Hot Shoes in the Room: Authentication of Thermal Imaging for Quantitative Forensic Analysis
<p>Spectral emission from ideal Planckian radiators heated at different temperatures (solid black lines), and spectral bandwidths commonly used for forensic imaging (colour rectangles). Square markers indicate the maximum amplitude (λ<sub>max</sub>) for each spectrum: daylight (correlated colour temperature of 6500 K), halogen–tungsten filament (4000 K), 75 W house bulb (2800 K), wax candle (1900 K), hot plate for technical purposes heated at about 370 °C (644 K), human body at 37 °C (310 K), and a black body heated at 20 °C (293 K) and 0 °C (273 K). Note how some sources emit radiation across several spectral bands: ultraviolet (UV), visible (VIS), near infrared (NIR), and intermediate and far infrared. Spectral bands cover the sensitivity range of most common imaging devices used for forensic and technical applications in the ultraviolet, visible, and infrared regions of the electromagnetic spectrum [<a href="#B2-jimaging-04-00021" class="html-bibr">2</a>,<a href="#B10-jimaging-04-00021" class="html-bibr">10</a>,<a href="#B11-jimaging-04-00021" class="html-bibr">11</a>,<a href="#B19-jimaging-04-00021" class="html-bibr">19</a>,<a href="#B21-jimaging-04-00021" class="html-bibr">21</a>].</p> "> Figure 2
<p>(<b>a</b>) Temperature sampling points on three adult male shoes and (<b>b</b>) representation of shoe cooling in pilot studies. See text and <a href="#jimaging-04-00021-f003" class="html-fig">Figure 3</a> for quantitative analysis. Points A–E represent temperature sampling points with Therm-Micro probes on points A (External Toe); B (External Heel); C (Internal Toe); D (Internal Heel); E (Internal Point). Circular boxes represent sampled point on the surface of shoe, square boxes represent points internally sampled.</p> "> Figure 3
<p>Experimental data and modelling results for a method allowing the prediction of cooling time of three different shoes—Cumulus (first column), leather (middle column), and Fuji shoe (third column)—from pixel values of a thermal imaging device in typical room conditions after wearing three different types of shoes (refer to Materials and Methods section for details). Panels (<b>a</b>–<b>c</b>) show the relationship between camera response, expressed as pixel intensity values (<span class="html-italic">ρ</span>), and shoe temperature reading of the FLIR i50 30 min after shoe removal. Points represent experimental data, the solid black line represents the predicted function, and the shaded area represents the 95% confidence intervals for the function. The curves at the bottom of each panel represent the shape of the probability density distribution (pdf) of the camera responses at 11 different intensity levels modelled assuming a beta distribution (See <a href="#app1-jimaging-04-00021" class="html-app">Supplementary Materials</a> for coefficients defining each distribution); Panels (<b>d</b>–<b>f</b>) show temperature as a function of time for the tested shoe types modelled assuming a bi-exponential function. Points represent the experimental data from the Temperature Sensor Meter, the solid black line represents the nonlinear regression function, and the shaded area represents the 95% confidence intervals. Panels (<b>g</b>–<b>i</b>) represent the cooling function for each shoe type: (<b>g</b>) Cumulus, (<b>h</b>) leather, and (<b>i</b>) Fuji shoe. Error bars on the x-axis represent 95% confidence intervals for camera responses at different pixel intensity values, whilst error bars on the y-axis represent the 95% confidence intervals of the predicted cooling time. In panels (<b>g</b>–<b>h</b>), the green shaded area represents the temperature range for which time can be reliably predicted from camera responses. Blue and red areas represent areas of high uncertainty where data should be interpreted with caution.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scenario
