Transformation and High-quality Economic Development. J. Stat. Inf. 2024, 39, 16–28. Available online: http://www.cnki.com.cn/Article/CJFDTotal-TJLT202408002.htm (accessed on 10 September 2024).
- Fu, X.-M.; Ku, H.-L.; Wu, W.-Y.; Wang, L.-X.; Chen, H.-X.; Lin, C.-Y.; Liu, Y. Spatial-temporal Differentiation and Convergence Analysis of Marine Fishery Innovation Ability in China. Fish. Res. 2022, 254, 106393. [Google Scholar] [CrossRef]
- Wang, S.; Lu, B.; Yin, K. Financial Development, Productivity and High-quality Development of the Marine Economy. Mar. Policy 2021, 130, 104553. [Google Scholar] [CrossRef]
- Wang, L.; Li, T. Marine Fisheries governance in China: Low-efficacy Policies and Future Adjustments. Coast. Manag. 2021, 49, 313–333. [Google Scholar] [CrossRef]
- Wen, Z.; Chang, L.; Hau, K.T.; Liu, H. Testing and application of the mediating effects. Acta Psychol. Sin. 2004, 36, 614–620. Available online: https://journal.psych.ac.cn/acps/EN/Y2004/V36/I05/614 (accessed on 10 September 2024).
- Hansen, B.E. Threshold Effects in Non-dynamic Panels: Estimation, Testing, and Inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Xie, W.M.; Fang, H.X. Financial development, financing constrains and firms’ R&D investment. J. Financ. Res. 2011, 5, 171–183. Available online: https://www.ncpssd.cn/a818ea1d-7f82-42ad-b920-cf809790dca3 (accessed on 13 September 2024).
- Yao, Y.J.; Dong, G.F. Financial Development Level vs. Financial Structure: Which Is More Important for Easing Financing Constraints of SMEs? Evidence from China’s Companies Listed on SME Board. Financ. Res. 2015, 4, 148–161. Available online: https://www.ncpssd.cn/cb080a30-8680-41bb-a379-86cea38c1d3c (accessed on 11 September 2024).
- Wang, Y.C.; Lin, B. Financial Intermediary, Informal Finance and Cash Value. Financ. Res. 2008, 03, 177–199. Available online: https://www.ncpssd.cn/55bc8f1c-acd5-4d59-9d59-718bbad0c1bb (accessed on 23 September 2024).
- Sun, Y.K.; Feng, Q. Research on the relationship between rural financial development and the income gap of farmers in China—From the perspective of rural formal finance and informal finance as a whole. J. Agrotech. Econ. 2014, 11, 65–74. [Google Scholar] [CrossRef]
- Nie, G.H.; Qiu, Y.D.; Long, W.Q. Informal finance, technological innovation and upgrading of industrial structure. Stud. Sci. Sci. 2018, 36, 1404–1413. [Google Scholar] [CrossRef]
- Ha, G.R.; Choi, S.B. The Impact of Technology Innovation Activity on Managerial Efficiency: An Inverted U shaped Model. J. Korean Soc. Qual. Manag. 2018, 46, 551–568. [Google Scholar] [CrossRef]
- Ma, S.; Kang, B.; Li, J.; Sun, P.; Liu, Y.; Ye, Z.; Tian, Y. Climate Risks to Fishing Species and Fisheries in the China Seas. Sci. Total. Environ. 2023, 857, 159325. [Google Scholar] [CrossRef]
- Lei, W.; Jing, C.; Jing, H. Local Financial Supervision Reform and the Return of Entity Enterprises to Their Basics: Based on the Quasi-natural Experiment of Local Financial “Office-Promoted-to-Bureau”. J. Financ. Econ. 2024, 50, 19–33. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.B. How Does Digital Inclusive Finance Promote the High-quality Development of Agriculture? on Intermediary and Threshold Mechanism. J. Manag. 2022, 35, 72–87. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Lin, Y.F.; Gong, Q. Firm size, bank size and optimal banking structure: From the perspective of new structural economics. Manag. World 2019, 35, 31–47+206. [Google Scholar] [CrossRef]
- Peng, Y.C.; Han, X.; Li, J.J. Economic Policy Uncertainty and Corporate Financialization. China Ind. Econ. 2018, 01, 137–155. [Google Scholar] [CrossRef]
- Ding, Z.G.; Tan, L.L.; Zhao, J. The effect of rural financial development on poverty reduction. Issues Agric. Econ. 2011, 32, 72–77+112. Available online: https://www.ncpssd.cn/1c532439-ff2e-4c18-8133-8239380a4687 (accessed on 30 September 2024).
