
Citation: Kauer, T.; Sehring, J.;

Schmid, K.; Bartkuhn, M.; Wiebach, B.;

Crnkovic, S.; Kwapiszewska, G.;

Acker, T.; Amsel, D. MOTH:

Memory-Efficient On-the-Fly Tiling of

Histological Image Annotations Using

QuPath. J. Imaging 2024, 10, 292.

https://doi.org/10.3390/

jimaging10110292

Academic Editors: Carmelo Militello,

Andrea Loddo, Albert Comelli,

Cecilia Di Ruberto, Lorenzo Putzu

and Alessandro Stefano

Received: 26 August 2024

Revised: 30 October 2024

Accepted: 12 November 2024

Published: 15 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Technical Note

MOTH: Memory-Efficient On-the-Fly Tiling of Histological
Image Annotations Using QuPath
Thomas Kauer 1 , Jannik Sehring 1, Kai Schmid 1 , Marek Bartkuhn 2,3, Benedikt Wiebach 2,3, Slaven Crnkovic 2,4,
Grazyna Kwapiszewska 2,4 , Till Acker 1 and Daniel Amsel 1,*

1 Institute of Neuropathology, Justus-Liebig-University Giessen, Arndtstr. 16, 35392 Giessen, Germany;
thomas.kauer@ges.thm.de (T.K.); jannik.sehring@patho.med.uni-giessen.de (J.S.);
kai.schmid@patho.med.uni-giessen.de (K.S.); till.acker@patho.med.uni-giessen.de (T.A.)

2 Institute for Lung Health, Justus-Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany;
marek.bartkuhn@gen.bio.uni-giessen.de (M.B.); benedikt.wiebach@bioinfsys.uni-giessen.de (B.W.);
slaven.crnkovic@innere.med.uni-giessen.de (S.C.); grazyna.kwapiszewska-marsh@medunigraz.at (G.K.)

3 Biomedical Informatics and Systems Medicine, Justus-Liebig-University Giessen, Aulweg 128,
35392 Giessen, Germany

4 Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
* Correspondence: daniel.amsel@patho.med.uni-giessen.de

Abstract: The emerging usage of digitalized histopathological images is leading to a novel possibility
for data analysis. With the help of artificial intelligence algorithms, it is now possible to detect
certain structures and morphological features on whole slide images automatically. This enables
algorithms to count, measure, or evaluate those areas when trained properly. To achieve suitable
training, datasets must be annotated and curated by users in programs like QuPath. The extraction of
this data for artificial intelligence algorithms is still rather tedious and needs to be saved on a local
hard drive. We developed a toolkit for integration into existing pipelines and tools, like U-net, for
the on-the-fly extraction of annotation tiles from existing QuPath projects. The tiles can be directly
used as input for artificial intelligence algorithms, and the results are directly transferred back to
QuPath for visual inspection. With the toolkit, we created a convenient way to incorporate QuPath
into existing AI workflows.

Keywords: whole slide image; qupath; artificial intelligence; segmentation; digital pathology

1. Introduction

In histopathological image analysis, the high-throughput digitalization of tissues
has led to the development of advanced computational techniques, particularly those
driven by artificial intelligence (AI) algorithms [1,2]. The automated detection of structures
and morphological features within digitized histopathological images, or whole slide
images (WSIs), holds immense promise, affording pathologists and researchers the ability
to perform automated quantification, measurement, and evaluation, provided that these
algorithms are adequately trained in advance. Many approaches utilize segmentation tasks,
for example to derive grading between healthy and cancerous tissues, like in colon biopsies
and polyps [3].

For training, careful annotation and curation of large datasets is necessary. This task
is often executed within specialized software platforms, such as QuPath [4], and saved as
geometric figures, such as polygons. QuPath is one of the leading tools for the annotation
of whole slide images [5], besides tools like SlideRunner [6] and HistomicsUI, which are
part of the Digital Slide Archive (DSA) [7].

Analyzing WSIs presents additional challenges due to their gigapixel size. Most
methods require dividing the image into smaller, more manageable patches, the so-called
tiling process, where the WSI is disassembled into regions and image tiles of reasonable

J. Imaging 2024, 10, 292. https://doi.org/10.3390/jimaging10110292 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging10110292
https://doi.org/10.3390/jimaging10110292
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0009-0002-8001-5212
https://orcid.org/0000-0003-3046-9398
https://orcid.org/0000-0003-0518-9079
https://orcid.org/0000-0002-0512-9802
https://doi.org/10.3390/jimaging10110292
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging10110292?type=check_update&version=1

J. Imaging 2024, 10, 292 2 of 10

size (e.g., 512 × 512 px) and are extracted at areas of interest. For segmentation using
machine learning (ML), usually a second image, serving as the annotation mask, with
discretized values for the annotated classes, needs to be stored to be able to train the ML
model properly. In current workflows, this is usually achieved by performing pre-tiling in
QuPath with the built-in Groovy-based script editor and storing pairs of image tiles and
masks on the hard disk. This approach generates a large amount of data pairs occupying
the storage, which may make it necessary to utilize a hard disk drive (HDD) instead of
a faster storage type, like solid-state-drives (SSD), with its drawbacks in request time.
The pre-tiling also counteracts the flexibility of requested image regions, which may be
important in performing tasks such as image augmentation or extracting overlapping tiles.

