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Abstract: Echocardiography is the gold standard for the comprehensive diagnosis of cardiac septal
defects (CSDs). Currently, echocardiography diagnosis is primarily based on expert observation,
which is laborious and time-consuming. With digitization, deep learning (DL) can be used to improve
the efficiency of the diagnosis. This study presents a real-time end-to-end framework tailored for
pediatric ultrasound video analysis for CSD decision-making. The framework employs an advanced
real-time architecture based on You Only Look Once (Yolo) techniques for CSD decision-making with
high accuracy. Leveraging the state of the art with the Yolov8l (large) architecture, the proposed
model achieves a robust performance in real-time processes. It can be observed that the experiment
yielded a mean average precision (mAP) exceeding 89%, indicating the framework’s effectiveness
in accurately diagnosing CSDs from ultrasound (US) videos. The Yolov8l model exhibits precise
performance in the real-time testing of pediatric patients from Mohammad Hoesin General Hospital
in Palembang, Indonesia. Based on the results of the proposed model using 222 US videos, it
exhibits 95.86% accuracy, 96.82% sensitivity, and 98.74% specificity. During real-time testing in the
hospital, the model exhibits a 97.17% accuracy, 95.80% sensitivity, and 98.15% specificity; only 3
out of the 53 US videos in the real-time process were diagnosed incorrectly. This comprehensive
approach holds promise for enhancing clinical decision-making and improving patient outcomes in
pediatric cardiology.

Keywords: pediatric; cardiac defect; Yolo; end-to-end

1. Introduction

Cardiac septal defects (CSDs) in pediatric patients, ranging from small holes to
larger openings in the septum, pose significant challenges in diagnosis and treatment
decisions [1,2]. Current approaches often lack a cohesive framework to integrate diverse
data sources, clinical expertise, and decision-support tools, leading to variability in patient
care and outcomes [2,3]. Developing an end-to-end framework specifically tailored for
CSD decision-making is essential to address these challenges comprehensively [3,4]. In
constructing such an effective framework, several factors merit consideration, including
defect size and location, the anatomical variability of the defect, the quality of ultrasound
(US) imaging, and the patient’s overall condition, among others [4].
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However, the most crucial consideration, particularly from the perspective of com-
puter science, lies in several key areas [3–6]: firstly, developing robust algorithms for
image analysis and interpretation that prioritize accuracy, reliability, and generalizability
across diverse patient populations and imaging protocols; secondly, validating these algo-
rithms using extensive datasets and independent validation cohorts to ensure consistent
performance and clinical relevance; and thirdly, addressing challenges associated with
variability in image quality, artifacts, and patient factors (such as motion artifacts and
body habitus) that could impact diagnostic accuracy. Previous studies to address this issue
have focused primarily on tasks such as classification, segmentation, or detection of CSDs
or their individual conditions [7]. However, comprehensive research encompassing the
entire methodology of CSD decision-making, from initial data processing to the generation
of diagnostic decisions concerning patients’ conditions, remains largely unexplored and
exceedingly rare. Hence, the effective end-to-end framework for CSD decision-making is
pivotal in determining the necessity for and selection of appropriate treatment modalities,
which may include intervention or surgery [3,4,8].

Recent advancements in cardiac US imaging have addressed a variety of areas, includ-
ing the effectiveness of US-guided procedures, progress in pediatric echocardiography, and
the incorporation of deep learning (DL) technologies for detecting cardiac diseases [9–14].
Notably, frameworks for managing CSDs now integrate DL methods with cardiac US
videos, significantly aiding in the diagnosis of atrial septal defects (ASDs), ventricular
septal defects (VSDs), and atrioventricular septal defects (AVSDs) [15–17]. This end-to-end
framework adopts a multidisciplinary approach, taking into account the diverse anatomical
presentations of the defect, its impact on the patient’s health, and the range of methodolo-
gies available for closure [8]. By doing so, this framework holds the potential to enhance the
efficiency, accuracy, and objectivity of CSD detection and grading, particularly in regions
where access to specialized physicians is limited. However, despite these advancements,
there remains a scarcity of studies on rare CSDs employing an end-to-end framework for
decision-making, primarily due to constraints related to the availability of quality data
and the absence of experienced echocardiography experts in many primary healthcare
facilities [4].

