Viscosity Reduction and Drag Reduction Performance Analysis of Bionic Excavator Buckets Based on Discrete Element Method
<p>Soil particle size calibration test. (<b>a</b>) Test soil, (<b>b</b>) high frequency vibrating screen.</p> "> Figure 2
<p>Soil direct shear test. (<b>a</b>) Direct shear apparatus, (<b>b</b>) loading weight, (<b>c</b>) soil preparation.</p> "> Figure 3
<p>Bionic prototype-structure of the head of an earthworm contracted.</p> "> Figure 4
<p>Bionic prototype-structure of the toe of the pangolin claw.</p> "> Figure 5
<p>B-S, B-B, B-C-1, and B-C-2 buckets. (<b>a</b>) Bionic Bucket Design Based on Pangolin Claw Toe Structure, (<b>b</b>) Bionic bucket design based on the corrugated body surface of earthworms.</p> "> Figure 6
<p>Coupling bionic bucket and prototype bucket. (<b>a</b>) C-B-1 bucket, (<b>b</b>) C-B-2 bucket, (<b>c</b>) C-B-3 bucket, (<b>d</b>) P-B bucket.</p> "> Figure 7
<p>Contact bonding model: (<b>a</b>) normal overlap, (<b>b</b>) tangential overlap.</p> "> Figure 8
<p>Test deposit angle. (<b>a</b>) Funnels, (<b>b</b>) test soil, (<b>c</b>) test stacking angle measurement.</p> "> Figure 9
<p>Measurement of simulated pile angle. (<b>a</b>) Simulated stacking angle measurement, (<b>b</b>) landing process of soil particles, (<b>c</b>) measurement process.</p> "> Figure 10
<p>Bucket model.</p> "> Figure 11
<p>Soil tank model.</p> "> Figure 12
<p>Sketch of bucket excavation trajectory.</p> "> Figure 13
<p>Coupled bionic Bucket-3 (C-B-3) excavation resistance at each stage.</p> "> Figure 14
<p>Contribution of corrugated surfaces and circular structural mechanisms to the value of drag reduction.</p> "> Figure 15
<p>Diagram of potential energy effect of excavation speed on soil particles. (<b>a</b>) Soil potential energy at an excavation speed of 2.0 rad/s, (<b>b</b>) Soil potential energy at an excavation speed of 2.5 rad/s, (<b>c</b>) Soil potential energy at an excavation speed of 3.0 rad/s.</p> "> Figure 16
<p>Comparison of kinetic energy of loam particles under different excavation speeds.</p> "> Figure 17
<p>Comparison of soil particle disturbance caused by different buckets.</p> "> Figure 17 Cont.
<p>Comparison of soil particle disturbance caused by different buckets.</p> "> Figure 18
<p>The interface between a corrugated surface and soil.</p> "> Figure 19
<p>Contact field between bucket and soil particles. (<b>a</b>) Prototype bucket contact force field analysis, (<b>b</b>) coupled bionic bucket-3 contact force field analysis.</p> "> Figure 20
<p>Diagram of corrugated surface in contact with soil. (<b>a</b>) Corrugated surface damping mechanism, (<b>b</b>) smooth surface contact.</p> "> Figure 21
<p>Schematic diagram of the movement direction of the soil particles in contact with the side edge, bottom plate, and soil. (<b>a</b>) Prototype bucket particle trajectory, (<b>b</b>) Bionic bucket particle trajectory.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials: Explanation of the Materials and Their Properties
2.2. Analysis of Bionic Prototype
2.3. Design of Bionic Bucket
3. Discrete Element Simulation Modeling
3.1. DEM Soil Modeling
3.2. DEM Calibration
3.3. Soil Trench Modeling
4. Simulation Results and Analysis
4.1. Effect of Digging Speed on Work Resistance
4.2. Effect of Excavation Speed on Soil Potential Energy
4.3. Effect of Different Buckets on Soil Disturbance Conditions
4.4. Bucket Contact Force Field Analysis
4.5. Analysis of Corrugated Surface Drag Reduction Mechanism
4.6. Analysis of Bionic Circular Arc Drag Reduction Mechanism
5. Conclusions
- (1)
- Determination of the properties of the soil revealed that 46.71 per cent of the soil particles were larger than 2 mm in size and that the shear modulus of the soil particles used was 1.05 × 106.