Currently, there is also no possibility to import segmentation results on this tile-level
back into QuPath without additional processing steps, restricting the visual inspection to
the individual tile level instead of a global overview within the original WSI.

To solve these problems, we introduce an efficient, flexible, and memory-conscious
solution within the domain of histopathological image analysis: MOTH (Memory-efficient
on-the-fly tiling of histopathological image annotations using QuPath). MOTH represents
a transformative toolkit engineered to seamlessly integrate with existing workflows and
tools, to enable the dynamic extraction of annotation tiles directly from QuPath projects
during the training and prediction process. This tool provides a solution to many of
the problems present when performing segmentation on histopathological image data
(Figure 1). Utilizing paquo [8], we can extract annotation polygons on-the-fly and discretize
them to an image mask, image tiles are extracted using tiffslide [9]. We also implemented
the way back into QuPath, generating polygons out of image masks and joining adjacent
polygons. In summary, MOTH provides the following functions:

• Memory efficiency and flexibility, allowing for on-the-fly requests of image tile and
annotation pairs

• Global visualization of segmentation results in QuPath, recombining segmentation
results on tile-level into joined polygons

• Bridging the gap between annotation tools and machine learning algorithms, allowing
for seamless integration

J. Imaging 2024, 10, x FOR PEER REVIEW 2 of 10

where the WSI is disassembled into regions and image tiles of reasonable size (e.g., 512 × 512
px) and are extracted at areas of interest. For segmentation using machine learning (ML), usu-
ally a second image, serving as the annotation mask, with discretized values for the annotated
classes, needs to be stored to be able to train the ML model properly. In current workflows,
this is usually achieved by performing pre-tiling in QuPath with the built-in Groovy-based
script editor and storing pairs of image tiles and masks on the hard disk. This approach gen-
erates a large amount of data pairs occupying the storage, which may make it necessary to
utilize a hard disk drive (HDD) instead of a faster storage type, like solid-state-drives (SSD),
with its drawbacks in request time. The pre-tiling also counteracts the flexibility of requested
image regions, which may be important in performing tasks such as image augmentation or
extracting overlapping tiles.

Currently, there is also no possibility to import segmentation results on this tile-level back
into QuPath without additional processing steps, restricting the visual inspection to the indi-
vidual tile level instead of a global overview within the original WSI.

To solve these problems, we introduce an efficient, flexible, and memory-conscious solu-
tion within the domain of histopathological image analysis: MOTH (Memory-efficient on-the-
fly tiling of histopathological image annotations using QuPath). MOTH represents a trans-
formative toolkit engineered to seamlessly integrate with existing workflows and tools, to en-
able the dynamic extraction of annotation tiles directly from QuPath projects during the train-
ing and prediction process. This tool provides a solution to many of the problems present
when performing segmentation on histopathological image data (Figure 1). Utilizing paquo
[8], we can extract annotation polygons on-the-fly and discretize them to an image mask , im-
age tiles are extracted using tiffslide [9]. We also implemented the way back into QuPath, gen-
erating polygons out of image masks and joining adjacent polygons. In summary, MOTH pro-
vides the following functions:
• Memory efficiency and flexibility, allowing for on-the-fly requests of image tile and an-

notation pairs
• Global visualization of segmentation results in QuPath, recombining segmentation re-

sults on tile-level into joined polygons
• Bridging the gap between annotation tools and machine learning algorithms, allowing

for seamless integration

Figure 1. MOTH overview. MOTH is a suite of tools that facilitates the import and export of anno-
tations and images from and into QuPath. The system is capable of establishing a connection to local
AI-based algorithms.

Figure 1. MOTH overview. MOTH is a suite of tools that facilitates the import and export of
annotations and images from and into QuPath. The system is capable of establishing a connection to
local AI-based algorithms.

J. Imaging 2024, 10, 292 3 of 10

This allows for easy utilization of annotated data in machine learning models with
maximal flexibility, as well as the inspection of results in a global manner on the origi-
nal data.

Related Works

Existing tools like HistomicsTk as a part of the DSA and the wsiprocess package
present the need for (on-the-fly) tiling of WSIs and annotations in Python. To process on-
the-fly tiling in the DSA environment, HistomicsTK offers Python utils to extract annota-
tion masks from a DSA slide object (https://digitalslidearchive.github.io/HistomicsTK/
examples/annotations_to_semantic_segmentation_masks.html#Generate-mask-image-
from-user-defined-coordinates, accessed on 14 November 2024). Besides the export of
annotation masks, annotation masks can also be converted back to DSA slide annotations
and merged to resolve tile borders (https://digitalslidearchive.github.io/HistomicsTK/
examples/segmentation_masks_to_annotations.html, https://digitalslidearchive.github.
io/HistomicsTK/examples/polygon_merger_from_tiled_masks.html, accessed 14
November 2024).

To export annotation masks from the tools ASAP, SlideRunner, NDP.View2, and
QuPath, the general-purpose Python package wsiprocess can be used.

