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Abstract: This study introduced a novel approach to 3D image segmentation utilizing a neural
network framework applied to 2D depth map imagery, with Z axis values visualized through color
gradation. This research involved comprehensive data collection from mechanically harvested
wild blueberries to populate 3D and red–green–blue (RGB) images of filled totes through time-of-
flight and RGB cameras, respectively. Advanced neural network models from the YOLOv8 and
Detectron2 frameworks were assessed for their segmentation capabilities. Notably, the YOLOv8
models, particularly YOLOv8n-seg, demonstrated superior processing efficiency, with an average
time of 18.10 ms, significantly faster than the Detectron2 models, which exceeded 57 ms, while
maintaining high performance with a mean intersection over union (IoU) of 0.944 and a Matthew’s
correlation coefficient (MCC) of 0.957. A qualitative comparison of segmentation masks indicated
that the YOLO models produced smoother and more accurate object boundaries, whereas Detectron2
showed jagged edges and under-segmentation. Statistical analyses, including ANOVA and Tukey’s
HSD test (α = 0.05), confirmed the superior segmentation performance of models on depth maps
over RGB images (p < 0.001). This study concludes by recommending the YOLOv8n-seg model
for real-time 3D segmentation in precision agriculture, providing insights that can enhance volume
estimation, yield prediction, and resource management practices.

Keywords: Detectron2; YOLOv8; point clouds; time of flight; precision agriculture

1. Introduction

The fusion of computational methods with traditional farming practices in the cul-
tivation of wild blueberries (Vaccinium angustifolium Ait.) has led to increased efficiency
and precision in cultivation [1,2]. Wild blueberries (Figure 1) are a crop that presents dis-
tinct challenges due to their unique field conditions and harvesting requirements. Unlike
cultivated (Vaccinium corymbosum L.) varieties, wild blueberries grow without planting or
seeding, often in rugged, uneven terrains [3,4]. This non-uniform setting contributes to
the complexity of their mechanical harvesting, making harvesting picker head implement
height adjustments frequent.

The use of advanced computer vision techniques, such as point cloud segmentation, ex-
plored in this research can address the unique challenges faced by wild blueberry harvester
operators in ensuring consistent and full collection totes. Historically, 3D vision research
in agriculture has predominantly overlooked specialty crops like wild blueberries [5–8].
Harvesting wild blueberries is complex due to their varied sizes and shapes and natural
clustering. These factors, combined with irregular field conditions, pose significant chal-
lenges for image processing and volume estimation. Conventional 3D vision approaches,
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such as RGB meshed segmentation or clustering-based segmentation [7,9,10], lack the depth
and volume information crucial for accurately processing irregular and densely clustered
objects like wild blueberries. In contrast, the segmentation of depth maps for 3D point
clouds, as proposed in this research, offers a more comprehensive analysis by incorporating
depth information, which is vital for precise volume estimation and spatial analysis.
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Figure 1. Example of wild blueberries (Vaccinium angustifolium Ait.) at time of harvest, illustrating
the irregular clustering.

To optimize the point cloud volume estimation of harvested wild blueberries, seg-
menting outlier points is crucial for improving the accuracy of volume estimation al-
gorithms [5,11]. Accurate volume estimation is crucial for several reasons: it directly
influences yield assessment, aids in quality control through the categorization of harvested
berries based on volume (indicating maturity and quality) [12], and offers logistical ben-
efits such as optimizing storage and transportation [13]. Subsequently, accurate volume
estimation supports yield prediction and the generation of prescription maps, enhancing
crop management through precision irrigation, fertilization, and drainage [14]. A critical
step for accurate volume estimation is the effective segmentation of the tote containing
the berries from the point cloud data. This involves distinguishing the berries from their
storage tote and any other surrounding objects or noise within the 3D scan. This step is
challenging due to the irregular and varying shape of the berries [15], variability in fill
shapes, and other elements within the tote. Effective segmentation ensures that the volume
computation applies only to the berries, excluding the tote and any extraneous elements.
To use point cloud analytics for volume estimation, one study on the volume estimation of
tree canopies using LiDAR highlighted three methods for volume estimation: convex hull,
alpha shape, and voxel grid, finding the superior performance of convex hull and alpha
shape over voxel grid [16].

