ssc-cdi: A Memory-Efficient, Multi-GPU Package for Ptychography with Extreme Data
<p>Diagram illustrating the batch distributions of measurements for three GPUs. Each colored block represents data inside of the respective GPU. A batch of <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>≤</mo> <mi>N</mi> </mrow> </semantics></math> measurements is distributed to the GPU memory, so that the wavefronts are updated in parallel. Once a GPU finishes processing and is made available, a remaining batch of unprocessed data is loaded from RAM. After all batches have been loaded and all the wavefronts updated, the new object and probe matrices are calculated by GPU<sub>0</sub> and then broadcasted to the other GPUs, so that each of them has faster access to <span class="html-italic">O</span> and <span class="html-italic">P</span> in the subsequent iteration.</p> "> Figure 2
<p>Ptychography reconstruction of a Siemens Star measured at CARNAÚBA beamline. The finest features of the innermost circles are spaced <math display="inline"><semantics> <mrow> <mn>15</mn> <mspace width="0.166667em"/> <mi>nm</mi> </mrow> </semantics></math> from each other. The complex probe is shown in an hsv colormap, saturation encoding magnitude and hue encoding the phase.</p> "> Figure 3
<p>Comparison of the simulated sample against the reconstruction using the DM algorithm from different packages. The insets show a zoomed region from the red square in the object and phase reconstructions. The reconstruction for <tt>ssc-cdi</tt> used the RAAR algorithm with parameter <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, such that the update function equals that of DM. For <tt>PyNX</tt> and <tt>PtyPy</tt>; we used the DM engine directly. In all cases, the same initial guesses were used: random magnitude and constant phase for the object array, and an inverse Fourier transform of the averaged measurements for the probe.</p> "> Figure 4
<p>Single GPU performance of DM and PIE algorithms across different packages. The inset shows the same data without log scale on the vertical axis. Missing points on some curves indicate dimensions that were not supported by a specific engine. Note that <tt>PyNX</tt> does not provide an engine for an algorithm of the PIE family for comparison.</p> "> Figure 5
<p>Multi-GPU performance of DM algorithm for <tt>ssc-cdi</tt> and <tt>PtyPy</tt> using batch sizes of (<b>a</b>) 128 and (<b>b</b>) 16. Dimensions that were not supported by an engine are the reason for missing points for some of the curves. The inset plots the same data without log scale on the vertical axis.</p> "> Figure 5 Cont.
<p>Multi-GPU performance of DM algorithm for <tt>ssc-cdi</tt> and <tt>PtyPy</tt> using batch sizes of (<b>a</b>) 128 and (<b>b</b>) 16. Dimensions that were not supported by an engine are the reason for missing points for some of the curves. The inset plots the same data without log scale on the vertical axis.</p> "> Figure 6
<p>Single GPU performance of <tt>ssc-cdi</tt> for DM and PIE engines at a conventional machine. RAAR was run with batch size <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and managed to run up to a data size of <math display="inline"><semantics> <msup> <mn>2048</mn> <mn>2</mn> </msup> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Projection Algorithms
2.2. Cost–Function Optimization
2.3. HPC Strategy
Multi-GPU Implementation
3. Results
Benchmarks
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CDI | Coherent Diffractive Imaging |
PWCDI | Plane-wave Coherent Diffractive Imaging |
PIE | Ptychographic Iterative Engine |
AP | Alternating Projections |
DM | Difference Map |
RAAR | Relaxed Averaged Alternating Reflection |
ML | Maximum Likelihood |
GPU | Graphics Processing Unit |
HPC | High Performance Computing |