To create annotation masks from QuPath, the user must export annotations in a json
file and manage WSIs and corresponding annotation files themselves. Wsiprocess focuses
on the export of annotation masks and offers utils to directly create a pytorch dataset after
patching tiles. The created pytorch datasets then utilize the patched and disk-saved masks.
Utils to import annotation masks are currently not implemented in the wsiprocess module.

2. Material and Methods

The presented MOTH Python package enables machine learning architects to integrate
QuPath annotation data directly into their workflows. This is achieved by extending
the capabilities of paquo. Paquo is a Python package that enables the integration of
popular Python libraries, within QuPath, a platform that traditionally supports only Groovy
scripts. MOTH primarily enhances paquo by providing functions to extract tiles and their
annotations in the discretized pixel space format, mostly needed in machine-learning-
driven segmentation approaches. It also allows the conversion of resulting predictions back
to polygons, stitching them together and enabling visualization of the predictions in QuPath,
suitable for a global inspection of segmentation results. To achieve the tasks, shapely [10]
and rasterio [11] are utilized. Shapely, as a spatial Python library using functions from the
GEOS library [12], is used by paquo and MOTH to interact with geometric objects. Rasterio
is used to read and write geospatial raster data. Within MOTH, rasterio handles the writing
and reading of geometries to and from masks.

2.1. MOTH–Tile Export

The first set of functions, used to extract tiles and their respective annotations, aims to
provide an alternative to the QuPath scripting approach. As previously mentioned, QuPath
uses Groovy scripts to export annotations as shapes or images. Scripts can either be run in
the interactive code editor or through a headless QuPath call.

Like QuPath, MOTH offers the export of annotated tiles. Either as a multi-class
annotation image with channels for each class, or as a single-labeled image that contains a
label for each pixel. For purposes where the annotations of a tile will be needed as shapely
geometries, the user can call the get_tile_annot method to retrieve the annotations in the
tiles area as pairs of geometries and their corresponding label.

To export the annotations of a tile, either as a mask or polygons, all the annotations of
the image, provided by paquo, are used to build a STRTree as an efficient spatial search
structure. The STRTree is then used to query all annotations intersecting the requested
region. The intersecting parts of the polygons can be returned as polygons or rendered to a
mask containing the discretized annotations of the region.

https://digitalslidearchive.github.io/HistomicsTK/examples/annotations_to_semantic_segmentation_masks.html#Generate-mask-image-from-user-defined-coordinates
https://digitalslidearchive.github.io/HistomicsTK/examples/annotations_to_semantic_segmentation_masks.html#Generate-mask-image-from-user-defined-coordinates
https://digitalslidearchive.github.io/HistomicsTK/examples/annotations_to_semantic_segmentation_masks.html#Generate-mask-image-from-user-defined-coordinates
https://digitalslidearchive.github.io/HistomicsTK/examples/segmentation_masks_to_annotations.html
https://digitalslidearchive.github.io/HistomicsTK/examples/segmentation_masks_to_annotations.html
https://digitalslidearchive.github.io/HistomicsTK/examples/polygon_merger_from_tiled_masks.html
https://digitalslidearchive.github.io/HistomicsTK/examples/polygon_merger_from_tiled_masks.html

J. Imaging 2024, 10, 292 4 of 10

2.2. MOTH–Tile Import

Annotations from annotation masks can be imported into QuPath by MOTH’s save_
mask_annotations function. To accomplish this, the annotations of the mask get extracted
and rescaled. Afterward, the extracted annotations get translated to the correct location
and will be saved in the specified image.

The import of many (small) tiles can lead to adjacent polygons of the same class being
derived from different tiles. To join these adjacent tiles, MOTH additionally provides an
annotation merge function to detect and merge nearby annotations. Each annotation of the
image is compared with its surrounding annotations. A new annotation is created from the
union of touching annotations detected as having the same class. The annotations used for
the union annotation are then deleted.

Overall, MOTH provides utils to accomplish the export and import of tiles and their
annotations directly in Python and on-the-fly without the need for hard disk storage
between export and usage.

3. Results and Discussion

To demonstrate the benefits of MOTH, we evaluate it in terms of the quality of
annotations and the export speed of MOTH.

The quality test will demonstrate that MOTH’s discretization contains a minimal error
compared with its the Groovy script counterpart. The speed evaluation is important as the
loading of images, even if performed on-the-fly, should not limit the whole training process
as a bottleneck.

3.1. Quality of Annotations

To demonstrate its minimal discretization error, the quality of the export performed by
MOTH was compared to the QuPath built-in Groovy export (Figure 2). To compare these
two export methods, different datasets were used to evaluate the performance of the export
methods. The datasets were from two different kinds of data categories, one containing
artificial and the other containing real-world examples. The artificial dataset contains
contained 55 individual annotations. Annotations were created from a set of points which
were sampled with random angles and around a fixed center. The mean distance from the
points increases increased gradually with each polygon. This approach generated a dataset
of polygons varying in size and shape, capturing a broad variance of possible real-world
annotations. The real-world dataset contains contained 96 annotations of detected mitoses
as a (neuro-)pathology example. The QuPath projects of the datasets were exported in
regions with Groovy and MOTH and evaluated, analogously to Kurmi et al. 2020 [13], with
the intersection over union (IoU) and Hausdorff distance (HD) between the original shapes,
with subpixel accuracy, and the exported masks. The resultsare shown in (Table 1 and,
Figure 2). The IoU scaling has a value between zero and one (one representing a perfect
fit), and the HD measures the maximal distance between the outlines in pixels (zero for
identical outlines).