- (2)
- Compared to the prototype bucket, the bionic bucket exhibits lower excavation resistance, demonstrating excellent drag reduction performance. The drag reduction rate of the bionic bucket increases as the excavation speed decreases. The single-factor bionic bucket, based on the organism’s structure, shows significantly better drag reduction than the prototype bucket. Furthermore, the double-coupled bionic bucket outperforms the single-factor bionic bucket in terms of drag reduction. Among the designs, the coupled bionic bucket-3 (C-B-3) achieves the best drag reduction, with a maximum reduction rate of 14.469%.
- (3)
- Different buckets induced varying levels of perturbation in soil particles, with the coupled bionic bucket-3 (C-B-3) demonstrating the highest efficiency in soil perturbation. Excavation speed significantly impacts the potential energy of soil particles; at an excavation speed of 2.5 rad/s, the potential energy increases by approximately 30% compared to at 2.0 rad/s. When the excavation speed reaches 3.0 rad/s, the potential energy further increases by about 25% compared to at 2.5 rad/s.
- (4)
- An analysis of the drag reduction mechanisms of the bionic corrugated and arc structures reveals that the bionic corrugated surface facilitates the formation of an air film at the contact interface between the soil and the bucket. The presence of corrugated bumps allows soil particles to quickly pass through the contact area, significantly reducing the contact area and thereby achieving viscosity and drag reduction. Additionally, the bionic arc structure of the base plate and side edges causes soil particles in contact to move in different directions, dispersing pressure and further enhancing the reduction of viscosity and drag.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Salem, A.E.; Wang, H.; Gao, Y.; Zha, X.; Abdeen, M.A.; Zhang, G. Effect of Biomimetic Surface Geometry, Soil Texture, and Soil Moisture Content on the Drag Force of Soil-Touching Parts. Appl. Sci. 2021, 11, 8927. [Google Scholar] [CrossRef]
- Ren, L.; Wang, Y.; Li, J. Flexible unsmoothed cuticles of soil animals and their characteristics of reducing adhesion and resistance. Chin. Sci. Bull. 1998, 43, 166–169. [Google Scholar] [CrossRef]
- Hendrick, J.G.; Bailey, A.C. Determining Components of Soil-Metal Sliding Resistance. Trans. ASAE 1982, 25, 845–849. [Google Scholar] [CrossRef]
- Soni, P.; Salokhe, V.M. Bio-Inspired Macro-Morphologic Surface Modifications to Reduce Soil–Tool Adhesion. In Bio-Inspired Surfaces and Applications; World Scientific Publishing: London, UK, 2016; Chapter 12. [Google Scholar]
- Sun, J.; Chen, H.; Wang, Z. Study on plowing performance of EDEM low-resistance animal bionic device based on red soil. Soil Tillage Res. 2020, 196, 104336. [Google Scholar] [CrossRef]
- Liu, S.; Weng, S.; Liao, Y. Structural bionic design for digging shovel of cassava harvester considering soil mechanics. Appl. Bionics Biomech. 2014, 11, 1–11. [Google Scholar] [CrossRef]
- Yu, J.; Ma, Y.; Wang, S.; Xu, Z.; Liu, X.; Wang, H.; Qi, H.; Han, L.; Zhuang, J. 3D Finite Element Simulation and Experimental Validation of a Mole Rat’s Digit Inspired Biomimetic Potato Digging Shovel. Appl. Sci. 2022, 12, 1761. [Google Scholar] [CrossRef]