SSC | Sirius Scientific Computing |
RAM | Random Access Memory |
VRAM | Video Random Access Memory |
FFT | Fast Fourier Transform |
BP | Backprojection |
FBP | Filtered Backprojection |
Appendix A
References
- Veen, F.v.; Pfeiffer, F. Coherent X-Ray scattering. J. Phys. Condens. Matter 2004, 16, 5003–5030. [Google Scholar] [CrossRef]
- Miao, J.; Ishikawa, T.; Robinson, I.K.; Murnane, M.M. Beyond crystallography: Diffractive imaging using coherent X-Ray light sources. Science 2015, 348, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, C. X-Ray Microscopy, 1st ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Als-Nielsen, J.; McMorrow, D. Elements of Modern X-Ray Physics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Guizar-Sicairos, M.; Thibault, P. Ptychography: A solution to the phase problem. Phys. Today 2021, 74, 42–48. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, Z.; Han, Y.; Deb, P.; Gao, H.; Xie, S.; Purohit, P.; Tate, M.W.; Park, J.; Gruner, S.M.; et al. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 2018, 559, 343–349. [Google Scholar] [CrossRef]
- Holler, M.; Odstrcil, M.; Guizar-Sicairos, M.; Lebugle, M.; Müller, E.; Finizio, S.; Tinti, G.; David, C.; Zusman, J.; Unglaub, W.; et al. Three-dimensional imaging of integrated circuits with macro- to nanoscale zoom. Nat. Electron. 2019, 2, 464–470. [Google Scholar] [CrossRef]
- Aidukas, T.; Phillips, N.W.; Diaz, A.; Poghosyan, E.; Müller, E.; Levi, A.F.J.; Aeppli, G.; Guizar-Sicairos, M.; Holler, M. High-performance 4-nm-resolution X-Ray tomography using burst ptychography. Nature 2024, 632, 81–88. [Google Scholar] [CrossRef]
- Thibault, P.; Dierolf, M.; Bunk, O.; Menzel, A.; Pfeiffer, F. Probe retrieval in ptychographic coherent diffractive imaging. Ultramicroscopy 2009, 109, 338–343. [Google Scholar] [CrossRef]
- Miao, J.; Sayre, D.; Chapman, H.N. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J. Opt. Soc. Am. A 1998, 15, 1662. [Google Scholar] [CrossRef]
- Kahnt, M.; Klementiev, K.; Haghighat, V.; Weninger, C.; Plivelic, T.S.; Terry, A.E.; Björling, A. Measurement of the coherent beam properties at the CoSAXS beamline. J. Synchrotron Radiat. 2021, 28, 1948–1953. [Google Scholar] [CrossRef]
- Guizar-Sicairos, M.; Fienup, J.R. Phase retrieval with transverse translation diversity: A nonlinear optimization approach. Opt. Express 2008, 16, 7264. [Google Scholar] [CrossRef]
- Maiden, A.; Humphry, M.; Sarahan, M.; Kraus, B.; Rodenburg, J. An annealing algorithm to correct positioning errors in ptychography. Ultramicroscopy 2012, 120, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Peterson, I.; Vila-Comamala, J.; Diaz, A.; Berenguer, F.; Bean, R.; Chen, B.; Menzel, A.; Robinson, I.K.; Rodenburg, J.M. Translation position determination in ptychographic coherent diffraction imaging. Opt. Express 2013, 21, 13592. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, P.; Konijnenberg, A.; Pereira, S.; Urbach, H. Lateral position correction in ptychography using the gradient of intensity patterns. Ultramicroscopy 2018, 192, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Thibault, P.; Menzel, A. Reconstructing state mixtures from diffraction measurements. Nature 2013, 494, 68–71. [Google Scholar] [CrossRef]
- Li, P.; Edo, T.; Batey, D.; Rodenburg, J.; Maiden, A. Breaking ambiguities in mixed state ptychography. Opt. Express 2016, 24, 9038. [Google Scholar] [CrossRef]
- Odstrcil, M.; Baksh, P.; Boden, S.A.; Card, R.; Chad, J.E.; Frey, J.G.; Brocklesby, W.S. Ptychographic coherent diffractive imaging with orthogonal probe relaxation. Opt. Express 2016, 24, 8360. [Google Scholar] [CrossRef]
- Rodenburg, J.M.; Faulkner, H.M.L. A phase retrieval algorithm for shifting illumination. Appl. Phys. Lett. 2004, 85, 4795–4797. [Google Scholar] [CrossRef]