Table 1. Resulting mean and standard deviation for both compared datasets and compared ex-
port methods.

MOTH IoU Groovy IoU MOTH HD
[Pixel]

Groovy HD
[Pixel]

artificial
mean 0.977994 0.955206 0.687514 1.365606

std 0.017148 0.034553 0.020611 0.038121

mitosis
mean 0.981593 0.979179 0.9786 1.1322

std 0.096959 0.096865 3.5592 3.5534

J. Imaging 2024, 10, 292 5 of 10
J. Imaging 2024, 10, x FOR PEER REVIEW 5 of 10

Figure 2. (A,B) IoU and HD of exported shapes rendered with MOTH and Groovy in the artificial
dataset. (C,D) IoU and HD of exported shapes rendered with MOTH and Groovy in the mitosis
dataset. Groovy results are marked in orange and MOTH results are marked in green. Diamonds
represent outliers.

Table 1. Resulting mean and standard deviation for both compared datasets and compared export
methods.

 MOTH IoU Groovy IoU
MOTH HD

[Pixel]
Groovy HD

[Pixel]

artificial
mean 0.977994 0.955206 0.687514 1.365606

std 0.017148 0.034553 0.020611 0.038121

mitosis
mean 0.981593 0.979179 0.9786 1.1322

std 0.096959 0.096865 3.5592 3.5534

To investigate quality differences between MOTH and Groovy, a QuPath project con-
taining small defined shapes was created. We added a square that could be exactly dis-
cretized into pixels. The other shapes had pixel offsets, which means they did not align
perfectly with the pixels, or were circles with and without additional offsets concerning

Figure 2. (A,B) IoU and HD of exported shapes rendered with MOTH and Groovy in the artificial
dataset. (C,D) IoU and HD of exported shapes rendered with MOTH and Groovy in the mitosis
dataset. Groovy results are marked in orange and MOTH results are marked in green. Diamonds
represent outliers.

The results displayed in Figure 2 and Table 1 show that MOTH exhibited superior
performance compared to Groovy. The difference is more visible with the artificial dataset,
as the associated polygons were smaller on average and were less smooth, which especially
accounted for the differences in HD. With the real-world dataset, while we also observed
better performance using MOTH, the difference was not as clear. This was due to smoother
outlines and larger areas in the dataset, both of which impacted the metrics used.

To investigate quality differences between MOTH and Groovy, a QuPath project
containing small defined shapes was created. We added a square that could be exactly
discretized into pixels. The other shapes had pixel offsets, which means they did not align
perfectly with the pixels, or were circles with and without additional offsets concerning
their center. These toy examples allowed a focus of the evaluation on especially challenging
cases for discretization, with subpixel offsets.

The shapes of the created QuPath project were exported with Groovy and MOTH to
be compared against their ground truth polygons.

To compare the discretized shapes from both tools to their ground truth polygons, we
visualized them with matplotlib and computed the IoU and HD.

J. Imaging 2024, 10, 292 6 of 10

By visual inspection, one can observe that the simple square that aligned perfectly
with the pixels was equally well treated by both tools. The larger square with the pixel
offset visualizes a difference between Groovy and MOTH when it comes to the selection of
representative pixels. When comparing the different circles, we observed a clear advantage
of MOTH, compared to Groovy, as the selected pixels seem to represent a better filling of
the geometry (Figures 3 and 4).

J. Imaging 2024, 10, x FOR PEER REVIEW 6 of 10

their center. These toy examples allowed a focus of the evaluation on especially challeng-
ing cases for discretization, with subpixel offsets.

The shapes of the created QuPath project were exported with Groovy and MOTH to
be compared against their ground truth polygons.

To compare the discretized shapes from both tools to their ground truth polygons,
we visualized them with matplotlib and computed the IoU and HD.

By visual inspection, one can observe that the simple square that aligned perfectly
with the pixels was equally well treated by both tools. The larger square with the pixel
offset visualizes a difference between Groovy and MOTH when it comes to the selection
of representative pixels. When comparing the different circles, we observed a clear ad-
vantage of MOTH, compared to Groovy, as the selected pixels seem to represent a better
filling of the geometry (Figures 3 and 4).

Figure 3. MOTH export of small shapes with pixel offsets. The figure shows the export of small
ground truth shapes. The ground truth shapes are drawn as orange lines and the center of the shape
is marked by an orange dot. Black areas are pixels set in the MOTH export. A high overlap with the
ground truth shapes can be observed.

By computing the IoU, we observed that in comparison to Groovy, MOTH provided
a higher IoU on circles, with values of 0.852 compared to 0.6693 from Groovy for the first
occurring circle, and 0.8218 compared to 0.6487 from Groovy for the second occurring
circle.

On rectangles, MOTH and groovy Groovy yielded identical IoUs, namely, 1.0 on the
left square and 0.6807 on the right square (Table 2).

Figure 4. Groovy export of small shapes with pixel offsets. The figure shows the export of small
ground truth shapes. In comparison to the previous figure, a lower overlap between the ground
truth and the export is visible.