- Jinwu, W.; Nuan, W.; Ziming, L. Coupled Bionic Design of Liquid Fertilizer Deep Application Type Opener Based on Sturgeon Streamline to Enhance Opening Performance in Cold Soils of Northeast China. Agriculture 2022, 12, 615. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, H.; Zhuang, J.; Qi, H.; Yu, J. Effects of Bionic Curves on Penetration Force under Difference Soils. Appl. Sci. 2020, 10, 529. [Google Scholar] [CrossRef]
- Zhihong, Z.; Xiaoyang, W.; Jin, T. Innovative Design and Performance Evaluation of Bionic Imprinting Toothed Wheel. Appl. Bionics Biomech. 2018, 2018, 9806287. [Google Scholar]
- Chirende, B.; Li, J.; Wen, L.; Simalenga, T.E. Effects of bionic non-smooth surface on reducing soil resistance to disc ploughing Sci. China Technol. Sci. 2010, 53, 2960–2965. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, W.; Ma, Y. DEM and soil bin study on a biomimetic disc furrow opener. Comput. Electron. Agric. 2019, 156, 209–216. [Google Scholar] [CrossRef]
- Junwei, L.; Xiaohu, J.; Yunhai, M. Bionic Design of a Potato Digging Shovel with Drag Reduction Based on the Discrete Element Method (DEM) in Clay Soil. Appl. Sci. 2020, 10, 7096. [Google Scholar]
- Jin, T.; Zhu, Q.Z.; Hui, D.C. Effects of Bionic Geometric Structure Press Rollers on Reducing Rolling Resistance and Adhesion against Soil. Appl. Mech. Mater. 2013, 461, 63–72. [Google Scholar]
- Wu, B.; Zhang, R.; Hou, P.; Tong, J.; Zhou, D.; Yu, H.; Zhang, Q.; Zhang, J.; Xin, Y. Bionic Nonsmooth Drag Reduction Mathematical Model Construction and Subsoiling Verification. Appl. Bionics Biomech. 2021, 2021, 5113453. [Google Scholar] [CrossRef]
- Jin, T.; Baoguang, W.; Zelai, S. Research on the drag reduction mechanism of antlion (Myrmeleon sagax) larvae nonsmooth structural surface. Microsc. Res. Tech. 2020, 83, 338–344. [Google Scholar]
- Jia, H.; Wang, W.; Wang, W. Application of anti-adhesion structure based on earthworm motion characteristics. Soil Tillage Res. 2018, 178, 159–166. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Hu, B.; Gu, T.; Wang, Z.; Wang, H. Analysis of the resistance reduction mechanism of potato bionic digging shovels in clay and heavy soil conditions. Comput. Electron. Agric. 2023, 214, 108315. [Google Scholar] [CrossRef]
- Zhou, D.; Hou, P.; Xin, Y.; Wu, B.; Tong, J.; Yu, H.; Qi, J.; Zhang, J.; Zhang, Q. Resistance and Consumption Reduction Mechanism of Bionic Vibration and Verification of Field Subsoiling Experiment. Appl. Sci. 2021, 11, 10480. [Google Scholar] [CrossRef]
- Liu, H.; Yan, W.; Ji, Y.; Zhang, W. Working Performance of the Low-Adhesion and Anti-Slip Bionic Press Roller in the Rice–Wheat Rotation Area. Agriculture 2022, 12, 750. [Google Scholar] [CrossRef]
- Soni, P.; Salokhe, V.M. Influence of dimensions of UHMW-PE protuberances on sliding resistance and normal adhesion of Bangkok clay soil to biomimetic plates. J. Bionic Eng. 2006, 3, 63–71. [Google Scholar] [CrossRef]
- Wang, Y.; Li, N.; Ma, Y. Field experiments evaluating a biomimetic shark-inspired (BioS) subsoiler for tillage resistance reduction. Soil Tillage Res. 2020, 196, 104432. [Google Scholar] [CrossRef]
- Ren, L.Q.; Tong, J. Reducing adhesion of soil against loading shovel using bionic electroosmosis method. J. Terramech. 2001, 38, 211–219. [Google Scholar] [CrossRef]