Point cloud segmentation is crucial in enhancing the precision of volume estima-
tion. Inaccurate segmentation could lead to the overestimation or underestimation of
berry volume, causing inefficiencies in processing and potential economic losses [17,18].
Moreover, precise volume estimation of harvested wild blueberries using 3D point cloud
data has broader implications, paving the way for automated systems that streamline the
harvesting process, reduce manual labor, and enhance accuracy and efficiency. This is
particularly beneficial for crops like wild blueberries, where the harvesting and processing
are labor-intensive and subject to human error.
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Neural network frameworks like You Only Look Once (YOLO) have effectively seg-
mented 2D images with high precision [19,20], enabling the removal of unwanted points
from generated depth maps. Ultralytics’ YOLOv8 (Ultralytics LLC, Los Angeles, CA, USA)
marks a significant improvement in the YOLO series, surpassing previous versions in speed
and accuracy (v7n~15ms, v8n~5ms) [20]. YOLOv8’s core architecture, based on YOLOv7
ELAN design principles [21], features the innovative C2f module, which enhances gradient
flow for robust performance [21]. It also incorporates spatial pyramid pooling fusion,
crucial for extracting contextual data from various image scales, boosting the model’s
ability to generalize. Additionally, YOLOv8’s neck design eliminates convolutional layers
in the up-sampling process and replaces the C3 module with the C2f module for opti-
mized efficiency [21]. YOLOv8 offers a comprehensive training framework supporting key
functionalities like object detection and instance segmentation [22,23].

Detectron2 is an open-source library tailored for computer vision tasks, including
object detection, segmentation, and pixel-wise predictions [24,25]. Developed using Python
and built on the PyTorch framework, it allows for the dynamic creation and debugging
of neural networks. The library features a comprehensive model zoo with pre-trained
models on datasets such as COCO, LVIS, and Cityscapes. Detectron2 supports multi-GPU
training and mixed precision to accelerate processes. The architecture comprises several
key components: the backbone, neck, and heads. The backbone extracts features from
images, supporting architectures like ResNet, ResNeXt, and EfficientNet [26]. The neck,
featuring components like the Feature Pyramid Network (FPN), processes these features
for multi-scale object detection. The heads are tailored to specific tasks (R-CNN for object
detection, Mask R-CNN for instance segmentation), predicting outputs such as bounding
boxes and segmentation masks. This structured approach makes Detectron2 a powerful
and flexible framework for complex visual recognition tasks. In instance segmentation, the
ResNet 50 and 101 (R50 and R101) models using FPN achieved the best mAP scores within
their model depths on the COCO dataset [26]. However, the ResNeXt 101 (X101) achieved
the highest overall mAP score but had nearly twice the processing time of the ResNet-101
FPN model and more than twice the processing time of the ResNet-50 FPN model [26].

The objective of this research was to conduct a comparative analysis of the YOLOv8-seg
and Detectron2 models to determine the most effective method for point cloud segmen-
tation in the context of harvested wild blueberry totes. This comparison was crucial for
understanding how different deep learning architectures perform in a specialized agri-
cultural setting, especially one that involves complex and irregular natural objects. The
models were assessed based on their accuracy, efficiency, and ability to handle nuances
in the dataset, such as the differentiation between berries and the tote. The innovation of
this study lies in applying 2D neural networks to segment 3D point clouds through depth
map conversion in real time. The comparison of RGB-based segmentation and depth map
segmentation will showcase the superior performance of this innovative method.

2. Materials and Methods

Neural network frameworks were deployed on 2D depth map imagery, where the Z
axis values were represented by color (Figure 2) (axes shown in Figure 3). The experiment
for evaluating the efficacy of this newly proposed technique required data of varying
shapes within a specified storage tote filled with mechanically harvested wild blueberries.
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2.1. Data Collection

Mechanically harvested wild blueberry totes (1.12 m × 1.12 m × 0.21 m) were of-
floaded and then transported with a John Deere 5420 tractor with a 542 loader (John Deere,
Moline, IL, USA) and pallet forks to the platform with above-mounted cameras (Figure 3).
The point clouds and RGB images were collected after the tote was positioned so that each
edge of the tote was aligned with the platform. A Blaze-101 ToF camera (Basler AG, Ahrens-
burg SH, Germany) with a field of view of 67◦ × 51◦ (in the X and Y axes, respectively)
was mounted alongside a 1.6 MP Triton RGB camera (Lucid Vision Labs, Richmond BC,
Canada) with a 4 mm lens (Edmund Optics, Barrington NJ, USA) directly over the platform
using an extendable mount to allow point cloud stitching (Figure 3).

