Color Consistency and Local Contrast Enhancement for a Mobile Image-Based Change Detection System
<p>Two images of the same scene acquired at different time points under different illumination conditions.</p> "> Figure 2
<p>Intensity transfer function for the Retinex model using a gain/offset function with <math display="inline"> <semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>127.5</mn> </mrow> </semantics> </math> and two contrast gains (<math display="inline"> <semantics> <msub> <mi>C</mi> <mn>1</mn> </msub> </semantics> </math> and <math display="inline"> <semantics> <msub> <mi>C</mi> <mn>2</mn> </msub> </semantics> </math>). For <math display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> </mrow> </semantics> </math>, the transfer function corresponds to the gain/offset function with a single gain value.</p> "> Figure 3
<p>Processed images using (<b>a</b>) the original Retinex [<a href="#B2-jimaging-03-00035" class="html-bibr">2</a>] with a single gain and (<b>b</b>) Retinex [<a href="#B2-jimaging-03-00035" class="html-bibr">2</a>] extended with the proposed two gains. Enlarged sections for the marked regions are shown on the bottom. (<b>a</b>) <math display="inline"> <semantics> <mrow> <mi>C</mi> <mo>=</mo> <mn>120</mn> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>80</mn> <mo>,</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>120</mn> </mrow> </semantics> </math>.</p> "> Figure 4
<p>Example of preventing from color inversion issues for (<b>a</b>) an image containing saturated colors (<b>b</b>) using our approach, compared to (<b>c</b>) using the original scheme [<a href="#B7-jimaging-03-00035" class="html-bibr">7</a>] with the gain/offset function applied after the color processing function. (image credit: J.L. Lisani CC BY)</p> "> Figure 5
<p>Vehicle-mounted color camera system.</p> "> Figure 6
<p>(<b>a</b>) original and processed images applying (<b>b</b>–<b>d</b>) previous Retinex-based approaches and (<b>e</b>) our approach. Enlarged sections for the marked regions are shown on the right. (<b>a</b>) unprocessed image; (<b>b</b>) Retinex [<a href="#B2-jimaging-03-00035" class="html-bibr">2</a>]; (<b>c</b>) Gray World [<a href="#B15-jimaging-03-00035" class="html-bibr">15</a>] extension; (<b>d</b>) hue-preserving Retinex [<a href="#B24-jimaging-03-00035" class="html-bibr">24</a>]; (<b>e</b>) new combined Retinex/Gray World.</p> "> Figure 7
<p>(<b>a</b>) original and processed images applying (<b>b</b>) the Gray World extension and (<b>c</b>) our approach for a scene acquired at two different time points. The second image for each example has been registered w.r.t. the first image (top) and the two images have been combined using a checkerboard (bottom). (<b>a</b>) unprocessed images; (<b>b</b>) Gray World extension; (<b>c</b>) new combined Retinex/Gray World.</p> "> Figure 8
<p>Mean RGB angular error over time for corresponding images of two image sequences for our approach and three previous Retinex-based approaches.</p> "> Figure 9
<p>(<b>a</b>) original and (<b>b</b>) processed images applying our approach for a scene with a change. The second image has been registered w.r.t. the first image. On the right, the magnitudes of the CIELAB color differences between the two images are visualized with the contour of the segmented change. (<b>a</b>) original images; (<b>b</b>) new combined Retinex/Gray World.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Center/Surround Retinex Using an Extended Gain/Offset Function
2.2. Gray World
2.3. Color Processing Function Combining Retinex and Gray World
2.4. Stacked Integral Images (SII)
3. Results
3.1. Color Rendition
3.2. Inter-Sequence Color Consistency
3.3. Change Detection
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Monnin, D.; Schneider, A.L.; Bieber, E. Detecting suspicious objects along frequently used itineraries. In Proceedings of the SPIE, Security and Defence: Electro-Optical and Infrared Systems: Technology and Applications VII, Toulouse, France, 20 September 2010; Volume 7834, pp. 1–6. [Google Scholar]
- Jobson, D.; Rahman, Z.; Woodell, G.A. Properties and performance of a center/surround Retinex. IEEE Trans. Image Process. 1997, 6, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Abidi, B.R.; Koschan, A.; Abidi, M.A. An overview of color constancy algorithms. J. Pattern Recognit. Res. 2006, 1, 42–54. [Google Scholar] [CrossRef]
- Land, E.H. The Retinex Theory of Color Vision. Sci. Am. 1977, 237, 108–129. [Google Scholar] [CrossRef] [PubMed]
- Land, E.H.; McCann, J.J. Lightness and retinex theory. Opt. Soc. Am. 1971, 61, 1–11. [Google Scholar] [CrossRef]
- Land, E.H. An alternative technique for the computation of the designator in the Retinex theory of color vision. Proc. Natl. Acad. Sci. USA 1986, 83, 3078–3080. [Google Scholar] [CrossRef] [PubMed]
- Jobson, D.; Rahman, Z.; Woodell, G.A. A multiscale Retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 1997, 6, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Barnard, K.; Funt, B. Investigations into multi-scale Retinex. In Colour Imaging: Vision and Technology; John Wiley & Sons: Hoboken, NJ, USA, 1999; pp. 9–17. [Google Scholar]