- Maiden, A.M.; Rodenburg, J.M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 2009, 109, 1256–1262. [Google Scholar] [CrossRef]
- Maiden, A.; Johnson, J.; Li, P. Further improvements to the ptychographical iterative engine. Optica 2017, 4, 736–745. [Google Scholar] [CrossRef]
- Luke, D. Relaxed averaged alternating reflections for diffraction imaging. Inverse Probl. 2004, 21, 37–50. [Google Scholar] [CrossRef]
- Marchesini, S.; Schirotzek, A.; Yang, C.; Wu, H.t.; Maia, F. Augmented projections for ptychographic imaging. Inverse Probl. 2013, 29, 115009. [Google Scholar] [CrossRef]
- Thibault, P.; Guizar-Sicairos, M. Maximum-likelihood refinement for coherent diffractive imaging. New J. Phys. 2012, 14, 063004. [Google Scholar] [CrossRef]
- Godard, P.; Allain, M.; Chamard, V.; Rodenburg, J. Noise models for low counting rate coherent diffraction imaging. Opt. Express 2012, 20, 25914. [Google Scholar] [CrossRef]
- Odstrčil, M.; Menzel, A.; Guizar-Sicairos, M. Iterative least-squares solver for generalized maximum-likelihood ptychography. Opt. Express 2018, 26, 3108. [Google Scholar] [CrossRef]
- Seifert, J.; Shao, Y.; Van Dam, R.; Bouchet, D.; Van Leeuwen, T.; Mosk, A.P. Maximum-likelihood estimation in ptychography in the presence of Poisson–Gaussian noise statistics. Opt. Lett. 2023, 48, 6027. [Google Scholar] [CrossRef]
- Enfedaque, P.; Chang, H.; Krishnan, H.; Marchesini, S. GPU-Based Implementation of Ptycho-ADMM for High Performance X-Ray Imaging. In Computational Science—ICCS 2018; Shi, Y., Fu, H., Tian, Y., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J., Sloot, P.M.A., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 10860, pp. 540–553. [Google Scholar] [CrossRef]
- Aslan, S.; Nikitin, V.; Ching, D.J.; Bicer, T.; Leyffer, S.; Gürsoy, D. Joint ptycho-tomography reconstruction through alternating direction method of multipliers. Opt. Express 2019, 27, 9128. [Google Scholar] [CrossRef]
- Maiden, A.M.; Mei, W.; Li, P. WASP: Weighted average of sequential projections for ptychographic phase retrieval. Opt. Express 2024, 32, 21327. [Google Scholar] [CrossRef]
- Enders, B.; Thibault, P. A computational framework for ptychographic reconstructions. Proc. R. Soc. A Math. Phys. Eng. Sci. 2016, 472, 20160640. [Google Scholar] [CrossRef]
- Marchesini, S.; Krishnan, H.; Daurer, B.J.; Shapiro, D.A.; Perciano, T.; Sethian, J.A.; Maia, F.R.N.C. SHARP: A distributed, GPU-based ptychographic solver. J. Appl. Crystallogr. 2016, 49, 1245–1252. [Google Scholar] [CrossRef]
- Favre-Nicolin, V.; Girard, G.; Leake, S.; Carnis, J.; Chushkin, Y.; Kieffer, J.; Paléo, P.; Richard, M.I. PyNX: High performance computing toolkit for coherent X-Ray imaging based on operators. J. Appl. Crystallogr. 2020, 53, 1404–1413. [Google Scholar] [CrossRef]
- Wakonig, K.; Stadler, H.C.; Odstrčil, M.; Tsai, E.H.R.; Diaz, A.; Holler, M.; Usov, I.; Raabe, J.; Menzel, A.; Guizar-Sicairos, M. PtychoShelves, A Versatile High-Level Framework for High-Performance Analysis of Ptychographic Data. J. Appl. Crystallogr. 2020, 53, 574–586. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Nikitin, V.; Ching, D.J.; Aslan, S.; Gürsoy, D.; Biçer, T. Scalable and accurate multi-GPU-based image reconstruction of large-scale ptychography data. Sci. Rep. 2022, 12, 5334. [Google Scholar] [CrossRef] [PubMed]
- Guzzi, F.; Kourousias, G.; Billè, F.; Pugliese, R.; Gianoncelli, A.; Carrato, S. A modular software framework for the design and implementation of ptychography algorithms. PeerJ Comput. Sci. 2022, 8, e1036. [Google Scholar] [CrossRef] [PubMed]
- Cherukara, M.J.; Zhou, T.; Nashed, Y.; Enfedaque, P.; Hexemer, A.; Harder, R.J.; Holt, M.V. AI-enabled high-resolution scanning coherent diffraction imaging. Appl. Phys. Lett. 2020, 117, 044103. [Google Scholar] [CrossRef]