An MSI Workstation laptop (WS65 9TM1410CA, Micro-Star International Co., Ltd.,
New Taipei, Taiwan) with an Intel Core i9-9980H central processing unit (CPU, Intel
Corporation, Santa Clara, CA, USA) and an Nvidia RTX Quadro 5000 graphics processing
unit (GPU, Nvidia Corporation, Santa Clara, CA, USA) was used to collect the data from
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the ToF camera through a 10 m M12 to RJ45 cable (Basler AG, Ahrensburg SH, Germany)
and connected to power using a 10 m M12 to GPIO cable (Basler AG, Ahrensburg SH,
Germany). To collect the data, during the harvest of wild blueberries, the filled totes were
carefully positioned beneath the RGB and ToF cameras elevated 1.35 m above the tote.
The cameras captured the scenes and saved them as JPEG images with a resolution of
1440 × 1080 and Polygon files (PLY) with a resolution of 640 × 480. After image acquisition,
JPEGs were uploaded to the Roboflow API [27]. The labeling of both RGB images and the
depth map images was initially conducted using the Segment Anything Model [28], after
which, manual adjustments were made as needed by selecting pre-allocated anchor points
that over- or under-segmented the image and moving their position in the X or Y axis to
outline the segmentation mask properly.

2.2. Framework Training and Evaluation

The dataset (380 images) was partitioned into distinct subsets to facilitate effective
training and unbiased evaluation. Specifically, 80% of the data was allocated for training
and the remaining data were split evenly between testing and validation, each receiving
10% [29]. This distribution ensured that the model was tested on unseen data and validated
to prevent overfitting and confirm generalization. The models were trained on an Alienware
Aurora R11 desktop computer (Dell Inc., Round Rock, TX, USA) with a 3.7 GHz 10-core
Intel Core i9-10900K CPU (Intel Corporation, Santa Clara, CA, USA), 128 GB of DDR4-3200
MHz, and an Nvidia GeForce RTX 3090 GPU (Nvidia Corp., Santa Clara, CA, USA) at
150 epochs, with an early stopping patience of 50 and a batch size of 16.

During validation, a suite of methods and metrics were applied to quantify model
performance comprehensively. Intersection over Union (IoU) was used due to its relevance
in object detection and segmentation tasks [30]. Additionally, the Matthew’s correlation
coefficient (MCC) was employed as it is particularly useful compared to F1 scores when
dealing with imbalanced datasets without compromising results on balanced datasets [31].
MCCs provided a robust indication of pixel-wise classification accuracy by incorporating
true and false positives and negatives, thus delivering a balanced metric that reflected both
the presence and absence of the target condition effectively.

To prepare the data for evaluation in the 3D space, manually segmenting the point
clouds to only contain the targeted tote contents while retaining the outermost points on
each axis was required to supply the ground truth point clouds without altering the depth
map. The ground truth point clouds were then converted to depth map format for model
training and evaluation. This was done using both Python (3.8.13) and Meshlab (Visual
Computing Lab, ISTI-CNR, Pisa, Italy), where Python was used to generate the depth maps
for the data, training, and testing of the models and Meshlab was used for the manual
segmentation of the point clouds.

Hue adjustment was the chosen augmentation technique during training to address
the variability in color representations and ensure robustness to different color maps
(cmaps) [32]. By modifying the hue values of the input images, the model could learn
to be invariant to color shifts and changes, simulating a range of height conditions and
camera settings. This form of color augmentation is critical in scenarios where the model
is expected to operate in environments with varying distances from the cameras, where
color is proportional to distance, or when the data are sourced from multiple devices with
different profiles, such as the depth maps compared to RGB images [33,34].

2.3. Statistical Methods

To assign a random fill weight to the totes for generalization and statistical strength,
the operator was instructed to drop the tote at the end of each side of the pass or until it
was filled. As the operator moved through the field, they filled the tote with berries using
the mechanical harvester. At the end of each pass across the field or when the tote was
full, it was dropped, ensuring that the totes had varying fill weights, which was crucial to
accurately represent the variability in berry volume and strengthen the statistical analysis
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of the data. A completely randomized design (CRD) was then incorporated; the deep
learning framework model was the factor of interest, with the response variable being the
segmentation mask, which was then evaluated using Analysis of Variance (ANOVA) and
Tukey’s Honest Significant Difference (HSD) test for multiple mean comparisons on IoU
and MCCs through Minitab 21 (Minitab, LLC, Minitab 21, State College, PA, USA.) at a
significance threshold of α = 0.05.