- Zhou, Y.S.; Li, Y. Analysis of the impact of rural microfinance companies on formal credit rationing for rural small and micro enterprises—Based on a survey of rural small and micro enterprises in northern Jiangsu. Chin. Rural. Econ. 2013, 01, 85–96. Available online: https://www.ncpssd.cn/4e685cca-230d-4524-8391-a6c8d2750e22 (accessed on 13 September 2024).
- Zhang, L.; Zhang, W.K. Study on the Efficiency and Influencing Factors of Finance Serves the Growth of Real Economy. J. Macro-Qual. Res. 2017, 5, 47–60. [Google Scholar] [CrossRef]
- Kuang, X.; Liu, H.; Guo, G.; Cheng, H. The Nonlinear Effect of Financial and Fiscal Policies on Poverty Alleviation in China—An Empirical Analysis of Chinese 382 Impoverished Counties with PSTR Models. PLoS ONE 2019, 14, e0224375. [Google Scholar] [CrossRef]
- Chien, M.-S.; Cheng, C.-Y.; Kurniawati, M.A. The Non-linear Relationship Between ICT Diffusion and Financial Development. Telecommun. Policy 2020, 44, 102023. [Google Scholar] [CrossRef]
- Rangeley, R.W.; Davies, R.W. Raising the “Sunken Billions”: Financing the Transition to Sustainable Fisheries. Mar. Policy 2012, 36, 1044–1046. [Google Scholar] [CrossRef]
- Zhao, K.; Gaines, S.D.; Molinos, J.G.; Zhang, M.; Xu, J. Climate Change and Fishing are Pulling the Functional Diversity of the World’s Largest Marine Fisheries to Opposite Extremes. Glob. Ecol. Biogeogr. 2022, 31, 1616–1629. [Google Scholar] [CrossRef]
- Xue, Y.; Ding, L.; Lai, K.-H. How does Index-based Insurance Support Marine Disaster Risk Reduction in China? Evolution, Challenges and Policy Responses. Ocean Coast. Manag. 2023, 235, 106477. [Google Scholar] [CrossRef]
- Tian, P.; Li, J.L.; Cao, L.D.; Liu, Y.C.; Zhang, H.T. Evaluation of fishery economic efficiency and development trend forecast in China. Chin. J. Agric. Resour. Reg. Plan. 2023, 44, 160–172. Available online: https://www.ncpssd.cn/3f477d89-511e-4bda-bd02-ebd95767fb3e (accessed on 17 September 2024).
- Zhang, B.; Weng, C. The poverty reduction effect of rural financial development—Spatial spillover and threshold characteristics. J. Agrotech. Econ. 2015, 9, 37–47. [Google Scholar] [CrossRef]
- Chen, F.; Xue, Y. Economic Growth Effect of Private Finance: Optimal Scale and Space-Time Differences. Mod. Econ. Sci. 2022, 44, 76–87. Available online: https://www.ncpssd.cn/87c36def-def0-4c8e-a898-e5d8f84f898f (accessed on 19 September 2024).
Indicator | Description | Attribute | IUV | Weight |
---|---|---|---|---|
The Fishery Fundamental Security Index (YS) | Total Fishery Economic Output (10,000 CNY) | + | 0.1027 | 4.27% |
Aquatic Product Output (tons) | + | 0.0721 | 3.00% | |
Fishery Employment (people) | + | 0.0626 | 2.60% | |
Total Aquatic Products Used for Processing (tons) | + | 0.1146 | 4.77% | |
Fishery Value Added (10,000 CNY) | + | 0.0902 | 3.75% | |
Motorized Fishing Vessels (gross tonnage) | + | 0.0563 | 2.34% | |
Aquaculture Area (hectares) | + | 0.0404 | 1.68% | |
Released Fish Species (tons) | + | 0.0634 | 2.63% | |
Fishery Growth Rate (%) | + | 0.0775 | 3.22% | |