One of the frameworks has been developed and validated for the automated detection
and quantification of ASDs based on color Doppler echocardiography [3]. This framework
includes a model for the detection of ASD, which provides a probability level for the
presence of the defect, a quantification model that automatically locates the endpoints of
the atrial septum, and an estimation size of the defect. The performance of the algorithm
was assessed by the bias of the measurement of the defect size and septum length, which
provided a quantitative index of the degree of concordance between the DL model and
expert physicians. Another framework proposed a fully automatic detection system for
ASDs, which includes three stages, such as identifying four target echocardiographic
views, segmenting the target cardiac structure and detecting candidates for ASD, and
the final decision by utilizing the segmentation and detection results [4]. However, they
are proposed only for ASD conditions. To our knowledge, no researcher has created an
end-to-end framework for decision-making for CSDs (ASDs, VSDs, and AVSDs). This
study makes several contributions, outlined as follows;
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2. Materials and Methods

The framework is designed to ensure that the most appropriate methodology is chosen
for each patient based on the specific characteristics of their defect and condition. The
methodology consisted of (i) Data Preparation; (ii) Introducing End-to-End Framework
and Model Evaluation; (iii) Platform; and (iv) Ethics. All processes are conducted based on
five standard views including apical four-chamber (A4CH), apical five-chamber (A5CH),
parasternal long axis (PLAX), parasternal short axis (PSAX), and subcostal (SC). The entire
process is outlined in the following subsections.

2.1. Data Preparation

The US video-recording dataset, comprising both normal and CSD conditions—including
ASDs, VSDs, and AVSD—was obtained from Dr. Mohammad Hoesin General Hospital in
Palembang, Indonesia. This dataset includes 222 US videos, divided into training, validation,
and unseen datasets, with recordings from 61 patients with ASDs, 79 patients with VSDs,
7 patients with AVSDs, and 75 patients with normal conditions, all of which were analyzed
in this study. Each video, recorded on a Philips ultrasound machine, lasts between one and
five seconds and varies in size from 30 to 60 megabytes (MB). All US videos were converted
to image files (.jpg), resulting in a total of 151,106 images at 800 × 600-pixel resolution. The
details of the dataset of the US video recordings and US images are provided in Table 1.

Table 1. The total utilized US video and US images.

Class Data Total US Videos Total US Images

Normal

Training
61

53,256
Validation 13,315

Real-time testing
14 8500(unseen data)

Abnormal Training
126

54,276
(ASD, VSD, and AVSD) Validation 13,570

Real-time testing
21 8189(unseen data)

Total 222 151,106

2.2. The End-to-End Framework

We propose a real-time end-to-end method with a stacked model encompassing
normal–abnormal classification, view classification, defect detection, and a decision-making
algorithm based on the medical knowledge of CSDs. Our framework adopts a real-time
architecture based on the You Only Look Once (Yolo) algorithm, renowned for its pro-
ficiency in object detection (Figure 1) [18]. This algorithm partitions images into a grid
and predicts bounding boxes along with class probabilities for these boxes. One notable
feature of Yolov8 is its incorporation of a self-attention mechanism within the network’s
head. We have developed a comprehensive pipeline to determine the type of CSDs based
on the position of the defects. The Yolo architecture was tailored for various tasks exe-
cuted in a multi-stage process. Unlike conventional models designed primarily for general
object detection, our study introduces a stacked algorithm model to provide precise and
medically informed decisions. This framework allows the proposed end-to-end model to
address distinct aspects of the task, including normal–abnormal classification, standard
view classification, defect detection, and clinical decision-making. The process is as follows:

• Normal–abnormal classification: a Yolov8-based classifier is trained to distinguish
between normal cardiac anatomy and potential abnormalities.

• Standard view classification: a Yolov8 model is trained to classify images based on
standard echocardiographic views, adapting its detection capabilities to recognize
specific views that are most relevant for identifying cardiac defects.
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• Defect detection: After an abnormality is detected and the view is classified, the
model detects specific cardiac defects. Given that defects vary in size and type, Yolov8
is employed to accurately detect and classify these variations, which may present
differently across cardiac images.

• Decision-making algorithm: the final step integrates medical knowledge to make a
precise decision based on the presence, position, and type of defect, as well as the
echocardiographic view.
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2.2.1. Normal–Abnormal Classification

Accurate classification of cardiac structures as normal or abnormal (CSDs), is vital for
precise decision-making. To achieve this, we propose the Yolov8 architecture, featuring a
backbone comprising a cross-stage partial (CSP) Darknet53 architecture where the feature
maps into two parts [18]. The first part is applied with convolutional operation, and
the second part is concatenated with the previous layer output to enrich the generated
feature. In addition, Yolov8 introduces the C2F module, which is an improvement from
the C3 module. This combination preserves high-level feature representations to enhance
performance outcomes. The architecture employs an anchor-free model with a decoupled
head that processes classification, regression, and segmentation tasks independently. This
design enables each branch to concentrate on its specific task, thereby enhancing the
model’s overall accuracy. In normal–abnormal and view classification tasks, the output
layer specifically only used the classification head used during training and testing. The
architecture used the cross-entropy loss function combined with the Adam optimizer for
training the model hyperparameters. To select the best model, five pre-trained Yolov8
models are compared, including Yolov8n (nano), Yolov8s (small), Yolov8m (medium),
Yolov8l (large), and Yolov8x (extra-large) [19–21].