- Pei, S.C.; Shen, C.T. High-dynamic-range parallel multi-scale retinex enhancement with spatially-adaptive prior. In Proceedings of the IEEE International Symposium on Circuits and Systems, Melbourne, Australia, 1–5 June 2014; pp. 2720–2723. [Google Scholar]
- Liu, H.; Sun, X.; Han, H.; Cao, W. Low-light video image enhancement based on multiscale Retinex-like algorithm. In Proceedings of the IEEE Chinese Control and Decision Conference, Yinchuan, China, 28–30 May 2016; pp. 3712–3715. [Google Scholar]
- McCann, J.J. Retinex at 50: Color theory and spatial algorithms, a review. J. Electron. Imaging 2017, 26, 1–14. [Google Scholar] [CrossRef]
- Provenzi, E. Similarities and differences in the mathematical formalizations of the Retinex model and its variants. In Proceedings of the International Workshop on Computational Color Imaging, Milan, Italy, 29–31 March 2017; Springer: Berlin, Germany, 2017; pp. 55–67. [Google Scholar]
- Bertalmío, M.; Caselles, V.; Provenzi, E. Issues about retinex theory and contrast enhancement. Int. J. Comput. Vis. 2009, 83, 101–119. [Google Scholar] [CrossRef]
- Provenzi, E.; Caselles, V. A wavelet perspective on variational perceptually-inspired color enhancement. Int. J. Comput. Vis. 2014, 106, 153–171. [Google Scholar] [CrossRef]
- Buchsbaum, G. A spatial processor model for object colour perception. J. Frankl. Inst. 1980, 310, 1–26. [Google Scholar] [CrossRef]
- Bhatia, A.; Snyder, W.E.; Bilbro, G. Stacked integral image. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 1530–1535. [Google Scholar]
- Tektonidis, M.; Monnin, D. Image enhancement and color constancy for a vehicle-mounted change detection system. In Proceedings of the SPIE, Security and Defense: Electro-Optical Remote Sensing, Edinburgh, UK, 26 September 2016; Volume 9988, pp. 1–8. [Google Scholar]
- Finlayson, G.D.; Trezzi, E. Shades of gray and colour constancy. In Proceedings of the Color and Imaging Conference, Scottsdale, AZ, USA, 9 November 2004; Society for Imaging Science and Technology: Springfield, VA, USA, 2004; pp. 37–41. [Google Scholar]
- Van De Weijer, J.; Gevers, T.; Gijsenij, A. Edge-based color constancy. IEEE Trans. Image Process. 2007, 16, 2207–2214. [Google Scholar] [CrossRef] [PubMed]
- Petro, A.B.; Sbert, C.; Morel, J.M. Multiscale Retinex. Image Process. On Line 2014, 4, 71–88. [Google Scholar] [CrossRef]
- Getreuer, P. A survey of Gaussian convolution algorithms. Image Process. On Line 2013, 3, 286–310. [Google Scholar] [CrossRef]
- Gond, L.; Monnin, D.; Schneider, A. Optimized feature-detection for on-board vision-based surveillance. In Proceedings of the SPIE, Defence and Security: Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVII, Baltimore, MA, USA, 23 April 2012; Volume 8357, pp. 1–12. [Google Scholar]
- Funt, B.; Barnard, K.; Brockington, M.; Cardei, V. Luminance-based multi-scale Retinex. In Proceedings of the AIC Color, Kyoto, Japan, 25–30 May 1997; Volume 97, pp. 25–30. [Google Scholar]
- Tektonidis, M.; Monnin, D.; Christnacher, F. Hue-preserving local contrast enhancement and illumination compensation for outdoor color images. In Proceedings of the SPIE, Security and Defense: Electro-Optical Remote Sensing, Photonic Technologies, and Applications IX, Toulouse, France, 21 September 2015; Volume 9649, pp. 1–13. [Google Scholar]
- Yang, C.C.; Rodríguez, J.J. Efficient luminance and saturation processing techniques for color images. J. Vis. Commun. Image Represent. 1997, 8, 263–277. [Google Scholar] [CrossRef]
- Barnard, K.; Cardei, V.; Funt, B. A comparison of computational color constancy algorithms—Part I: Methodology and experiments with synthesized data. IEEE Trans. Image Process. 2002, 11, 972–984. [Google Scholar] [CrossRef] [PubMed]
- Radke, R.J.; Andra, S.; Al-Kofahi, O.; Roysam, B. Image change detection algorithms: A systematic survey. IEEE Trans. Image Process. 2005, 14, 294–307. [Google Scholar] [CrossRef] [PubMed]
Approach | Mean RGB | Mean rg |
---|---|---|
Angular Error | Endpoint Error | |
Unprocessed | ||
Retinex [2] | ||
Gray World [15] extension | ||
Hue-preserving Retinex [24] | ||
New combined Retinex/Gray World |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tektonidis, M.; Monnin, D. Color Consistency and Local Contrast Enhancement for a Mobile Image-Based Change Detection System. J. Imaging 2017, 3, 35. https://doi.org/10.3390/jimaging3030035
Tektonidis M, Monnin D. Color Consistency and Local Contrast Enhancement for a Mobile Image-Based Change Detection System. Journal of Imaging. 2017; 3(3):35. https://doi.org/10.3390/jimaging3030035
Chicago/Turabian StyleTektonidis, Marco, and David Monnin. 2017. "Color Consistency and Local Contrast Enhancement for a Mobile Image-Based Change Detection System" Journal of Imaging 3, no. 3: 35. https://doi.org/10.3390/jimaging3030035
APA StyleTektonidis, M., & Monnin, D. (2017). Color Consistency and Local Contrast Enhancement for a Mobile Image-Based Change Detection System. Journal of Imaging, 3(3), 35. https://doi.org/10.3390/jimaging3030035