Figure 3. MOTH export of small shapes with pixel offsets. The figure shows the export of small
ground truth shapes. The ground truth shapes are drawn as orange lines and the center of the shape
is marked by an orange dot. Black areas are pixels set in the MOTH export. A high overlap with the
ground truth shapes can be observed.

J. Imaging 2024, 10, x FOR PEER REVIEW 6 of 10

their center. These toy examples allowed a focus of the evaluation on especially challeng-
ing cases for discretization, with subpixel offsets.

The shapes of the created QuPath project were exported with Groovy and MOTH to
be compared against their ground truth polygons.

To compare the discretized shapes from both tools to their ground truth polygons,
we visualized them with matplotlib and computed the IoU and HD.

By visual inspection, one can observe that the simple square that aligned perfectly
with the pixels was equally well treated by both tools. The larger square with the pixel
offset visualizes a difference between Groovy and MOTH when it comes to the selection
of representative pixels. When comparing the different circles, we observed a clear ad-
vantage of MOTH, compared to Groovy, as the selected pixels seem to represent a better
filling of the geometry (Figures 3 and 4).

Figure 3. MOTH export of small shapes with pixel offsets. The figure shows the export of small
ground truth shapes. The ground truth shapes are drawn as orange lines and the center of the shape
is marked by an orange dot. Black areas are pixels set in the MOTH export. A high overlap with the
ground truth shapes can be observed.

By computing the IoU, we observed that in comparison to Groovy, MOTH provided
a higher IoU on circles, with values of 0.852 compared to 0.6693 from Groovy for the first
occurring circle, and 0.8218 compared to 0.6487 from Groovy for the second occurring
circle.

On rectangles, MOTH and groovy Groovy yielded identical IoUs, namely, 1.0 on the
left square and 0.6807 on the right square (Table 2).

Figure 4. Groovy export of small shapes with pixel offsets. The figure shows the export of small
ground truth shapes. In comparison to the previous figure, a lower overlap between the ground
truth and the export is visible.

Figure 4. Groovy export of small shapes with pixel offsets. The figure shows the export of small
ground truth shapes. In comparison to the previous figure, a lower overlap between the ground truth
and the export is visible.

By computing the IoU, we observed that in comparison to Groovy, MOTH provided a
higher IoU on circles, with values of 0.852 compared to 0.6693 from Groovy for the first
occurring circle, and 0.8218 compared to 0.6487 from Groovy for the second occurring
circle.

On rectangles, MOTH and groovy Groovy yielded identical IoUs, namely, 1.0 on the
left square and 0.6807 on the right square (Table 2).

Table 2. IoU and HD of the well-defined examples.

Geometry MOTH IoU Groovy IoU MOTH HD
[Pixel]

Groovy HD
[Pixel]

Small square 1.0 1.0 0.0 0.0

Offset square 0.6807 0.6807 0.7071 0.7071

Simple circle 0.852 0.6487 0.5851 1.0

Offset circle 0.8218 0.6693 0.6812 0.9841

J. Imaging 2024, 10, 292 7 of 10

3.2. Speed

As in machine learning approaches, especially deep learning, it is necessary to provide
image masks multiple times to the model. It is essential that the loading process of the
masks is sufficiently fast and does not serve as a bottleneck. Therefore, we investigated
the time it takes MOTH to provide masks compared to the classical workflow of loading
pre-tiled image masks.

We utilized a real-world sample dataset of annotated mitosis, holding non-overlapping
annotations, for this speed comparison and extracted tiles at a size of 375 pixels squared.
We separated the initialization of the data structures from the generation of the masks, as it
was only to be performed once.

The initialization process took approximately 2.17 s, compared to the 1.73 s needed to
export the masks via Groovy in QuPath headless mode, which resembled the initialization
in the classical workflow.

We afterward compared the generation of masks by MOTH for this sample, and the
loading of tile masks from disks using OpenCV [14]. This was repeated 1000 times, and the
results were averaged. MOTH needed an approximate time of 0.0075 s, while the loading
process from disk takes took approximately 0.013 s, resulting in a performance boost when
utilizing MOTH.

In our benchmark setup, we utilized SSD drives, which are inherently faster than
the commonly used HDDs that typically offer larger storage capacities. Although large
data projects involving whole slide images (WSIs) may tend to prefer HDDs due to their
superior price-to-value ratio, our objective was to test MOTH against the faster storage
variant. Given the design of HDD technology, we anticipate greater wear and tear on
HDDs, attributed to their less favorable data block storage compared to SSDs. Although
we compared MOTH to an on-disk method utilizing SSDs, MOTH is not significantly
slower than storing the data on disk. Furthermore, MOTH offers greater flexibility and
requires substantially less disk storage. Overall, these advantages make MOTH a favorable
alternative to other on-disk methods. Despite this, storing tiles on on-disk remains widely
accepted and utilized. Tools such as SlideTiler [15], which store all tiles locally on the hard
drive, are particularly useful and convenient for single training runs. However, when
different classes are needed to optimize the performance of an AI algorithm, for instance,
when determining whether to include a specific histomorphology feature, multiple folders
with tiles would be necessary. In contrast, MOTH can leverage the existing initialization to
conduct various test scenarios without the need to create new tile folders for each run.