2.2.2. Standard View Classification

The main standard cardiac views are A4CH, A5CH, PLAX, PSAX, and SC (Figure 2) [9,10].
A4CH and A5CH in apical view are essential during hemodynamic assessment of the cardiac
tissue [11]. A4CH presents the chamber walls of two atria and two ventricles. Different from
A5CH, it displays the appearance of the aortic valve and the left ventricular outflow tract [9].
PLAX and PSAX allowed for the measurement of the size of the left atrium, which is used for
assessing the valvular function. PSAX provides a cross-sectional view of the heart and allows
for an assessment of the left ventricular function [12]. SC provides a similar visualization
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of the structures seen in apical A4CH, but it is viewed from a different angle [10]. In this
study, we also use Doppler US video to ensure the defect condition and provide real-time
visualization of blood flow dynamics within the heart. The Yolov8 backbone in this task is
similar to normal–abnormal classification. However, the head architecture is increased to five
nodes, indicating the class number.
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We have formulated a standard view classification algorithm using the Yolo model
(Algorithm 1) as follows:

Algorithm 1. Inference_View_Echo.

Input: echocardiograph video, view classifier
Output: view of echocardiograpy video
Initialization: assign zero to variaible view_A4CH, view_A5CH, view_PLAX, view_PSAX, view_SC
BEGIN
for frame in video do
view_frame← view_classifier.predict (frame)
if view_frame = “A4CH” then
view_A4CH++
else if view_frame = “A5CH” then

view_A5CH++
else if view_frame = “PLAX” then

view_PLAX++
else if view_frame = “PSAX” then

view_PSAX++
else

view_SC++
view← max (view_A4CH, view_A5CH, view_PLAX, view_PSAX, view_SC)
return view
END

2.2.3. Defect Detection

The standard cardiac view of US video recordings has consisted of A4CH, A5CH,
PLAX, PSAX, and SC. Pediatric cardiologists rely on specific views when assessing a
patient’s condition. The annotation of the three CSD conditions is presented in Figure 3
using LabelMe 5.3.1 software. The annotated sample results in showcasing the chamber
wall area and the cardiac defect area. Atrial or ventricular areas are represented by the
white regions, while the red region denotes a cardiac defect area.
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2.2.4. CSDs Decision-Making

In the decision-making process for CSDs, this study integrated medical rules with
prediction settings for Yolo models (knowledge-based decision-making), as depicted in
Figure 4. In order to provide medical rules, we generate an intersection over union value
from the hole and chambers. The IoU metric is used to assess the object detection accuracy
by measuring the overlap between the actual bounding box and the predicted bounding
box. The types of video US CSDs used in this study are outlet perimembranous VSDs,
secundum ASDs, and complete/incomplete AVSDs. According to medical standards, the
normal heart is assessed using five views (A4CH, A5CH, PLAX, PSAX, and SC), while
secundum ASDs are evaluated using two views with A4CH and SC; outlet perimembranous
VSDs with three views, A5CH, PLAX, and PSAX; and A complete/incomplete VSDs, only
the A4CH view. CSD decision-making based on cardiac standard view is developed based
on medical knowledge consisting of the following:

1. ASDs: if the class-predicted cardiac view is A4CH or SC, and the IoU of the hole in
the atrium is >0.01 and IoU of the hole in the ventricle is ≤0.01.

2. VSDs: if the class-predicted cardiac view is A5CH or PLAX or PSAX, and IoU of the
hole in the atrium is ≤0.01 and IoU of the hole in the ventricle is > 0.01.

3. AVSDs: if the class-predicted cardiac view is A4CH, and IoU of the hole in the atrium
is > 0.01 and IoU of the hole in the ventricle is > 0.01.

