Semi-Spontaneous Post-Crosslinking Triblock Copolymer Electrolyte for Solid-State Lithium Battery
<p>The relationship between ionic conductivity (at 60 °C) and molar ratio of TMSiPA.</p> "> Figure 2
<p>(<b>a</b>) Illustration of the molecular structure of TRISPE and RANSPE. (<b>b</b>) DSC curves and corresponding derivative curves of TRI-SPE and RAN-SPE.</p> "> Figure 3
<p>Arrhenius plots for SPEs with different molecular structures.</p> "> Figure 4
<p>Thermogravimetry analysis curves of PEGMA homopolymer, TMSiPA homopolymer and synthesized copolymer electrolyte.</p> "> Figure 5
<p>Relationship between (<b>a</b>) complex modulus (G*), (<b>b</b>) loss angle tangent (tan δ) and test frequency of RAN-SPE and TRI-SPE.</p> "> Figure 6
<p>Electrochemical stability window of synthesized copolymer electrolyte. The test temperature was 60 °C.</p> "> Figure 7
<p>Rate performance of LiFePO<sub>4</sub>//SPE//Li half-cells fabricated by synthesized copolymer electrolytes with different molecular structures. The test temperature was 60 °C.</p> "> Figure 8
<p>Nyquist plots of LiFePO<sub>4</sub>//SPE//Li half-cells fabricated by different synthesized copolymer electrolytes after rate performance tests and at discharge state (inset zoom-in the range of 50–550 Ω). The test temperature was 60 °C.</p> "> Figure 9
<p>Cycle performances and corresponding Coulombic efficiencies of LiFePO<sub>4</sub>//SPE//Li half-cells fabricated by synthesized copolymer electrolytes. The test temperature was 60 °C.</p> "> Figure 10
<p>(<b>a</b>) Cycle performance and corresponding Coulombic efficiencies of LiFePO<sub>4</sub>//SPE//Li half-cell fabricated by TRI-SPE. (<b>b</b>) Charge and discharge voltage profiles at different cycles. (<b>c</b>) Nyquist plots at different cycles and at discharge state (inset zoom-in the range of 0–700 Ω).</p> "> Scheme 1
<p>Hydrolysis and dehydration crosslinking mechanism of synthesized copolymer electrolyte.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Copolymers via RAFT Solution Copolymerization
2.3. Synthesis of Solid Copolymer Electrolyte via Thermocuring
2.4. Characterization of Synthesized Copolymer Electrolyte
3. Results and Discussion
3.1. Ionic Conductivity
3.2. Thermal Stability and Rheological Property
3.3. Electrochemical Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar] [CrossRef]
- Lou, S.; Zhang, F.; Fu, C.; Chen, M.; Ma, Y.; Yin, G.; Wang, J. Interface issues and challenges in all-solid-state batteries: Lithium, sodium, and beyond. Adv. Mater. 2021, 33, 2000721. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Stalin, S.; Zhao, C.; Zhao, C.; Archer, L.A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229–252. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.; Wang, X.; Zhou, A.; Yang, Z. Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries. Energy Storage Mater. 2021, 35, 70–87. [Google Scholar] [CrossRef]
- Liu, W.; Yi, C.; Li, L.; Liu, S.; Gui, Q.; Ba, D.; Li, Y.; Peng, D.; Liu, J. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem. Int. Ed. 2021, 60, 12931–12940. [Google Scholar] [CrossRef]
- Famprikis, T.; Canepa, P.; Dawson, J.A.; Islam, M.S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nature Mater. 2019, 18, 1278–1291. [Google Scholar] [CrossRef]
- Cui, G. Polymer Key Materials of Power Lithium Batteries, 1st ed.; China Science Publishing & Media Ltd.: Beijing, China, 2018; pp. 80–82. ISBN 978-7-03-058029-0. [Google Scholar]
- Li, Z.; Fu, J.; Zhou, X.; Gui, S.; Wei, L.; Yang, H.; Li, H.; Guo, X. Ionic conduction in polymer-based solid electrolytes. Adv. Sci. 2023, 10, 2201718. [Google Scholar] [CrossRef]
- Zhou, Q.; Ma, J.; Dong, S.; Li, X.; Cui, G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 2019, 31, 1902029. [Google Scholar] [CrossRef]
- Wan, J.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F.; Pei, A.; Chen, H.; Chen, W.; Chen, J.; et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 2019, 14, 705–711. [Google Scholar] [CrossRef]
- Cao, C.; Li, Y.; Feng, Y.; Peng, C.; Li, Z.; Feng, W. A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries. Energy Storage Mater. 2019, 19, 401–407. [Google Scholar] [CrossRef]