3.3. Comparison with Similar Tools

The existing Python packages HistomicTK and wsiprocess both provide utils to create
tiled masks for whole slide image annotations in Python. Both packages offer similar
functions to MOTH: extracting tiles in a flexible way by defining the area to be exported.

In comparison to HistomicTK, MOTH provides similar utils to export, import and
stitch annotation masks. The difference lies in the supported annotation tool. HistomicTK.
as part of the DSA. directly interacts with WSI and the annotation data stored in the DSA,
whereas MOTH is implemented to interact directly with the WSI and annotation data
stored in QuPath.

Wsiprocess, like MOTH, supports converting WSI and annotation data into tiles.
While wsiprocess supports different tools, including QuPath, it requires the user to export
annotations from QuPath via a Groovy script and manage WSI and annotation data files.
MOTH exceeds wsiprocess by functioning as a direct tiling interface on the QuPath project.
Therefore, the user does not have to manage WSI and annotation files, but can use the
QuPath information directly.

3.4. Example Application of MOTH

To illustrate the utilization of MOTH, we present a case study of the processing
of data using QuPath in a real-world context (Figure 5). We used whole mouse lung

J. Imaging 2024, 10, 292 8 of 10

fluorescent microscopic images derived from tissue sections as an example application for
MOTH, showing how to ingetrate MOTH into an existing AI workflow, and where it differs
compared to a traditional pre-tiled workflow. The lungs were washed out to clear from
blood, inflated through the trachea with a Tissue-Tek O.C.T (Sakura; Torrance, CA 90501,
USA), and fixed overnight at 4 ◦C in 2% formalin, followed by overnight dehydration
in 30% sucrose solution at 4 ◦C and long term storage at −80 ◦C. Five micron cryocuts
were incubated for 10 min in an acetone:methanol mixture (1:1), washed with PBS, blocked
with 3% bovine serum albumin, permeabilized by 0.5% Triton X-100, and processed using
a ClickTech EdU Cell Proliferation Kit 488 (BaseClick, Bavaria, Germany) to visualize
incorporated EdU in proliferating cells. Following the wash step, slides were incubated
overnight at 4 ◦C with primary labeled antibodies against alpha smooth muscle actin,
smooth muscle cell marker (Cy3 fluorophore, Sigma; St. Louis, MO 63178, USA), von
Willebrand factor, endothelial cell marker (CF633 labelled antibody, Dako, Santa Clara, CA,
USA), and nuclear counterstain (DAPI). Stained slides were imaged using a VS200 research
slide scanner (Olympus; 20355 Hamburg, Germany) and digitalized for image analysis.
The multi-channel fluorescent images contained information about specific morphological
structures, which are were recognized in a first pass by an Artificial artificial Neural neural
Network network (ANN) inside QuPath to generate proposals. ANN-mediated detection
of specific morphological features in many cases recognizes either too small or too large
segments, which might hinder precise morphometric analysis of identified features.

J. Imaging 2024, 10, x FOR PEER REVIEW 8 of 10

annotations from QuPath via a Groovy script and manage WSI and annotation data files.
MOTH exceeds wsiprocess by functioning as a direct tiling interface on the QuPath pro-
ject. Therefore, the user does not have to manage WSI and annotation files, but can use
the QuPath information directly.

3.4. Example Application of MOTH
To illustrate the utilization of MOTH, we present a case study of the processing of

data using QuPath in a real-world context (Figure 5). We used whole mouse lung fluores-
cent microscopic images derived from tissue sections as an example application for
MOTH, showing how to ingetrate MOTH into an existing AI workflow, and where it dif-
fers compared to a traditional pre-tiled workflow. The lungs were washed out to clear
from blood, inflated through the trachea with a Tissue-Tek O.C.T (Sakura; Torrance, CA
90501, USA), and fixed overnight at 4 °C in 2% formalin, followed by overnight dehydra-
tion in 30% sucrose solution at 4 °C and long term storage at −80 °C. Five micron cryocuts
were incubated for 10 min in an acetone:methanol mixture (1:1), washed with PBS,
blocked with 3% bovine serum albumin, permeabilized by 0.5% Triton X-100, and pro-
cessed using a ClickTech EdU Cell Proliferation Kit 488 (BaseClick, Bavaria, Germany) to
visualize incorporated EdU in proliferating cells. Following the wash step, slides were
incubated overnight at 4 °C with primary labeled antibodies against alpha smooth muscle
actin, smooth muscle cell marker (Cy3 fluorophore, Sigma; St. Louis, MO 63178, USA),
von Willebrand factor, endothelial cell marker (CF633 labelled antibody, Dako, Santa
Clara, CA, USA), and nuclear counterstain (DAPI). Stained slides were imaged using a
VS200 research slide scanner (Olympus; 20355 Hamburg, Germany) and digitalized for
image analysis. The multi-channel fluorescent images contained information about spe-
cific morphological structures, which are were recognized in a first pass by an Artificial
artificial Neural neural Network network (ANN) inside QuPath to generate proposals.
ANN-mediated detection of specific morphological features in many cases recognizes ei-
ther too small or too large segments, which might hinder precise morphometric analysis
of identified features.