- Kandel, S.; Maddali, S.; Allain, M.; Hruszkewycz, S.O.; Jacobsen, C.; Nashed, Y.S.G. Using automatic differentiation as a general framework for ptychographic reconstruction. Opt. Express 2019, 27, 18653. [Google Scholar] [CrossRef]
- Du, M.; Kandel, S.; Deng, J.; Huang, X.; Demortiere, A.; Nguyen, T.T.; Tucoulou, R.; De Andrade, V.; Jin, Q.; Jacobsen, C. Adorym: A multi-platform generic X-Ray image reconstruction framework based on automatic differentiation. Opt. Express 2021, 29, 10000. [Google Scholar] [CrossRef]
- Loetgering, L.; Du, M.; Flaes, D.B.; Aidukas, T.; Wechsler, F.; Molina, D.S.P.; Rose, M.; Pelekanidis, A.; Eschen, W.; Hess, J.; et al. PtyLab.m/py/jl: A cross-platform, open-source inverse modeling toolbox for conventional and Fourier ptychography. Opt. Express 2023, 31, 13763. [Google Scholar] [CrossRef]
- Craievich, A.F. Synchrotron radiation in Brazil. Past, present and future. Radiat. Phys. Chem. 2020, 167, 108253. [Google Scholar] [CrossRef]
- Liu, L.; Westfahl, H., Jr. Towards Diffraction Limited Storage Ring Based Light Sources. In Proceedings of the IPAC2017, Copenhagen, Denmark, 14–19 May 2017. [Google Scholar]
- Tolentino, H.C.; Geraldes, R.R.; Da Silva, F.M.; Guaita, M.G.D.; Camarda, C.M.; Szostak, R.; Neckel, I.T.; Teixeira, V.C.; Hesterberg, D.; Pérez, C.A.; et al. The CARNAÚBA X-Ray nanospectroscopy beamline at the Sirius-LNLS synchrotron light source: Developments, commissioning, and first science at the TARUMÃ station. J. Electron Spectrosc. Relat. Phenom. 2023, 266, 147340. [Google Scholar] [CrossRef]
- Górecki, R.; Polo, C.C.; Kalile, T.A.; Miqueles, E.X.S.; Tonin, Y.R.; Upadhyaya, L.; Meneau, F.; Nunes, S.P. Ptychographic X-Ray computed tomography of porous membranes with nanoscale resolution. Commun. Mater. 2023, 4, 68. [Google Scholar] [CrossRef]
- Dos Reis, R.D.; Kaneko, U.F.; Francisco, B.A.; Fonseca, J., Jr.; Eleoterio, M.A.S.; Souza-Neto, N.M. Preliminary Overview of the Extreme Condition Beamline (EMA) at the new Brazilian Synchrotron Source (Sirius). J. Phys. Conf. Ser. 2020, 1609, 012015. [Google Scholar] [CrossRef]
- Archilha, N.L.; Costa, G.R.; Ferreira, G.R.B.; Moreno, G.B.Z.L.; Rocha, A.S.; Meyer, B.C.; Pinto, A.C.; Miqueles, E.X.S.; Cardoso, M.B.; Westfahl, H., Jr. MOGNO, the nano and microtomography beamline at Sirius, the Brazilian synchrotron light source. J. Phys. Conf. Ser. 2022, 2380, 012123. [Google Scholar] [CrossRef]
- Rodrigues, M. First biolab in South America for studying world’s deadliest viruses is set to open. Nature 2024, 632, 959–960. [Google Scholar] [CrossRef] [PubMed]
- Campanelli, R.; Gomes, G.; Fernandes, M.; Mendes, L.; Rosa, L.; Reis, R.; Antonio, E.; Polli, J. Large area hybrid detectors based on Medipix3RX: Commissioning and characterization at Sirius beamlines. J. Instrum. 2023, 18, C02008. [Google Scholar] [CrossRef]
- Brazilian Synchrotron Light Laboratory; Miqueles, E.X.; Ferraz, P. ssc-raft: Reconstruction Algorithms for Tomography; Zenodo: Geneve, Switzerland, 2024. [Google Scholar] [CrossRef]
- Brazilian Synchrotron Light Laboratory; Miqueles, E. ssc-Resolution; Zenodo: Geneve, Switzerland, 2024. [Google Scholar] [CrossRef]
- Brazilian Synchrotron Light Laboratory; Macul Moreno, L.; Miqueles, E. ssc-Rings; Zenodo: Geneve, Switzerland, 2024. [Google Scholar] [CrossRef]
- Furusato, F.; Sarmento, M.; Aranha, G.; Zago, L.; Miqueles, E. TEPUI: High-Performance Computing Infrastructure for Beamlines at LNLS/Sirius. In High Performance Computing; Gitler, I., Barrios Hernández, C.J., Meneses, E., Eds.; Springer: Cham, Switzerland, 2022; pp. 3–18. [Google Scholar]
- NVIDIA Grace Hopper Superchip: A CPU and GPU Integrated for Accelerated Computing. 2024. Available online: https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper (accessed on 10 October 2024).