- Shi, C.; Hamann, T.; Takeuchi, S.; Alexander, G.V.; Nolan, A.M.; Limpert, M.; Fu, Z.; Neill, J.O.; Godbey, G.; Dura, J.A.; et al. 3D asymmetric bilayer carnet-hybridized high-energy-density lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2023, 15, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, X.; Cui, Z.; Shangguan, X.; Zhang, H.; Zhang, J.; Tang, K.; Li, L.; Zhou, X.; Cui, G. A fluorinated polycarbonate based all solid state polymer electrolyte for lithium metal batteries. Electrochim. Acta 2020, 337, 135843. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Dong, T.; Zhang, M.; Chai, J.; Dong, S.; Wu, T.; Zhou, X.; Cui, G. Aliphatic polycarbonate-based solid-state polymer electrolytes for advanced lithium batteries: Advances and perspective. Small 2018, 14, 1800821. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, T.; Gudla, H.; Manabe, Y.; Yoneda, T.; Friesen, D.; Zhang, C.; Inokuma, Y.; Brandell, D.; Mindemark, J. Carbonyl-containing solid polymer electrolyte host materials: Conduction and coordination in polyketone, polyester, and polycarbonate systems. Macromolecules 2022, 55, 10940–10949. [Google Scholar] [CrossRef] [PubMed]
- Correia, D.M.; Fernandes, L.C.; Martins, P.M.; Garcia, A.C.; Costa, C.M.; Reguera, J.; Lanceros, M.S. Ionic liquid-polymer composites: A new platform for multifunctional applications. Adv. Funct. Mater. 2020, 30, 1909736. [Google Scholar] [CrossRef]
- Yang, G.; Song, Y.; Wang, Q.; Zhang, L.; Deng, L. Review of ionic liquids containing, polymer/inorganic hybrid electrolytes for lithium metal batteries. Mater. Des. 2020, 190, 108563. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Lu, W.; Sun, L.; Lin, L.; Zheng, M.; Sun, X.; Xie, H. PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries. Nano Energy 2021, 88, 106205. [Google Scholar] [CrossRef]
- Monroe, C.; Newman, J. The Impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 2005, 152, A396. [Google Scholar] [CrossRef]
- Young, W.; Kuan, W.; Epps, I.T.H. Block copolymer electrolytes for rechargeable lithium batteries. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 1–16. [Google Scholar] [CrossRef]
- Sharon, D.; Bennington, P.; Dolejsi, M.; Webb, M.A.; Dong, B.X.; de Pablo, J.J.; Nealey, P.F.; Patel, S.N. Intrinsic ion transport properties of block copolymer electrolytes. ACS Nano 2020, 14, 8902–8914. [Google Scholar] [CrossRef]
- Grundy, L.S.; Galluzzo, M.D.; Loo, W.S.; Fong, A.Y.; Balsara, N.P.; Takacs, C.J. Inaccessible polarization-induced phase transitions in a block copolymer electrolyte: An unconventional mechanism for the limiting current. Macromolecules 2022, 55, 7637–7649. [Google Scholar] [CrossRef]
- Villaluenga, I.; Chen, X.C.; Devaux, D.; Hallinan, D.T.; Balsara, N.P. Nanoparticle-driven assembly of highly conducting hybrid block copolymer electrolytes. Macromolecules 2015, 48, 358–364. [Google Scholar] [CrossRef]
- Wanakule, N.S.; Panday, A.; Mullin, S.A.; Gann, E.; Hexemer, A.; Balsara, N.P. Ionic conductivity of block copolymer electrolytes in the vicinity of order-disorder and order-order transitions. Macromolecules 2009, 42, 5642–5651. [Google Scholar] [CrossRef]
- Chintapalli, M.; Chen, X.C.; Thelen, J.L.; Teran, A.A.; Wang, X.; Garetz, B.A.; Balsara, N.P. Effect of grain size on the ionic conductivity of a block copolymer electrolyte. Macromolecules 2014, 47, 5424–5431. [Google Scholar] [CrossRef]
- Bouchet, R.; Phan, T.N.T.; Beaudoin, E.; Devaux, D.; Davidson, P.; Bertin, D.; Denoyel, R. Charge transport in nanostructured PS-PEO-PS triblock copolymer electrolytes. Macromolecules 2014, 47, 2659–2665. [Google Scholar] [CrossRef]
- Guo, B.; Fu, Y.; Wang, J.; Gong, Y.; Zhao, Y.; Yang, K.; Zhou, S.; Liu, L.; Yang, S.; Liu, X.; et al. Strategies and characterization methods for achieving high performance PEO-based solid-state lithium-ion batteries. Chem. Commun. 2022, 58, 8182–8193. [Google Scholar] [CrossRef]
- Ge, M.; Zhou, X.; Qin, Y.; Liu, Y.; Zhou, J.; Wang, X.; Guo, B. A composite PEO electrolyte with amide-based polymer matrix for suppressing lithium dendrite growth in all-solid-state lithium battery. Chin. Chem. Lett. 2022, 33, 3894–3898. [Google Scholar] [CrossRef]
- Fang, R.; Xu, B.; Grundish, N.S.; Xia, Y.; Li, Y.; Lu, C.; Liu, Y.; Wu, N.; Goodenough, J.B. Li2S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries. Angew. Chem. Int. Ed. 2021, 60, 17701–17706. [Google Scholar] [CrossRef]