2.2. Experimental Shoe Types
2.3. Temperature and Image Recording
2.4. Cooling Function and Time Predictive Function from Camera Values
3. Results
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Robinson, E.M.; Richards, G.B. Chapter 12—Legal issues related to photographs and digital images. In Crime Scene Photography, 2nd ed.; Academic Press: San Diego, CA, USA, 2010; pp. 583–649. [Google Scholar]
- Garcia, J.E.; Wilksch, P.A.; Spring, G.; Philp, P.; Dyer, A. Characterization of digital cameras for reflected ultraviolet photography; implications for qualitative and quantitative image analysis during forensic examination. J. Forensic Sci. 2014, 59, 117–122. [Google Scholar] [CrossRef] [PubMed]
- McKechnie, M.L.; Porter, G.; Langlois, N. The detection of latent residue tattoo ink pigments in skin using invisible radiation photography. Aust. J. Forensic Sci. 2008, 40, 65–72. [Google Scholar] [CrossRef]
- Spring, G. Forensic photography. In The Focal Encyclopedia of Photography, 4th ed.; Peres, M.R., Ed.; Focal Press/Elsevier: Burlington, NJ, USA, 2007; pp. 535–537. [Google Scholar]
- Merlino, M.L.; Springer, V.; Kelly, J.S.; Hammond, D. Meeting the challenges of the daubert trilogy: Refining and redefining the reliability of forensic evidence. Tulsa Law Rev. 2007, 43, 417–446. [Google Scholar]
- Edwards, H.; Gotsonis, C. Strengthening Forensic Science in the United States: A Path Forward; National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
- Dyer, A.G.; Muir, L.L.; Muntz, W.R.A. A calibrated grey scale for forensic ultraviolet photography. J. Forensic Sci. 2004, 49, 1056–1058. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.E.; Dyer, A.G. UV digital imaging: New perspectives for quantitative data analysis in forensics. In Forensic Science: New Developments, Perspectives and Advanced Technologies; Brewer, J., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2015; pp. 1–23. [Google Scholar]
- Finney, A. Infrared photography. In The Focal Encyclopedia of Photography: Digital Imaging, Theory and Applications, History, and Science, 4th ed.; Peres, M.R., Ed.; Elsevier/Focal Press: Burlington, NJ, USA, 2007; pp. 556–562. [Google Scholar]
- Oliver, W.R.; Leone, L. Digital UV/IR photography for tattoo evaluation in mummified remains. J. Forensic Sci. 2012, 57, 1134–1136. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, A. Identification of pigments by multispectral imaging; a flowchart method. Heritage Sci. 2014, 2, 8. [Google Scholar] [CrossRef]
- Gashi, B.; Edwards, M.R.; Sermon, P.A.; Courtney, L.; Harrison, D.; Xu, Y. Measurement of 9 mm cartridge case external temperatures and its forensic application. Forensic Sci. Int. 2010, 200, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Petkovšek, M.; Dular, M. Observing the thermodynamic effects in cavitating flow by IR thermography. Exp. Therm. Fluid Sci. 2017, 88, 450–460. [Google Scholar] [CrossRef]
- Castillo, R.V.; Pérez-Lara, M.A.; Rivera-Muñoz, E.; Arjona, J.L.; Rodríguez-García, M.E.; Acosta-Osorio, A.; Galván-Ruiz, M. Thermal imaging as a non-destructive testing implemented in heritage conservation. J. Geogr. Geol. 2012, 4, 102. [Google Scholar] [CrossRef]
- Company, E.K. Applied Infrared Photography; Eastman Kodak Company: Rochester, NY, USA, 1972. [Google Scholar]
- Holst, G.C.; Lomheim, T.S. CMOS/CCD Sensors and Camera Systems; SPIE Press: Bellingham, WA, USA, 2007. [Google Scholar]
- Ray, S. Scientific Photography and Applied Imaging, 1st ed.; Focal Press: Boston, MA, USA, 1999. [Google Scholar]
- Wyszecki, G.; Stiles, W.S. Color Science Concepts and Methods, Quantitative Data and Formulae, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1982. [Google Scholar]