3. Results and Discussion

The RGB and depth image masks were overlayed on the mask of the respective
ground truth segmented images. The true positive (TP) and negative (TN) predictions were
compared to false positive (FP) and false negative (FN) predictions to determine the efficacy
of its use for segmentation (Table 1). It was clear that in both MCCs and IoU, the RGB
meshed point cloud segmentation did not yield promising results for segmentation in 3D,
evidenced by each model performing under 82% on both IoU and MCCs when compared
to the models segmenting depth maps, performing consistently above 92%. Furthermore,
the statistical analysis through multiple mean comparisons showed the separation between
RGB and the depth-based networks, showing a statistically significant difference between
them (p < 0.001).

Table 1. YOLOv8 and Detectron2 model evaluation results for both RGB and depth map models
(α = 0.05).

Model IoU MCC Processing Time (ms)

D
ep

th

YOLOv8n 0.944 (±0.014) a 0.957 (±0.011) a 18.10 (±3.68) h
YOLOv8s 0.952 (±0.014) a 0.963 (±0.011) a 20.52 (±6.98) h
YOLOv8m 0.946 (±0.013) a 0.959 (±0.011) a 21.65 (±3.76) h
YOLOv8l 0.943 (±0.015) a 0.956 (±0.012) a 22.20 (±3.68) g h
YOLOv8x 0.921 (±0.033) a 0.938 (±0.027) a 29.29 (±3.77) f
R50-FPN 0.945 (±0.013) a 0.958 (±0.010) a 57.67 (±7.35) e
R101-FPN 0.951 (±0.014) a 0.963 (±0.011) a 64.44 (±5.86) d
X101-FPN 0.948 (±0.013) a 0.960 (±0.010) a 81.82 (±5.12) c

R
G

B

YOLOv8n 0.780 (±0.068) b 0.811 (±0.073) b 28.42 (±3.87) f g
YOLOv8s 0.780 (±0.066) b 0.810 (±0.071) b 30.91 (±9.42) f
YOLOv8m 0.770 (±0.141) b 0.808 (±0.130) b 32.77 (±9.40) f
YOLOv8l 0.810 (±0.073) b 0.779 (±0.068) b 33.51 (±8.75) f
YOLOv8x 0.777 (±0.071) b 0.808 (±0.076) b 34.71 (±6.29) f
R50-FPN 0.785 (±0.065) b 0.815 (±0.070) b 95.68 (±16.42) b
R101-FPN 0.785 (±0.066) b 0.815 (±0.071) b 102.41 (±10.45) a
X101-FPN 0.765 (±0.071) b 0.796 (±0.077) b 102.88 (±13.15) a

Means that do not share a letter are significantly different. Comparisons are within the column only.

In assessing the models based on the framework, the Detectron2 models each displayed
no significant differences in IoU and MCCs within the respective spatial domains (2D and
3D) (Table 1). There were, however, significant differences between each of the models
based on processing time, where the lightweight ResNet50 was significantly faster than both
the ResNet101 and ResNeXt101 models, with the ResNet101 model only being significantly
faster than ResNeXt101 in the depth map prediction medium. Like the Detectron2 models,
within each spatial domain, the YOLO variants showed no difference in MCCs and IoU.
Both the YOLO and Detectron2 models achieved significantly superior performance using
the depth maps as the prediction medium across each of the performance metrics. As
a qualitative evaluation, the losses were visualized by overlaying the ground truth and
predicted masks color-coded based on pixel correctness (TN, TP, FN, FP) (Figures 4 and 5).
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Figure 5. Visualization of segmentation mask correctness of Detectron2 masks for ToF 3D and 2D RGB
cameras, with true positive as green, true negative as blue, false positive as red, and false negative
as orange.

In the qualitative analysis of model performance, the segmentation masks generated
by the various YOLO and Detectron2 models were compared to the ground truth masks
(Figures 4 and 5), focusing on the true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) values, each distinguished by colors: green, blue, red, and orange,
respectively (Figures 4 and 5). The visual aspect of color-coded segmentation outputs, as
presented in Figures 4 and 5, provided a powerful tool for evaluating model performance.
By assigning distinct colors to the categorized pixels, the visual overlays offered an intuitive
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and immediate understanding of segmentation accuracy. This approach allowed for error
pattern identification, such as areas with high misclassification rates, and assessed the
smoothness and precision of segmentation boundaries.