- Marani, S.M.; Shahgholi, G.; Moinfar, A. Effect of nano coating materials on reduction of soil adhesion and external friction. Soil Tillage Res. 2019, 193, 42–49. [Google Scholar] [CrossRef]
- Barzegar, M.; Hashemi, S.J.; Nazokdast, H.; Karimi, R. Evaluating the draft force and soil-tool adhesion of a UHMW-PE coated furrower. Soil Tillage Res. 2016, 163, 160–167. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Wang, L. Digging Performance and Stress Characteristic of the Excavator Bucket. Applied Sciences 2023, 13, 11507. [Google Scholar] [CrossRef]
- Gao, F.; Baraka-Kamali, E.; Shirtcliffe, N.A. Preliminary Study of the Surface Properties of Earthworms and Their Relations to Non-Stain Behaviour. J. Bionic Eng. 2010, 7, 13–18. [Google Scholar] [CrossRef]
- Li, J.; Kou, B.; Liu, G. Resistance reduction by bionic coupling of the earthworm lubrication function. Sci. China Technol. Sci. 2010, 53, 2989–2995. [Google Scholar] [CrossRef]
- Guomin, L.; Xueqiao, W.; Meng, Z. Experimental Study on Drag Reduction Characteristics of Bionic Earthworm Self-Lubrication Surface. Appl. Bionics Biomech. 2019, 2019, 4984756. [Google Scholar]
- Liu, G.; Yao, J.; Chen, Z.; Han, X.; Zou, M. Mesoscopic analysis of drag reduction performance of bionic furrow opener based on the discrete element method. PLoS ONE 2023, 18, e0293750. [Google Scholar] [CrossRef]
- Narayanan, A.; Bhojne, S. Construction Equipment’s Bucket Design Based on Soil-Tool Interaction-Analytical and DEM Approach. SAE Tech. Pap. 2017, 26, 0234. [Google Scholar]
- Tamas, K.; Jori, I.J.; Mouazen, A.M. Modelling soil-sweep interaction with discrete element method. Soil Tillage Res. 2013, 134, 223–231. [Google Scholar] [CrossRef]
- Saunders, C.; Ucgul, M.; Godwin, R.J. Discrete element method (DEM) simulation to improve performance of a mouldboard skimmer. Soil Tillage Res. 2021, 205, 104764. [Google Scholar] [CrossRef]
- Feng, Y.; Wu, J.; Guo, C.; Lin, B. Numerical Simulation and Experiment on Excavating Resistance of an Electric Cable Shovel Based on EDEM-RecurDyn Bidirectional Coupling. Machines 2022, 10, 1203. [Google Scholar] [CrossRef]
- Hou, Y.J.; Li, A.F.; Gao, S.H.; Wang, G.Q. Structural Analysis and Optimization of Mechanical Excavator WK-20 Bucket Based on Discrete Element Method. Appl. Mech. Mater. 2014, 3223, 284–287. [Google Scholar]
- Yang, L.; Li, J.; Lai, Q.; Zhao, L.; Li, J.; Zeng, R.; Zhang, Z. Discrete element contact model and parameter calibration for clayey soil particles in the Southwest hill and mountain region. J. Terramech. 2024, 111, 73–87. [Google Scholar] [CrossRef]
- Yan, D.; Yu, J.; Wang, Y.; Zhou, L.; Tian, Y.; Zhang, N. Soil Particle Modeling and Parameter Calibration Based on Discrete Element Method. Agriculture 2022, 12, 1421. [Google Scholar] [CrossRef]
- Tienan, Z.; Zhou, H.; Ji, J.; Sun, F.; Qin, Z. Parameter calibration of the discrete element simulation model for soaking paddy loam soil based on the slump test. PLoS ONE 2023, 18, e0285428. [Google Scholar] [CrossRef]
- Coetzee, C.; Els, D.; Dymond, G. Discrete element parameter calibration and the modelling of dragline bucket filling. J. Terramech. 2009, 47, 33–44. [Google Scholar] [CrossRef]
Particle Size (mm) | >2 | 2~1 | 1~0.5 | 0.5~0.25 | 0.25~0.075 | 0.02~0.075 | <0.02 |
---|---|---|---|---|---|---|---|
Weight | 467.08 | 68.23 | 32.15 | 164.67 | 23.50 | 99.01 | 145.36 |