- Okuta, R.; Unno, Y.; Nishino, D.; Hido, S.; Loomis, C. CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations. In Proceedings of the Workshop on Machine Learning Systems (LearningSys) in The Thirty-First Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Baraldi, G.; Dias, C.; Silva, F.; Tolentino, H.; Miqueles, E. Fast reconstruction tools for ptychography at Sirius, the fourth-generation Brazilian synchrotron. J. Appl. Crystallogr. 2020, 53, 1550–1558. [Google Scholar] [CrossRef]
- Paganin, D. Coherent X-Ray Optics; Oxford University Press: Oxford, UK, 2006. [Google Scholar] [CrossRef]
- Natterer, F.; Wübbeling, F. Mathematical Methods in Image Reconstruction; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2001. [Google Scholar] [CrossRef]
- Voelz, D.G. Computational Fourier Optics: A MATLAB Tutorial; SPIE Press: Bellingham, WA, USA, 2011. [Google Scholar]
- Schmidt, J.D. Numerical Simulation of Optical Wave Propagation with Examples in MATLAB; SPIE: St Bellingham, WA, USA, 2010. [Google Scholar] [CrossRef]
- Stockmar, M.; Cloetens, P.; Zanette, I.; Enders, B.; Dierolf, M.; Pfeiffer, F.; Thibault, P. Near-field ptychography: Phase retrieval for inline holography using a structured illumination. Sci. Rep. 2013, 3, 1927. [Google Scholar] [CrossRef]
- Robisch, A.L.; Kröger, K.; Rack, A.; Salditt, T. Near-field ptychography using lateral and longitudinal shifts. New J. Phys. 2015, 17, 073033. [Google Scholar] [CrossRef]
- Zhang, Z. Analysis and Development of Phase Retrieval Algorithms for Ptychography. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2021. [Google Scholar]
- Guzzi, F.; Gianoncelli, A.; Billè, F.; Carrato, S.; Kourousias, G. Automatic Differentiation for Inverse Problems in X-Ray Imaging and Microscopy. Life 2023, 13, 629. [Google Scholar] [CrossRef]
- Bergstra, J.; Breuleux, O.; Bastien, F.; Lamblin, P.; Pascanu, R.; Desjardins, G.; Turian, J.; Warde-Farley, D.; Bengio, Y. Theano: A CPU and GPU math compiler in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; Volume 4, pp. 1–7. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing Systems 32; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: San Francisco, CA, USA, 2019; Volume 32, pp. 8024–8035. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://www.tensorflow.org/ (accessed on 27 October 2024).
- NVIDIA Corporation. cuFFT Library Version 10.4.0. 2024. Available online: https://developer.nvidia.com/cufft (accessed on 27 October 2024).