This comparison revealed distinct patterns and errors in each model’s performance.
The errors associated with the RGB level segmentations could be primarily attributed to
the camera lens warp causing misalignment as the lens used in this study had a recorded
maximum distortion of −20.43%. Both the YOLOv8-seg and Detectron2 models tended to
under-segment the background imagery, leading to more FPs proportionally. The Detec-
tron2 models’ under-segmentation in comparison to the YOLO models was less smooth,
where the images segmented by the Detectron2 model had jagged and irregular boundaries
between segments, indicating that the model struggled to create clean and precise edges
(Figure 5). This lack of smoothness led to inaccuracies in segmenting the target objects,
as the rough edges could either include or exclude adjacent areas incorrectly. Oppos-
ing this, the segmentation output from the YOLO models showed smoother boundaries,
where the edges were more consistent and less jagged, which indicated that the YOLO
models could delineate objects with higher precision (Figure 4). Smoother segmentation
resulted in a more accurate representation of the objects’ shapes and sizes, which is criti-
cal for tasks requiring precise volume estimation, such as in agricultural applications for
yield prediction.

The confusion matrices for depth-based and RGB-based segmentation revealed the
performance of the YOLOv8 and Detectron2 frameworks, highlighting the strengths
and weaknesses of each approach (Figures 6 and 7). Depth-based segmentation out-
performed RGB-based methods, achieving higher true positive (TP) and true negative (TN)
rates (Figure 6). For depth-based segmentation, Detectron2 achieved TP = 3,725,692 and
TN = 7,357,565, while YOLOv8n-seg recorded TP = 3,751,174 and TN = 7,193,692. YOLOv8n-
seg also showed fewer false positives (FP = 77,158) and false negatives (FN = 344,376)
compared to Detectron2 (FP = 102,640, FN = 180,503). This accuracy, combined with
YOLOv8n-seg’s faster processing time (18.10 ms vs. Detectron2’s 57.67 ms), highlights its
suitability for real-time agricultural applications.
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In contrast, RGB-based segmentation performed worse, with increased error rates
(Figure 7). Detectron2 achieved TP = 3,206,732 and TN = 6,438,264, while YOLOv8n-seg
achieved higher values of TP = 3,477,835 and TN = 6,949,937. However, both frame-
works recorded significantly higher false positives and false negatives, with Detectron2 at
FP = 426,944 and FN = 680,060 and YOLOv8n-seg at FP = 350,497 and FN = 588,131. The
lack of depth information and lens distortions (up to −20.43%) further hindered RGB-based
segmentation. While YOLOv8n-seg processed images faster (28.42 ms vs. Detectron2′s
95.68 ms), RGB segmentation remained inadequate for precision tasks in the 3D space.

Based on both the quantitative and qualitative analyses, YOLOv8n-seg is recom-
mended as a general segmentation solution for real-time applications using ToF imagery.
However, for performance in the RGB domain specifically, the Detectron2 ResNet50
model is recommended for its IoU (0.785) and MCC (0.815). In real-time applications,
the YOLOv8n-seg model is recommended for both mediums, with a significantly lower
processing time (depth: 18.10 ms, RGB: 28.42 ms) and no significant difference in accuracy
metrics (IoU: 0.944 and MCC: 0.957). YOLOv8 outperforms Detectron2 due to fundamental
architectural differences. YOLOv8 employs a single-stage design, directly predicting seg-
mentation outputs from feature maps without relying on a region proposal network (RPN).
This streamlined approach reduces computational overhead and processing time while
maintaining high accuracy. In contrast, Detectron2’s two-stage architecture, which uses
an RPN and separate steps for detection and segmentation, introduces additional latency
and increases computational complexity. YOLOv8 further benefits from adaptive anchor-
free mechanisms and dynamic loss weighting, enabling the better handling of irregularly
shaped objects and varying scales, such as those found in the context of wild blueberries. Its
optimized convolutional layers and attention mechanisms produce smoother segmentation
boundaries and reduce errors, as observed in the qualitative analysis. Detectron2, while
robust, relies heavily on its FPN for multi-scale feature aggregation, which adds to its
processing time and limits real-time applicability.

The results highlighted the unique strength of leveraging 2D neural network frame-
works for depth map segmentation as a novel methodology for addressing 3D segmentation
challenges. By utilizing 2D frameworks to analyze depth map imagery, which inherently
encodes spatial information, this study demonstrated significant advancements in segmen-
tation accuracy and processing speed, reinforcing the method’s potential as a practical
solution for real-time precision agriculture applications.
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4. Conclusions

The objective of this study was to evaluate the performance of the YOLOv8 and Detec-
tron2 frameworks in segmenting RGB and depth images, comparing their segmentation
efficacy and processing times in 3D image contexts to find an optimal solution for instance
segmentation in the 3D space.