- Gaussorgues, G. Infrared Thermography; Chapman & Hall: London, UK, 1994. [Google Scholar]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 3rd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Budzier, H.; Gerlach, G. Thermal Infrared Sensors: Theory, Optimisation and Practice; John Wiley & Sons: Chichester, UK, 2011. [Google Scholar]
- Moran, M.J.; Shapiro, H.N.; Boettner, D.D.; Bailey, M.B. Fundamentals of Engineering Thermodynamics; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Henßge, C.; Madea, B. Estimation of the time since death in the early post-mortem period. Forensic Sci. Int. 2004, 144, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceri, K.W. NiH image to imageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Gelman, A.; Hill, J. Data Analysis Using Regression and Multilevelhierarchical Models; Cambridge University Press: New York, NY, USA, 2007; Volume 1. [Google Scholar]
- Keele, L. Bootstrapping. In Semiparametric Regression for the Social Sciences; John Wiley & Sons: Sussex, UK, 2008; pp. 177–193. [Google Scholar]
- Forbes, C.; Evans, M.; Hastings, N.; Peacock, B. Statistical Distributions, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Delignette-Muller, M.L.; Dutang, C. Fitdistrplus: An R package for fitting distributions. J. Stat. Softw. 2015, 64, 1–34. [Google Scholar] [CrossRef]
- Giancoli, D.C. Physics Principles with Applications, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Marshall, T.K. Temperature methods of estimating the time of death. Med. Sci. Law 1965, 5, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, J. Marijuana Horticulture: The Indoor/Outdoor Medical Grower’s Bible; Van Patten Publishing: Vancouver, WA, USA, 2006. [Google Scholar]
- Norgate, M.; Boyd-Gerny, S.; Simonov, V.; Rosa, M.G.P.; Heard, T.A.; Dyer, A.G. Ambient temperature influences Australian native stingless bee (Trigona carbonaria) preference for warm nectar. PLoS ONE 2010, 5, e12000. [Google Scholar] [CrossRef] [PubMed]
- Ring, E.F.J.; Ammer, K. Infrared thermal imaging in medicine. Physiol. Meas. 2012, 33, R33–R46. [Google Scholar] [CrossRef] [PubMed]
Shoe Type | Coefficient | Value (95% CI) | p-Value |
---|---|---|---|
Cumulus | β0 | 15.3 (15.1, 15.5) | <0.001 |
β1 | 0.125 (0.124, 0.126) | <0.001 | |
Leather | β0 | 15.5 (15.3, 15.7) | <0.001 |
β1 | 0.121 (0.120, 0.122) | <0.001 | |
Fuji | β0 | 15.4 (15.2, 15.6) | <0.001 |
β1 | 0.123 (0.122, 0.124) | <0.001 |
Shoe Type | Coefficient | Value (95% CI) |
---|---|---|
Cumulus | a (min) | 1.04 × 106 (7.10 × 105, 1.49 × 106) |
b (°C)−1 | −4.29 × 10−1 (−4.45 × 10−1, −4.14 × 10−1) | |
c (min) | 1.78 × 1025 (5.74 × 1022, 1.96 × 1027) | |
d (°C)−1 | −2.52 (−2.74, −2.26) | |
Leather | a (min) | 9.58 × 107 (1.33 × 107, 3.24 × 108) |
b (°C)−1 | −6.60 × 10−1 (−7.11× 10−1, −5.78 × 10−1) | |
c (min) | 8.34 × 1022 (4.85 × 1019, 2.08 × 1025) | |
d (°C)−1 | −2.52 (−2.26, −1.91) | |
Fuji | a (min) | 2.71 × 106 (1.85 × 106, 4.02× 106) |
b (°C)−1 | −4.69 × 10−1 (−4.85 × 10−1, −4.53 × 10−1) | |
c (min) | 1.84 × 1026 (1.96 × 1023, 2.15 × 1028) | |
d (°C)−1 | −2.61 (−2.83, −2.29) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chua, J.H.J.; Dyer, A.G.; Garcia, J.E. Hot Shoes in the Room: Authentication of Thermal Imaging for Quantitative Forensic Analysis. J. Imaging 2018, 4, 21. https://doi.org/10.3390/jimaging4010021
Chua JHJ, Dyer AG, Garcia JE. Hot Shoes in the Room: Authentication of Thermal Imaging for Quantitative Forensic Analysis. Journal of Imaging. 2018; 4(1):21. https://doi.org/10.3390/jimaging4010021
Chicago/Turabian StyleChua, Justin H. J., Adrian G. Dyer, and Jair E. Garcia. 2018. "Hot Shoes in the Room: Authentication of Thermal Imaging for Quantitative Forensic Analysis" Journal of Imaging 4, no. 1: 21. https://doi.org/10.3390/jimaging4010021