- Lee, M.J.; Han, J.; Lee, K.; Lee, Y.J.; Kim, B.G.; Jung, K.N.; Kim, B.J.; Lee, S.W. Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 2022, 601, 217–222. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, S.; Wang, J.; Wang, Z.; Zhang, Z.; Yao, X.; Deng, Y.; Xu, X. A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode. J. Power Sources 2018, 394, 57–66. [Google Scholar] [CrossRef]
- Piedrahita, C.; Kusuma, V.; Nulwala, H.B.; Kyu, T. Highly conductive, flexible polymer electrolyte membrane based on poly(ethylene glycol) diacrylate-co-thiosiloxane network. Solid State Ion. 2018, 322, 61–68. [Google Scholar] [CrossRef]
- Hoffmann, M.; Butzelaar, A.J.; Iacob, C.; Theato, P.; Wilhelm, M. Ionogels as polymer electrolytes for lithium–metal batteries: Comparison of poly(ethylene glycol) diacrylate and an imidazolium-based ionic liquid crosslinker. ACS Appl. Polym. Mater. 2022, 4, 2794–2805. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, D.; Zhao, T.; Wei, X.; McMahon, S.; Keeffe Ahern, J.O.; Wang, W.; Greiser, U.; Rodriguez, B.J.; Wang, W. Intramolecular cyclization dominating homopolymerization of multivinyl monomers toward single-chain cyclized/knotted polymeric nanoparticles. Macromolecules 2015, 48, 6882–6889. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, L.; Chang, W.; Li, J. Controllable and reversible dimple-shaped aggregates induced by macrocyclic recognition effect. Langmuir 2015, 31, 13581–13589. [Google Scholar] [CrossRef]
- Ferguson, C.J.; Hughes, R.J.; Nguyen, D.; Pham, B.T.T.; Gilbert, R.G.; Serelis, A.K.; Such, C.H.; Hawkett, B.S. Ab initio emulsion polymerization by RAFT-controlled self-assembly. Macromolecules 2005, 38, 2191–2204. [Google Scholar] [CrossRef]
- Hallinan, D.T.; Balsara, N.P. Polymer electrolytes. Annu. Rev. Mater. Res. 2013, 43, 503–525. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, H.; Guo, X.; Lu, J. Thermal degradation behaviors of some branched and linear polysiloxanes. Polym. Degrad. Stab. 2006, 91, 1471–1475. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Zhou, Y.; Liang, Z.; Tavajohi, N.; Li, B.; Li, T. Solid polymer electrolytes with high conductivity and transference number of Li ions for Li-based rechargeable batteries. Adv. Sci. 2021, 8, 2003675. [Google Scholar] [CrossRef]
- Ue, M. Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ-butyrolactone. J. Electrochem. Soc. 1994, 141, 3336. [Google Scholar] [CrossRef]
- Diederichsen, K.M.; McShane, E.J.; McCloskey, B.D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2017, 2, 2563–2575. [Google Scholar] [CrossRef]
- Kim, D.; Liu, X.; Yu, B.; Mateti, S.; O’Dell, L.A.; Rong, Q.; Chen, Y.L. Amine-functionalized boron nitride nanosheets: A new functional additive for robust, flexible ion gel electrolyte with high lithium-ion transference number. Adv. Funct. Mater. 2020, 30, 1910813. [Google Scholar] [CrossRef]
- Mindemark, J.; Lacey, M.J.; Bowden, T.; Brandell, D. Beyond PEO-Alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 2018, 81, 114–143. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods Fundamentals and Applications, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2001; ISBN 0-471-04372-9. [Google Scholar]
- Cao, C.N.; Zhang, J.Q. An Introduction to Electrochemical Impedance Spectroscopy, 1st ed.; China Science Publishing & Media Ltd.: Beijing, China, 2002; ISBN 7-03-009854-4. [Google Scholar]
5% | 50% | Final Weight Loss Fraction and Temperature | |
---|---|---|---|
PEGMA homopolymer | 237 °C | 367 °C | 97%–434 °C |
TMSiPA homopolymer | 278 °C | 474 °C | 60%–588 °C |
Synthesized copolymer electrolyte | 265 °C | 393 °C | 95%–492 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Huang, J.; Gao, X.; Luo, Y. Semi-Spontaneous Post-Crosslinking Triblock Copolymer Electrolyte for Solid-State Lithium Battery. Batteries 2023, 9, 465. https://doi.org/10.3390/batteries9090465
Zheng Z, Huang J, Gao X, Luo Y. Semi-Spontaneous Post-Crosslinking Triblock Copolymer Electrolyte for Solid-State Lithium Battery. Batteries. 2023; 9(9):465. https://doi.org/10.3390/batteries9090465
Chicago/Turabian StyleZheng, Zhenan, Jie Huang, Xiang Gao, and Yingwu Luo. 2023. "Semi-Spontaneous Post-Crosslinking Triblock Copolymer Electrolyte for Solid-State Lithium Battery" Batteries 9, no. 9: 465. https://doi.org/10.3390/batteries9090465
APA StyleZheng, Z., Huang, J., Gao, X., & Luo, Y. (2023). Semi-Spontaneous Post-Crosslinking Triblock Copolymer Electrolyte for Solid-State Lithium Battery. Batteries, 9(9), 465. https://doi.org/10.3390/batteries9090465