The analysis revealed that depth map-based segmentation models significantly outper-
formed RGB-based models in terms of both Intersection over Union (IoU) and Matthew’s
correlation coefficient (MCC). Depth-based models consistently achieved IoU and MCC
scores above 92%, while RGB-based models scored below 82%. For example, the YOLOv8s
model achieved the highest IoU (0.952 ± 0.014) and MCC (0.963 ± 0.011) among the
depth-based models, demonstrating superior segmentation accuracy. In contrast, the best-
performing RGB model, YOLOv8l, managed an IoU of 0.810 ± 0.073 and an MCC of
0.779 ± 0.068. Comparing the two frameworks, both YOLOv8 and Detectron2 showed
no significant differences in IoU and MCCs within their respective spatial domains (2D
and 3D). However, the YOLOv8 models were significantly faster in their processing times.
YOLOv8n achieved a processing time of 18.10 ± 3.68 ms, whereas the lightweight De-
tectron2 model, R50-FPN, was significantly slower (57.67 ± 7.35 ms). This difference in
processing speed highlights YOLOv8’s advantage in real-time applications. In the qualita-
tive analysis of model performance, segmentation masks generated by the YOLOv8 and
Detectron2 models were compared to ground truth masks through true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) values. Both the YOLOv8-seg
and Detectron2 models exhibited under-segmentation, where Detectron2’s output had
jagged boundaries, indicating struggles with edge precision, whereas the YOLO models
showed smoother, more accurate delineation of objects.

Future research should explore the application of segmentation models for improved
volume estimation of 3D images. Integrating segmentation with advanced volume estima-
tion techniques could enhance precision agriculture, enabling more accurate and efficient
monitoring of harvesting volume and transportation optimization. Further studies should
also investigate the performance of these models in different agricultural contexts and
under varied environmental conditions, providing a more comprehensive evaluation of
their capabilities and limitations.

Author Contributions: C.C.M.: Conceptualization; Data curation; Formal analysis; Investigation;
Methodology; Software; Writing—original draft. T.J.E.: Funding acquisition; Project administration;
Supervision; Writing—original draft. Q.U.Z.: Supervision; Writing—review and editing. A.A.A.-M.:
Writing—review and editing. A.A.F.: Writing—review and editing. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council
(NSERC) of Canada Discovery Grants Program (RGPIN-06295-2019).

Data Availability Statement: Data will be made available upon request.

Acknowledgments: The authors would like to thank the Bragg Lumber Company for the use of
commercially managed wild blueberry fields. The authors would also like to acknowledge the efforts
of Dalhousie’s Agricultural Mechanized Systems research team for assistance in data collection.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Esau, T.; Zaman, Q.; Groulx, D.; Farooque, A.; Schumann, A.; Chang, Y. Machine Vision Smart Sprayer for Spot-Application of

Agrochemical in Wild Blueberry Fields. Precis. Agric. 2018, 19, 770–788. [CrossRef]
2. MacEachern, C.B.; Esau, T.J.; Zaman, Q.U.; White, S.N.; Farooque, A.A. Development of a Novel Precision Applicator for Spot

Treatment of Granular Agrochemical in Wild Blueberry. Sci. Rep. 2024, 14, 13751. [CrossRef] [PubMed]
3. Esau, T.J.; MacEachern, C.B.; Farooque, A.A.; Zaman, Q.U. Evaluation of Autosteer in Rough Terrain at Low Ground Speed for

Commercial Wild Blueberry Harvesting. Agronomy 2021, 11, 384. [CrossRef]

https://doi.org/10.1007/s11119-017-9557-y
https://doi.org/10.1038/s41598-024-64650-z
https://www.ncbi.nlm.nih.gov/pubmed/38877112
https://doi.org/10.3390/agronomy11020384


J. Imaging 2024, 10, 324 11 of 12

4. Zaman, Q.U.; Schumann, A.W.; Percival, D.C. An Automated Cost-Effective System for Real-Time Slope Mapping in Commercial
Wild Blueberry Fields. Horttechnology 2010, 20, 431–437. [CrossRef]

5. Cong, P.; Zhou, J.; Li, S.; Lv, K.; Feng, H. Citrus Tree Crown Segmentation of Orchard Spraying Robot Based on RGB-D Image and
Improved Mask R-CNN. Appl. Sci. 2022, 13, 164. [CrossRef]