To characterize the proposals and subsequently enhance the corresponding quality,
a more advanced method employed in a Python-based framework will be used. Individ-
ual proposals for annotations will be subjected to (1) validation of the proposals (i.e., iden-
tification and removal of false positive detections), (2) morphometric analysis, and (3) dif-
ferent image manipulation methods to refine the segment borders. The proposals are used
in their discretized image mask format, and the corresponding image region is used as a
starting point for the refinement to guarantee a more precise representation of the actual
morphological features.

Figure 5. Real world example using MOTH. The proposals are generated via QuPath and extracted
from the project via MOTH. The proposals are evaluated and improved via custom methods and
loaded back into QuPath for visual inspection using MOTH.

In the traditional Groovy-based workflow, data export and the Python backend for
refinement would be decoupled. The mask proposals, as the starting point for the

Figure 5. Real world example using MOTH. The proposals are generated via QuPath and extracted
from the project via MOTH. The proposals are evaluated and improved via custom methods and
loaded back into QuPath for visual inspection using MOTH.

To characterize the proposals and subsequently enhance the corresponding quality, a
more advanced method employed in a Python-based framework will be used. Individual
proposals for annotations will be subjected to (1) validation of the proposals (i.e., identifica-
tion and removal of false positive detections), (2) morphometric analysis, and (3) different
image manipulation methods to refine the segment borders. The proposals are used in
their discretized image mask format, and the corresponding image region is used as a
starting point for the refinement to guarantee a more precise representation of the actual
morphological features.

In the traditional Groovy-based workflow, data export and the Python backend for
refinement would be decoupled. The mask proposals, as the starting point for the refine-
ment, would be exported using Groovy scripting, storing the masks on the disk. The
Python backend then requests the image/mask pairs from the disk and reads them. With
the image/mask pairs now available, refining steps can take place by providing a new
image mask. A visual inspection of the refined results in QuPath, and therefore of multiple
regions at once, is impossible without additional processing steps.

In contrast, the MOTH workflow would skip the exporting script. Instead of reading
the image/mask pairs from disk, the Python backend requests image/mask pairs directly
via MOTH as an interface. The refinement steps do not change, since we provide the
same input as in the traditional workflow. Importantly, after the refinement, MOTH

J. Imaging 2024, 10, 292 9 of 10

offers us the possibility to view our refinements of multiple regions at once in QuPath
by recombining multiple refined image masks and writing them into QuPath projects as
polygons. This example shows that MOTH can be easily integrated into existing AI-driven
workflows where image/mask pairs are utilized. Only I/O operations of the corresponding
algorithms are affected, changing from a file-reading approach to request the regions via
MOTH interface.

4. Conclusions

We presented here our Python package, called MOTH, for the on-the-fly tiling of
annotated whole slide image tiles from QuPath projects, that can directly be forwarded
to an AI algorithm, like U-net [16]. The results from the individual AI algorithm can
then conveniently be transferred back to QuPath for visual inspection, using MOTH. The
appended AI algorithm can be defined by the users for maximum flexibility. With our
method, it is possible to use the annotated QuPath datasets highly flexible with different
AI approaches and setups in a highly scalable and highly flexible manner. The on-the-fly
transfer enables flexible tiling with changing overlaps, sizes, and positions to evaluate
models with diverse input data. The automatic return of the results to the QuPath project
after the analysis enables users to directly visually inspect the AI outcome, as a necessary
step towards a complete digital pathology workflow. With our solution presented here, we
are strengthening the open-source sector and helping to utilize or develop alternatives to
purchased AI products [17–20].

Author Contributions: T.K. programmed the package and carried out the experiments. S.C. and G.K.
provided the data for the external experiment. B.W. and M.B. contributed the external experiment.
D.A. and J.S. supervised the project. K.S. and T.A. helped supervising the project. D.A., J.S. and T.K.
wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: The work was funded by the German Federal Ministry of Education and Research:
MIRACUM (BMBF FKZ 01ZZ1801), the German Federal Ministry of Education and Research:
PM4Onco (BMBF FKZ 01ZZ2322L) as well as the German Federal Ministry of Education and Research:
Junior research group AI-RON (BMBF FKZ 01ZZ2017).

Institutional Review Board Statement: Animal experiments were approved by the Austrian Federal
Ministry of Science, Research and Economy (BMWFW-66.010/0161-WF/V/3b/2015).

Informed Consent Statement: Not applicable.

Data Availability Statement: https://github.com/Neuropathology-Giessen/MOTH (accessed on 14
November 2024).

Acknowledgments: The authors thank the German Federal Ministry of Education and Research for
the generous funding.

Conflicts of Interest: The authors declare that they have no competing interests.

References
1. Tekin, E.; Yazıcı, Ç.; Kusetogullari, H.; Tokat, F.; Yavariabdi, A.; Iheme, L.O.; Çayır, S.; Bozaba, E.; Solmaz, G.; Darbaz, B.; et al.