The Fishery Sustainability Index (YQ) | Proportion of Fishery Circulation and Service Industry Output (%) | + | 0.0957 | 3.98% |
Proportion of Fishery Industry and Construction Industry Output (%) | + | 0.1119 | 4.65% | |
Proportion of Aquaculture Output (%) | + | 0.0757 | 3.15% | |
Aquatic Product Output per Fishery Law Enforcement Vessel (tons/vessel) | + | 0.0468 | 1.95% | |
Aquaculture Output per Aquaculture Area (tons/hectare) | + | 0.0899 | 3.74% | |
Proportion of Intermediate Consumption in Fisheries (%) | − | 0.025 | 1.04% | |
Funding for Aquatic Technology Promotion Institutions per Fishery Population (10,000 CNY) | + | 0.131 | 5.45% | |
Proportion of Aquatic Product Losses (%) | − | 0.0577 | 2.40% | |
Per Capita Aquatic Product Output (tons) | + | 0.0843 | 3.50% | |
The Fishery Comprehensive Efficiency Index (YE) | Average Aquatic Product Processing Volume per Enterprise (tons) | + | 0.0995 | 4.14% |
Per Capita Fishery Output Value (10,000 CNY) | + | 0.1181 | 4.91% | |
Per Capita Net Income of the Fishery Population (CNY) | + | 0.1363 | 5.67% | |
Aquatic Product Export Value (10,000 CNY) | + | 0.1167 | 4.85% | |
Composition of Fishery Value Added (%) | + | 0.0818 | 3.40% | |
Recreational Fishery Output (10,000 CNY) | + | 0.121 | 5.03% | |
Per Capita Aquatic Product Consumption in Rural Areas (kilograms) | + | 0.153 | 6.36% | |
Urban Residents’ Net Income relative to Fishery Population Net Income | − | 0.1321 | 5.49% | |
Total Fishery Economic Output as a Percentage of Regional GDP (%) | + | 0.0487 | 2.02% |
Variable | Observation | Min | Max | Mean | Std. Dev | Med |
---|---|---|---|---|---|---|
YT | 435 | 3.318 | 60.486 | 16.63 | 13.206 | 10.812 |
YS | 435 | 0.036 | 33.308 | 6.923 | 8.105 | 2.952 |
YQ | 435 | 1.378 | 10.596 | 3.599 | 1.357 | 3.245 |
YE | 435 | 0.156 | 22.061 | 5.045 | 4.715 | 3.064 |
XN | 435 | 0.552 | 2.648 | 1.238 | 0.434 | 1.162 |
XU | 435 | 0.256 | 7.525 | 1.296 | 1.017 | 1.025 |
DF | 435 | 1.488 | 4147.588 | 624.329 | 936.483 | 166.598 |
XM | 435 | 0.002 | 0.144 | 0.018 | 0.022 | 0.011 |
LnGDP | 435 | 3.762 | 5.217 | 4.592 | 0.268 | 4.611 |
Lnwater | 435 | 1.715 | 3.751 | 3.019 | 0.518 | 3.197 |
Ind3 | 435 | 0.286 | 0.839 | 0.448 | 0.099 | 0.427 |
Urbr | 435 | 0.275 | 0.896 | 0.56 | 0.138 | 0.543 |
Railp | 435 | 0.136 | 5.905 | 0.969 | 0.821 | 0.696 |
Lnedu | 435 | 2.348 | 3.716 | 3.117 | 0.281 | 3.188 |
XN | XU | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
XN | −4.201 *** (1.015) | −2.625 *** (0.636) | 0.043 (0.246) | −1.635 *** (0.432) | ||||
XU | −1.695 *** (0.651) | −0.915 ** (0.383) | −0.086 (0.078) | −0.696 *** (0.250) | ||||
LnGDP | −12.70 *** (4.157) | −8.606 *** (2.603) | 1.771 * (1.008) | −5.903 *** (1.771) | 93.299 *** (9.315) | 63.751 *** (5.479) | 4.897 *** (1.110) | 24.745 *** (3.580) |
Lnwater | −1.064 (1.137) | −0.876 (0.712) | 0.261 (0.276) | −0.443 (0.484) | 7.201 *** (1.443) | 4.088 *** (0.849) | 0.074 (0.172) | 3.044 *** (0.555) |
Ind3 | −11.666 ** (5.529) | −3.717 (3.462) | −2.257 * (1.340) | −5.708 ** (2.355) | 4.482 (13.362) | 4.562 (7.859) | 2.324 (1.592) | −2.357 (5.135) |