6. Le Louëdec, J.; Cielniak, G. 3D Shape Sensing and Deep Learning-Based Segmentation of Strawberries. Comput. Electr. Agric.
2021, 190, 106374. [CrossRef]

7. Magistri, F.; Marks, E.; Nagulavancha, S.; Vizzo, I.; Läebe, T.; Behley, J.; Halstead, M.; McCool, C.; Stachniss, C. Contrastive
3D Shape Completion and Reconstruction for Agricultural Robots Using RGB-D Frames. IEEE Robot. Autom. Lett. 2022, 7,
10120–10127. [CrossRef]

8. Song, Y.; Xu, F.; Yao, Q.; Liu, J.; Yang, S. Navigation Algorithm Based on Semantic Segmentation in Wheat Fields Using an RGB-D
Camera. Inf. Process. Agric. 2023, 10, 475–490. [CrossRef]

9. Kim, W.-S.; Lee, D.-H.; Kim, Y.-J.; Kim, T.; Lee, W.-S.; Choi, C.-H. Stereo-Vision-Based Crop Height Estimation for Agricultural
Robots. Comput. Electr. Agric. 2021, 181, 105937. [CrossRef]

10. Lin, G.; Tang, Y.; Zou, X.; Xiong, J.; Fang, Y. Color-, Depth-, and Shape-Based 3D Fruit Detection. Precis. Agric. 2020, 21, 1–17.
[CrossRef]

11. Gardiner, J.D.; Behnsen, J.; Brassey, C.A. Alpha Shapes: Determining 3D Shape Complexity across Morphologically Diverse
Structures. BMC Evol. Biol. 2018, 18, 184. [CrossRef] [PubMed]

12. MacEachern, C.B.; Esau, T.J.; Schumann, A.W.; Hennessy, P.J.; Zaman, Q.U. Detection of Fruit Maturity Stage and Yield Estimation
in Wild Blueberry Using Deep Learning Convolutional Neural Networks. Smart Agric. Technol. 2023, 3, 100099. [CrossRef]

13. Amorim, L.L.; Mutz, F.; De Souza, A.F.; Badue, C.; Oliveira-Santos, T. Simple and Effective Load Volume Estimation in Moving
Trucks Using LiDARs. In Proceedings of the 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Rio
de Janeiro, Brazil, 28–31 October 2019; pp. 210–217.

14. Adeyemi, O.; Grove, I.; Peets, S.; Norton, T. Advanced Monitoring and Management Systems for Improving Sustainability in
Precision Irrigation. Sustainability 2017, 9, 353. [CrossRef]

15. Farooque, A.A.; Zaman, Q.U.; Groulx, D.; Schumann, A.W.; Yarborough, D.E.; Nguyen-Quang, T. Effect of Ground Speed and
Header Revolutions on the Picking Efficiency Ofa Commercial Wild Blueberry Harvester. Appl. Eng. Agric. 2014, 30, 535–546.
[CrossRef]

16. Kothawade, G.S.; Chandel, A.K.; Schrader, M.J.; Rathnayake, A.P.; Khot, L.R. High Throughput Canopy Characterization of a
Commercial Apple Orchard Using Aerial RGB Imagery. In Proceedings of the 2021 IEEE International Workshop on Metrology
for Agriculture and Forestry (MetroAgriFor), Trento-Bolzano, Italy, 3–5 November 2021; pp. 177–181.

17. Ge, Y.; Xiong, Y.; From, P.J. Instance Segmentation and Localization of Strawberries in Farm Conditions for Automatic Fruit
Harvesting. IFAC-PapersOnLine 2019, 52, 294–299. [CrossRef]

18. Mäkelä, H.; Pekkarinen, A. Estimation of Timber Volume at the Sample Plot Level by Means of Image Segmentation and Landsat
TM Imagery. Remote Sens. Environ. 2001, 77, 66–75. [CrossRef]

19. Wang, N.; Liu, H.; Li, Y.; Zhou, W.; Ding, M. Segmentation and Phenotype Calculation of Rapeseed Pods Based on YOLO v8 and
Mask R-Convolution Neural Networks. Plants 2023, 12, 3328. [CrossRef]

20. Yue, X.; Qi, K.; Na, X.; Zhang, Y.; Liu, Y.; Liu, C. Improved YOLOv8-Seg Network for Instance Segmentation of Healthy and
Diseased Tomato Plants in the Growth Stage. Agriculture 2023, 13, 1643. [CrossRef]

21. Bai, R.; Wang, M.; Zhang, Z.; Lu, J.; Shen, F. Automated Construction Site Monitoring Based on Improved YOLOv8-Seg Instance
Segmentation Algorithm. IEEE Access 2023, 11, 139082–139096. [CrossRef]

22. Dumitriu, A.; Tatui, F.; Miron, F.; Ionescu, R.T.; Timofte, R. Rip Current Segmentation: A Novel Benchmark and YOLOv8 Baseline
Results. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC,
Canada, 17–24 June 2023; pp. 1261–1271.