Percentage % | 46.71 | 6.823 | 3.215 | 16.467 | 2.35 | 9.901 | 14.536 |
Geometric Figure | Main Feature | Equation Sequence Number | F (x) Value |
---|---|---|---|
the front part of the contractile-state curve of the earthworm head | Different function curves of the inner and outer contours | f (x1) | 0.4sinx |
the middle and back part of the contractile-state curve of the earthworm head | f (x2) | 0.25sin2x | |
the outer contour curve of the pangolin claw | Different corrugated curves at front and middle and rear | f (x3) | −0.139x2 + 0.91x + 0.65 |
the inner contour curve of the pangolin claw | f (x4) | −0.128x2 + 1.08x + 0.95 |
Measured Item | 1 | 2 | 3 | 4 | 5 | Mean Value |
---|---|---|---|---|---|---|
Stacking Angle (°) | 27.26 | 29.85 | 29.82 | 30.31 | 31.81 | 29.81 |
Argument | Primary Range |
---|---|
Soil–soil collision recovery coefficient-A | 0.15–0.75 |
Soil–soil rolling recovery coefficient-B | 0.32–1.04 |
Soil–soil static friction coefficient-C | 0–0.2 |
Soil–steel collision recovery coefficient-D | 0.2–0.5 |
Soil–steel rolling recovery coefficient-E | 0.5–1.2 |
Soil–steel static friction coefficient-F | 0–0.2 |
JKR surface energy (J/m3)-G | 1–5 |
Serial Number | A | B | C | D | E | F | G | Stacking Angle (°) |
---|---|---|---|---|---|---|---|---|
1 | 0.75 | 1.04 | 0.2 | 0.2 | 0.5 | 0 | 5 | 43 |
2 | 0.15 | 1.04 | 0 | 0.5 | 1.2 | 0 | 5 | 17.01 |
3 | 0.15 | 1.04 | 0.2 | 0.5 | 0.5 | 0 | 1 | 26.47 |
4 | 0.75 | 1.04 | 0 | 0.5 | 1.2 | 0.2 | 1 | 12.41 |
5 | 0.75 | 0.32 | 0.2 | 0.5 | 1.2 | 0 | 1 | 13.67 |
6 | 0.75 | 0.32 | 0.2 | 0.5 | 0.5 | 0.2 | 5 | 36.76 |
7 | 0.75 | 0.32 | 0 | 0.2 | 1.2 | 0 | 5 | 13.77 |
8 | 0.75 | 1.04 | 0 | 0.2 | 0.5 | 0.2 | 1 | 11.92 |
9 | 0.15 | 0.32 | 0 | 0.2 | 0.5 | 0 | 1 | 0 |
10 | 0.15 | 0.32 | 0.2 | 0.2 | 1.2 | 0.2 | 1 | 36.60 |
11 | 0.15 | 0.32 | 0 | 0.5 | 0.5 | 0.2 | 5 | 18.16 |
12 | 0.15 | 1.04 | 0.2 | 0.2 | 1.2 | 0.2 | 5 | 55.78 |
Level | Factor | |||
---|---|---|---|---|
B Soil–Soil Rolling Recovery Coefficient | D Soil–Steel Collision Recovery Coefficient | E Soil–Steel Rolling Recovery Coefficient | F Soil–Steel Static Friction Coefficient | |
−1 | 0.32 | 0.2 | 0.5 | 0 |
0 | 0.68 | 0.35 | 0.85 | 0.1 |
1 | 1.04 | 0.5 | 1.2 | 0.2 |
Serial Number | B | D | E | F | Stacking Angle (°) |
---|---|---|---|---|---|
1 | 0.68 | 0.5 | 1.2 | 0.1 | 36.58 |
2 | 0.68 | 0.2 | 0.85 | 0.2 | 39.69 |
3 | 0.68 | 0.2 | 1.2 | 0.1 | 36.13 |
4 | 0.68 | 0.35 | 0.85 | 0.1 | 34.02 |
5 | 0.68 | 0.35 | 0.5 | 0.2 | 33.43 |
6 | 0.68 | 0.35 | 0.85 | 0.1 | 34.68 |
7 | 1.04 | 0.35 | 1.2 | 0.1 | 36.13 |
8 | 0.32 | 0.5 | 0.85 | 0.1 | 25.174 |
9 | 0.32 | 0.35 | 1.2 | 0.1 | 27.79 |
10 | 0.68 | 0.5 | 0.5 | 0.1 | 30.37 |
11 | 0.68 | 0.35 | 0.5 | 0 | 23.27 |
12 | 0.32 | 0.35 | 0.85 | 0.2 | 26.75 |
13 | 0.32 | 0.2 | 0.85 | 0.1 | 32.21 |
14 | 0.68 | 0.35 | 0.85 | 0.1 | 32.42 |
15 | 0.68 | 0.35 | 0.85 | 0.1 | 29.68 |
16 | 1.04 | 0.35 | 0.85 | 0.2 | 32.21 |
17 | 1.04 | 0.2 | 0.85 | 0.1 | 32.17 |
18 | 0.32 | 0.35 | 0.85 | 0 | 19.44 |
19 | 0.68 | 0.5 | 0.85 | 0 | 27.07 |
20 | 0.68 | 0.35 | 0.85 | 0.1 | 32.25 |
21 | 1.04 | 0.35 | 0.85 | 0 | 29.55 |
22 | 0.68 | 0.2 | 0.5 | 0.1 | 25.22 |
23 | 0.68 | 0.35 | 1.2 | 0.2 | 28.90 |
24 | 0.68 | 0.2 | 0.85 | 0 | 22.29 |
25 | 1.04 | 0.35 | 0.5 | 0.1 | 27.52 |
26 | 1.04 | 0.5 | 0.85 | 0.1 | 33.43 |
27 | 0.68 | 0.35 | 1.2 | 0 | 25.55 |
28 | 0.68 | 0.5 | 0.85 | 0.2 | 31.63 |