- Tolentino, H.; Geraldes, R.; Moreno, G.; Pinto, A.; Bueno, C.; Kofukuda, L.; Sotero, A.; Neto, A.; Lena, F.; Wilendorf, W.; et al. X-Ray microscopy developments at Sirius-LNLS: First commissioning experiments at the Carnauba Beamline. In X-Ray Nanoimaging: Instruments and Methods V; SPIE: St Bellingham, WA, USA, 2021. [Google Scholar] [CrossRef]
- Odstrčil, M.; Holler, M.; Guizar-Sicairos, M. Arbitrary-path fly-scan ptychography. Opt. Express 2018, 26, 12585. [Google Scholar] [CrossRef]
- NVIDIA Corporation. NVIDIA DGX A100 System. 2024. Available online: https://resources.nvidia.com/en-us-dgx-systems/dgxa100-system?xs=489761 (accessed on 27 October 2024).
- Van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T.; The Scikit-Image Contributors. scikit-image: Image processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef]
- Maiden, A.M.; Humphry, M.J.; Rodenburg, J.M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. J. Opt. Soc. Am. A 2012, 29, 1606. [Google Scholar] [CrossRef] [PubMed]
- Tsai, E.H.R.; Usov, I.; Diaz, A.; Menzel, A.; Guizar-Sicairos, M. X-Ray ptychography with extended depth of field. Opt. Express 2016, 24, 29089. [Google Scholar] [CrossRef] [PubMed]
- Gilles, M.A.; Nashed, Y.S.G.; Du, M.; Jacobsen, C.; Wild, S.M. 3D X-Ray imaging of continuous objects beyond the depth of focus limit. Optica 2018, 5, 1078. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Enfedaque, P.; Marchesini, S. Blind Ptychographic Phase Retrieval via Convergent Alternating Direction Method of Multipliers. SIAM J. Imaging Sci. 2019, 12, 153–185. [Google Scholar] [CrossRef]
- Chapman, H.N.; Barty, A.; Marchesini, S.; Noy, A.; Hau-Riege, S.P.; Cui, C.; Howells, M.R.; Rosen, R.; He, H.; Spence, J.C.H.; et al. High-resolution ab initio three-dimensional X-Ray diffraction microscopy. J. Opt. Soc. Am. A 2006, 23, 1179. [Google Scholar] [CrossRef]
- Guizar-Sicairos, M.; Diaz, A.; Holler, M.; Lucas, M.S.; Menzel, A.; Wepf, R.A.; Bunk, O. Phase tomography from X-Ray coherent diffractive imaging projections. Opt. Express 2011, 19, 21345. [Google Scholar] [CrossRef]
- Herráez, M.A.; Burton, D.R.; Lalor, M.J.; Gdeisat, M.A. Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Appl. Opt. 2002, 41, 7437. [Google Scholar] [CrossRef]
- Feeman, T.G. The Mathematics of Medical Imaging: A Beginner’s Guide; Springer Undergraduate Texts in Mathematics and Technology; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Odstrčil, M.; Holler, M.; Raabe, J.; Guizar-Sicairos, M. Alignment methods for nanotomography with deep subpixel accuracy. Opt. Express 2019, 27, 36637. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonin, Y.R.; Peixinho, A.Z.; Brandao-Junior, M.L.; Ferraz, P.; Miqueles, E.X. ssc-cdi: A Memory-Efficient, Multi-GPU Package for Ptychography with Extreme Data. J. Imaging 2024, 10, 286. https://doi.org/10.3390/jimaging10110286
Tonin YR, Peixinho AZ, Brandao-Junior ML, Ferraz P, Miqueles EX. ssc-cdi: A Memory-Efficient, Multi-GPU Package for Ptychography with Extreme Data. Journal of Imaging. 2024; 10(11):286. https://doi.org/10.3390/jimaging10110286
Chicago/Turabian StyleTonin, Yuri Rossi, Alan Zanoni Peixinho, Mauro Luiz Brandao-Junior, Paola Ferraz, and Eduardo Xavier Miqueles. 2024. "ssc-cdi: A Memory-Efficient, Multi-GPU Package for Ptychography with Extreme Data" Journal of Imaging 10, no. 11: 286. https://doi.org/10.3390/jimaging10110286
APA StyleTonin, Y. R., Peixinho, A. Z., Brandao-Junior, M. L., Ferraz, P., & Miqueles, E. X. (2024). ssc-cdi: A Memory-Efficient, Multi-GPU Package for Ptychography with Extreme Data. Journal of Imaging, 10(11), 286. https://doi.org/10.3390/jimaging10110286