Tubule-U-Net: A novel dataset and deep learning-based tubule segmentation framework in whole slide images of breast cancer.
Sci. Rep. 2023, 13, 128. [CrossRef] [PubMed]

2. Lu, M.Y.; Chen, T.Y.; Williamson, D.F.; Zhao, M.; Shady, M.; Lipkova, J.; Mahmood, F. AI-based pathology predicts origins for
cancers of unknown primary. Nature 2021, 594, 106–110. [CrossRef] [PubMed]

3. Bokhorst, J.M.; Nagtegaal, I.D.; Fraggetta, F.; Vatrano, S.; Mesker, W.; Vieth, M.; van der Laak, J.; Ciompi, F. Deep learning for
multi-class semantic segmentation enables colorectal cancer detection and classification in digital pathology images. Sci. Rep.
2023, 13, 8398. [CrossRef] [PubMed]

4. Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.;
Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [CrossRef]
[PubMed]

5. Montezuma, D.; Oliveira, S.P.; Neto, P.C.; Oliveira, D.; Monteiro, A.; Cardoso, J.S.; Macedo-Pinto, I. Annotating for Artificial
Intelligence Applications in Digital Pathology: A Practical Guide for Pathologists and Researchers. Mod. Pathol. 2023, 36, 100086.
[CrossRef] [PubMed]

https://github.com/Neuropathology-Giessen/MOTH
https://doi.org/10.1038/s41598-022-27331-3
https://www.ncbi.nlm.nih.gov/pubmed/36599960
https://doi.org/10.1038/s41586-021-03512-4
https://www.ncbi.nlm.nih.gov/pubmed/33953404
https://doi.org/10.1038/s41598-023-35491-z
https://www.ncbi.nlm.nih.gov/pubmed/37225743
https://doi.org/10.1038/s41598-017-17204-5
https://www.ncbi.nlm.nih.gov/pubmed/29203879
https://doi.org/10.1016/j.modpat.2022.100086
https://www.ncbi.nlm.nih.gov/pubmed/36788085

J. Imaging 2024, 10, 292 10 of 10

6. Aubreville, M.; Bertram, C.; Klopfleisch, R.; Maier, A.K. SlideRunner—A Tool for Massive Cell Annotations in Whole Slide
Images. 2018, pp. 309–314. Available online: http://arxiv.org/pdf/1802.02347.pdf (accessed on 14 November 2024).

7. Gutman, D.A.; Khalilia, M.; Lee, S.; Nalisnik, M.; Mullen, Z.; Beezley, J.; Chittajallu, D.R.; Manthey, D.; Cooper, L.A. The Digital
Slide Archive: A Software Platform for Management, Integration, and Analysis of Histology for Cancer Research. Cancer Res.
2017, 77, e75–e78. [CrossRef] [PubMed]

8. Paquo 0.7. Available online: https://github.com/Bayer-Group/paquo (accessed on 26 August 2024).
9. Tiffslide 2.1. Available online: https://github.com/Bayer-Group/tiffslide (accessed on 26 August 2024).
10. Shapely 2.0. Available online: https://github.com/shapely/shapely (accessed on 26 August 2024).
11. Rasterio 1.3. Available online: https://github.com/rasterio/rasterio (accessed on 26 August 2024).
12. Geos Library. Available online: https://libgeos.org/ (accessed on 26 August 2024).
13. Kurmi, Y.; Chaurasia, V.; Kapoor, N. Design of a Histopathology Image Segmentation Algorithm for CAD of Cancer. Optik 2020,

218, 164636. [CrossRef]
14. Bradski, G. The OpenCV library. Dr Dobb’s J. Softw. Tools 2000, 120, 122–125.
15. Barcellona, L.; Nicolè, L.; Cappellesso, R.; Tos, A.P.D.; Ghidoni, S. SlideTiler: A dataset creator software for boosting deep learning

on histological whole slide images. J. Pathol. Inform. 2024, 15, 100356. [CrossRef] [PubMed]
16. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image

Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015.
Proceedings, Part III; Navab, N., Hornegger, J., Wells, W., Frangi, A., Eds.; Springer International Publishing: Berlin, Germany,
2015; pp. 234–241.

17. Visiopharm. Available online: https://visiopharm.com/ (accessed on 26 August 2024).
18. MicroDimensions. Available online: https://micro-dimensions.com/#software (accessed on 26 August 2024).
19. Aiforia. Available online: https://www.aiforia.com/ (accessed on 26 August 2024).
20. Indicalabs. Available online: https://indicalab.com/halo-ai/ (accessed on 26 August 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://arxiv.org/pdf/1802.02347.pdf
https://doi.org/10.1158/0008-5472.CAN-17-0629
https://www.ncbi.nlm.nih.gov/pubmed/29092945
https://github.com/Bayer-Group/paquo
https://github.com/Bayer-Group/tiffslide
https://github.com/shapely/shapely
https://github.com/rasterio/rasterio
https://libgeos.org/
https://doi.org/10.1016/j.ijleo.2020.164636
https://doi.org/10.1016/j.jpi.2023.100356
https://www.ncbi.nlm.nih.gov/pubmed/38222323
https://visiopharm.com/
https://micro-dimensions.com/#software
https://www.aiforia.com/
https://indicalab.com/halo-ai/

	Introduction
	Material and Methods
	MOTH–Tile Export
	MOTH–Tile Import

	Results and Discussion
	Quality of Annotations
	Speed
	Comparison with Similar Tools
	Example Application of MOTH

	Conclusions
	References