29 | 0.32 | 0.35 | 0.5 | 0.1 | 23.90 |
Arguments | Parameter Value |
---|---|
Soil trough size (length × width × height)/(mm × mm × mm) | 800 × 300 × 300 |
Particle size dimensions | 3 |
Soil particle density ρ1/(kg/m3) | 1300 |
Poisson ratio of soil particles γ1 | 0.38 |
Shear modulus of soil particles G1/pa | 1.05 × 106 |
Steel density ρ2/(kg/m3) | 7800 |
Poisson’s ratio of steel γ2 | 0.3 |
Shear modulus of steel particles G2/pa | 7.27 × 1010 |
Soil–soil collision recovery coefficient e1 | 0.15 |
Soil–soil rolling recovery coefficient e2 | 0.68 |
Soil–soil static friction coefficient e3 | 0.2 |
Soil–steel collision recovery coefficient f1 | 0.35 |
Soil–steel rolling recovery coefficient f2 | 0.85 |
Soil–steel static friction coefficient f3 | 0.1 |
Acceleration of gravity g/(m·s2) | 9.80 |
JKR surface energy | 1 |
Factors | Spatulas | Resistance Value (N) | Damping Rate (100%) | |||||
---|---|---|---|---|---|---|---|---|
Spatulas | 2 rad/s | 2.5 rad/s | 3 rad/s | 2 rad/s | 2.5 rad/s | 3 rad/s | ||
P-B | 79.243 | 85.061 | 89.243 | |||||
Single-Factor Bionic Bucket | B-S | 73.755 | 81.171 | 87.901 | +6.926 | +4.573 | +2.411 | |
B-B | 72.515 | 83.506 | 85.878 | +8.49 | +1.828 | +3.771 | ||
B-C-1 | 74.345 | 82.058 | 88.731 | +6.181 | +3.53 | +0.574 | ||
B-C-2 | 78.634 | 82.851 | 88.649 | +0.768 | +2.594 | +0.666 | ||
Coupled Bionic Bucket | C-B-1 | 68.229 | 77.334 | 81.126 | +13.899 | +9.084 | +9.095 | |
C-B-2 | 71.072 | 76.371 | 85.677 | +10.311 | +10.216 | +3.995 | ||
C-B-3 | 67.777 | 74.094 | 80.494 | +14.469 | +12.893 | +9.804 |
Factors | Spatulas | Number | Torque Value (N·m) | |||
---|---|---|---|---|---|---|
Spatulas | 2 rad/s | 2.5 rad/s | 3 rad/s | |||
Prototype bucket | P-B | 1.396 | 1.496 | 1.575 | ||
Single-Factor Bionic Bucket | Bionic side-blade bucket | B-S | 1.059 | 1.13 | 1.175 | |
Bionic base-plate bucket | B-B | 1.32 | 1.362 | 1.482 | ||
Bionic corrugated bucket-1 | B-C-1 | 1.133 | 1.332 | 1.439 | ||
Bionic corrugated bucket-2 | B-C-2 | 1.377 | 1.499 | 1.523 | ||
Coupled Bionic Bucket | Coupled bionic bucket-1 | C-B-1 | 1.153 | 1.156 | 1.497 | |
Coupled bionic bucket-2 | C-B-2 | 1.13 | 1.208 | 1.312 | ||
Coupled bionic bucket-3 | C-B-3 | 0.958 | 1.189 | 1.364 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Han, X.; Wang, Z.; Wang, K.; Zhang, Z.; Duan, Z. Viscosity Reduction and Drag Reduction Performance Analysis of Bionic Excavator Buckets Based on Discrete Element Method. Biomimetics 2024, 9, 686. https://doi.org/10.3390/biomimetics9110686
Liu G, Han X, Wang Z, Wang K, Zhang Z, Duan Z. Viscosity Reduction and Drag Reduction Performance Analysis of Bionic Excavator Buckets Based on Discrete Element Method. Biomimetics. 2024; 9(11):686. https://doi.org/10.3390/biomimetics9110686
Chicago/Turabian StyleLiu, Guomin, Xuekai Han, Ziyang Wang, Kun Wang, Zhongsong Zhang, and Zenan Duan. 2024. "Viscosity Reduction and Drag Reduction Performance Analysis of Bionic Excavator Buckets Based on Discrete Element Method" Biomimetics 9, no. 11: 686. https://doi.org/10.3390/biomimetics9110686
APA StyleLiu, G., Han, X., Wang, Z., Wang, K., Zhang, Z., & Duan, Z. (2024). Viscosity Reduction and Drag Reduction Performance Analysis of Bionic Excavator Buckets Based on Discrete Element Method. Biomimetics, 9(11), 686. https://doi.org/10.3390/biomimetics9110686