Urbr | 6.742 (7.927) | 17.527 *** (4.964) | −13.517 *** (1.921) | 2.799 (3.376) | −49.10 *** (15.954) | −42.864 *** (9.384) | −3.039 * (1.901) | −3.274 (6.132) |
Railp | −1.717 ** (0.647) | −1.433 *** (0.405) | 0.474 *** (0.157) | −0.752 *** (0.276) | −4.047 *** (0.790) | −2.413 *** (0.465) | −0.140 (0.094) | −1.496 *** (0.304) |
Lnedu | 5.203 (3.756) | 4.319 * (2.352) | −1.369 (0.910) | 2.265 (1.580) | −61.279 *** (9.179) | −46.043 *** (5.399) | −0.551 (1.094) | −14.762 *** (3.528) |
Constant | 69.825 *** (16.623) | 32.029 *** (10.409) | 6.860 * (4.029) | 29.974 *** (7.080) | −208.781 *** (35.731) | −127.053 *** (21.016) | −16.761 *** (4.258) | −66.208 *** (13.733) |
YEAR | YES | YES | YES | YES | YES | YES | YES | YES |
REGION | YES | YES | YES | YES | YES | YES | YES | YES |
N | 435 | 435 | 435 | 435 | 435 | 435 | 435 | 435 |
Adj R2 | 0.973 | 0.973 | 0.847 | 0.963 | 0.948 | 0.959 | 0.827 | 0.948 |
Variable | Observation | Min | Max | Mean | Std. Dev | Med |
---|---|---|---|---|---|---|
P-XN | 435 | 0.052 | 0.454 | 0.210 | 0.093 | 0.198 |
P-XU | 435 | 0.011 | 0.199 | 0.060 | 0.032 | 0.054 |
XN | XU | |||
---|---|---|---|---|
(9) | (10) | (11) | (12) | |
YT | −10.133 (9. 837) | −11.002 * (10.135) | −7.687 (7.920) | −8.148 * (6.651) |
YS | −6.334 (5.569) | −7.585 * (6.461) | −10.427 (10.553) | −11.558 * (9.441) |
YQ | −0.722 (0.954) | 0.694 * (0.373) | −6.097 (6.248) | −9.110 * (6.166) |
YE | −14.548 ** (9.536) | −15.772 ** (10.285) | −17.476 ** (9.479) | −16.104 ** (10.546) |
Controls | NO | YES | NO | YES |
Constant | 66.278 ** (40.235) | 71.588 ** (47.226) | −36.454 ** (9.299) | −39.774 ** (12.049) |
YEAR | YES | YES | YES | YES |
REGION | YES | YES | YES | YES |
N | 435 | 435 | 435 | 435 |
Adj R2 | 0.743 | 0.751 | 0.589 | 0.661 |
Variable | Observation | Min | Max | Mean | Std. Dev | Med |
---|---|---|---|---|---|---|
R-YT | 435 | 3.721 | 62.347 | 18.455 | 14.375 | 12.132 |
R-YS | 435 | 0.054 | 37.318 | 8.319 | 9.191 | 4.256 |
R-YQ | 435 | 2.558 | 13.422 | 5.731 | 1.474 | 4.85 |
R-YE | 435 | 0.656 | 25.18 | 7.114 | 5.365 | 3.717 |
XN | XU | |||
---|---|---|---|---|
(13) | (14) | (15) | (16) | |
R-YT | −5.533 *** (1.205) | −5.745 *** (1.315) | −1.221 * (0.831) | −1.147 ** (0.752) |
R-YS | −1.332 ** (0.718) | −2.168 *** (0.915) | −1.356 * (0.974) | −1.117 ** (0.745) |
R-YQ | −0.102 (0.257) | −0.148 * (0.116) | −0.154 ** (0.077) | −0.214 ** (0.088) |
R-YE | −0.997 *** (0.413) | −0.889 ** (0.438) | −0.512 ** (0.279) | −0.731 ** (0.330) |
Controls | NO | YES | NO | YES |
Constant | 9.885 *** (2.577) | 12.891 *** (5.155) | −3.136 *** (0.819) | 6.647 *** (4.866) |
YEAR | YES | YES | YES | YES |
REGION | YES | YES | YES | YES |
N | 435 | 435 | 435 | 435 |
Adj R2 | 0.832 | 0.903 | 0.785 | 0.876 |
Threshold Number | F | P | 10% CV | 5% CV | 1% CV |
---|---|---|---|---|---|
1 | 52.27 | 0.010 *** | 32.430 | 38.532 | 52.267 |
2 | 34.86 | 0.127 | 55.80 | 97.015 | 151.613 |
3 | 123.76 | 0.023 ** | 60.878 | 77.969 | 132.639 |
(17) YT | (18) YS | (19) YQ | (20) YE | |
---|---|---|---|---|
DF ≤ 1083.4 | −1.397 ** (0.638) | −1.355 *** (0.383) | 0.356 (0.248) | −0.411 (0.280) |