23. Kumar, D.; Muhammad, N. Object Detection in Adverse Weather for Autonomous Driving through Data Merging and YOLOv8.
Sensors 2023, 23, 8471. [CrossRef]

24. Lorente, O.; Riera, I.; Rana, A. Scene Understanding for Autonomous Driving. arXiv 2021. [CrossRef]
25. Pham, V.; Pham, C.; Dang, T. Road Damage Detection and Classification with Detectron2 and Faster R-CNN. In Proceedings of

the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 5592–5601.
26. Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.-Y.; Girshick, R. Detectron2. 2019. Available online: https://github.com/facebookresearch/

detectron2 (accessed on 5 May 2024).
27. Roboflow: Computer Vision Tools for Developers and Enterprises. Available online: https://roboflow.com/ (accessed on 30

September 2024).
28. Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.-Y.; et al. Segment

Anything. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2–6 October
2023; pp. 3992–4003.

29. Khashman, A. Neural Networks for Credit Risk Evaluation: Investigation of Different Neural Models and Learning Schemes.
Expert Syst. Appl. 2010, 37, 6233–6239. [CrossRef]

https://doi.org/10.21273/HORTTECH.20.2.431
https://doi.org/10.3390/app13010164
https://doi.org/10.1016/j.compag.2021.106374
https://doi.org/10.1109/LRA.2022.3193239
https://doi.org/10.1016/j.inpa.2022.05.002
https://doi.org/10.1016/j.compag.2020.105937
https://doi.org/10.1007/s11119-019-09654-w
https://doi.org/10.1186/s12862-018-1305-z
https://www.ncbi.nlm.nih.gov/pubmed/30518326
https://doi.org/10.1016/j.atech.2022.100099
https://doi.org/10.3390/su9030353
https://doi.org/10.13031/aea.30.10415
https://doi.org/10.1016/j.ifacol.2019.12.537
https://doi.org/10.1016/S0034-4257(01)00194-8
https://doi.org/10.3390/plants12183328
https://doi.org/10.3390/agriculture13081643
https://doi.org/10.1109/ACCESS.2023.3340895
https://doi.org/10.3390/s23208471
https://doi.org/10.48550/arXiv.2105.04905
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://roboflow.com/
https://doi.org/10.1016/j.eswa.2010.02.101


J. Imaging 2024, 10, 324 12 of 12

30. Rahman, M.A.; Wang, Y. Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation. In Advances in
Visual Computing; Lecture Notes in Computer Science; Bebis, G., Boyle, R., Parvin, B., Koracin, D., Porikli, F., Skaff, S., Entezari, A.,
Min, J., Iwai, D., Sadagic, A., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 10072, pp. 234–244,
ISBN 978-3-319-50834-4.

31. Chicco, D.; Jurman, G. The Advantages of the Matthews Correlation Coefficient (MCC) over F1 Score and Accuracy in Binary
Classification Evaluation. BMC Genom. 2020, 21, 6. [CrossRef]

32. Cossio, M. Augmenting Medical Imaging: A Comprehensive Catalogue of 65 Techniques for Enhanced Data Analysis. arXiv 2023,
arXiv:2303.01178.

33. Saha, A.; Prasad, P.; Thabit, A. Leveraging Adaptive Color Augmentation in Convolutional Neural Networks for Deep Skin
Lesion Segmentation. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City,
IA, USA, 3–7 April 2020; pp. 2014–2017.

34. French, G.; Mackiewicz, M. Colour Augmentation for Improved Semi-Supervised Semantic Segmentation. In Proceedings of the
17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Virtual, 6–8
February 2022; pp. 356–363. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.5220/0010807400003124

	Introduction 
	Materials and Methods 
	Data Collection 
	Framework Training and Evaluation 
	Statistical Methods 

	Results and Discussion 
	Conclusions 
	References