1083.4 < DF ≤ 2329.8 | 2.903 *** (0.721) | 1.306 *** (0.432) | 0.326 (0.280) | 1.262 *** (0.316) |
2329.8 < DF ≤ 3406.8 | 7.306 *** (0.774) | 4.006 *** (0.465) | 0.653 * (0.301) | 3.036 *** (0.339) |
DF > 3406.8 | 11.310 *** (0.943) | 5.989 *** (0.566) | 0.819 ** (0.366) | 5.324 *** (0.413) |
Controls | YES | YES | YES | YES |
Constant | −15.074 ** (5.950) | 1.160 (3.573) | −10.348 *** (2.312) | −6.951 *** (2.606) |
N | 435 | 435 | 435 | 435 |
Adj R2 | 0.796 | 0.755 | 0.339 | 0.768 |
(21) YT | (22) YS | (23) YQ | (24) YE | |
---|---|---|---|---|
DF ≤ 1083.4 | −0.05 (0.187) | 0.124 (0.091) | −0.146 (0.095) | −0.027 (0.108) |
1083.4 < DF ≤ 2329.8 | −0.954 * (0.540) | −0.755 *** (0.264) | 0.598 ** (0.276) | −0.786 ** (0.314) |
2329.8 < DF ≤ 3406.8 | 1.319 ** (0.635) | 1.056 *** (0.310) | 0.199 (0.324) | 0.073 (0.369) |
DF > 3406.8 | 7.302 *** (1.060) | 4.416 *** (0.517) | −0.431 (0.541) | 3.588 *** (0.615) |
Controls | YES | YES | YES | YES |
Constant | −53.812 *** (7.986) | −9.559 ** (3.896) | −32.274 *** (4.076) | −13.268 *** (4.635) |
N | 435 | 435 | 435 | 435 |
Adj R2 | 0.695 | 0.566 | 0.435 | 0.603 |
Path | c | a | b | a × b | Boot SE | z | 95% BootCI | c’ | Type |
---|---|---|---|---|---|---|---|---|---|
XN => XM => YT | −7.255 *** | −0.013 *** | 146.973 *** | −1.968 | 0.018 | −108.634 | −0.104~−0.033 | −5.286 ** | partial |
XN => XM => YS | −6.319 *** | −0.013 *** | 80.864 *** | −1.083 | 0.017 | −63.986 | −0.095~−0.029 | −5.236 *** | partial |
XN => XM => YQ | 0.388 | −0.013 *** | 14.174 *** | −0.19 | 0.019 | −10.041 | −0.105~−0.031 | 0.578 ** | masking |
XN => XM => YE | −1.35 | −0.013 *** | 51.963 *** | −0.696 | 0.02 | −35.683 | −0.107~−0.030 | −0.655 | full |
(21) YT | (22) YS | (23) YQ | (24) YE | |
---|---|---|---|---|
XM | 146.973 *** (−5.362) | 80.864 *** (−4.839) | 14.174 *** (−4.455) | 51.963 *** (−5.208) |
XN | −5.286 ** (−2.550) | −5.236 *** (−4.142) | 0.578 ** (−2.401) | −0.655 (−0.867) |
Controls | YES | YES | YES | YES |
Effect size | 26.366% | 16.636% | 47.49% | 100% |
N | 435 | 435 | 435 | 435 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, S.; Zhang, Q.; Li, X.; Yu, J.; Wang, H. Has Finance Promoted High-Quality Development in China’s Fishery Economy?—A Perspective on Formal and Informal Finance. Fishes 2025, 10, 87. https://doi.org/10.3390/fishes10020087
Ye S, Zhang Q, Li X, Yu J, Wang H. Has Finance Promoted High-Quality Development in China’s Fishery Economy?—A Perspective on Formal and Informal Finance. Fishes. 2025; 10(2):87. https://doi.org/10.3390/fishes10020087
Chicago/Turabian StyleYe, Shengchao, Qian Zhang, Xiao Li, Jianli Yu, and Haohan Wang. 2025. "Has Finance Promoted High-Quality Development in China’s Fishery Economy?—A Perspective on Formal and Informal Finance" Fishes 10, no. 2: 87. https://doi.org/10.3390/fishes10020087
APA StyleYe, S., Zhang, Q., Li, X., Yu, J., & Wang, H. (2025). Has Finance Promoted High-Quality Development in China’s Fishery Economy?—A Perspective on Formal and Informal Finance. Fishes, 10(2), 87. https://doi.org/10.3390/fishes10020087