4. If the knowledge-based decision is not fulfilled, then the predicted class is normal.

Leveraging this medical knowledge, we have formulated a decision-making algorithm
(Algorithm 2), as follows:

Algorithm 2. Inference_CSDs

Input: echocardiograph video, view, segment_model_A4CH, segment_model_A5CH,
segment_model_PLAX, segment_model_PSAX, segment_model_SC
Output: echocardiography cardiac septal defects
BEGIN
if view = “A4CH” then
predicted_wall-chamber_and_hole← segment_model_A4CH.predict (video)
else if view = “A5CH” then
predicted_ wall-chamber _and_hole← segment_model_A5CH.predict (video)
else if view = “PLAX” then
predicted_ wall-chamber _and_hole← segment_model_LA.predict (video)
else if view = “PSAX” then
predicted_ wall-chamber _and_hole← segment_model_SA.predict (video)
else
predicted_ wall-chamber _and_hole← segment_model_SC.predict (video)
if “hole” in predicted_ wall-chamber _and_hole then
iou_hole_atrial← calculate_iou (hole, atrial)
iou_hole_ventricle← calculate_iou (hole, ventricle)
if (view = “A4CH” or view = “SC”) and iou_hole_atrial > 0.01 and iou_hole_ventricle≤ 0.01 then
return “Atrial Septal Defect”
else if (view = “A5CH” or view = “LA” or view = “SA”) and iou_hole_atrial <= 0.01 and
iou_hole_ventricle > 0.01 then
return “Ventricular Septal Defect”
else if (view = “A4CH”) and iou_hole_atrial > 0.01 and iou_hole_ventricle > 0.01 then
return “Atrial Ventricular Septal Defect”
endif
else
return “Normal”
endif
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2.3. Model Evaluation

The proposed classification and detection performance should deliver accurate pre-
dictions to provide real value. Equally crucial is evaluating how well the proposed model
generalizes on unseen data within the object detection pipeline. In this study, we utilize
the mean average precision (mAP) metric to assess the performance of object detection
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and segmentation systems [16,17,21]. The mAP formula encompasses various sub-metrics,
including the confusion matrix, intersection over union (IoU), recall, and precision [16].
The IoU measures the overlap between the predicted bounding box coordinates and the
ground-truth box of the real image. A higher IoU indicates closer resemblance between
predicted and ground-truth box coordinates. Precision evaluates the model’s ability to
generate true positives (TPs) out of all positive predictions, while recall measures TP pro-
duction out of all predictions. These metrics are computed using an IoU threshold set at 0.5
for object detection tasks. This threshold value may vary based on the model’s confidence
threshold, which we set at 0.5 and above [21]. Confidence represents the probability of
the existing mass multiplied by the percentage of the IoU between the ground-truth and
predicted boxes. It is crucial for refining the model’s predictions and ensuring robust per-
formance in detecting objects accurately. Furthermore, to assess the real-time performance
of our proposed model, we evaluated the proposed method using several metrics such as
latency, frames per second (FPS), throughput, and inference time. These metrics are crucial
for assessing the efficiency and performance of DL models, particularly in applications
requiring real-time or near-real-time processing [19,20].

2.4. Platform

The experiment works on Processor Intel(R) Core(™) i9-14900 K (32 CPUs) ~3.2 GHz
32 GB RAM and using NVIDIA A10 GPU (24 GB). All experiments were run on Windows
11 Pro 64 Bit, Python (Python 3.9.18) code using VS Code, Pytorch, Numpy, Pandas,
ScikitLearn, Matplotlib, Seaborn, and Roboflow.

2.5. Ethics

This study received approval from the Health Research Ethics Committee of Central
General Hospital Dr. Mohammad Hoesin Palembang, Indonesia, under ethical certificate
No. 38/keprsmh/2021. The procedures adhered to the principles of the Declaration of
Helsinki and International Ethical Guidelines for Biomedical Research Involving Human
Subjects [22,23]. Written informed consent to participate in the study was obtained from
the parents, legal guardian or next of kin of the participants. Detailed information about the
examination procedures and objectives was provided to all research subjects. Subsequently,
their participation in the research was sought through the signing of a consent form,
indicating their agreement to take part. It is important to note that the research subjects
participated voluntarily and retained the right to withdraw from the study at any point.

3. Result and Discussion
3.1. The Ablation Study

In this study, we conducted experiments on various Yolo architectures to identify
the most effective model for CSD prediction. An ablation study focused exclusively on
the Yolo model to detect and segment holes in each US video. Hence, the study did
not include the testing of the complete framework (normal–abnormal classification, view
classification, and defect detection). This research focuses on cardiac defects in children,
which can be extremely small. This study aims to detect these small objects using various
Yolo architectures, with a comprehensive comparison of the results. Such an architecture
is a popular object detection model known for its speed and accuracy. However, Yolov1-
v5 has historically struggled with detecting small objects, particularly in scenes with
a high resolution. The grid-based approach divides the image, but when objects are
smaller than the grid size, they can be easily missed [18,20]. For example, Yolov6-v7
struggles with detecting very small objects in images, especially when they are far from
the camera or located in cluttered scenes. These models still face difficulty in localizing
these objects accurately [20,21]. Yolov8 has improved in detecting smaller objects with its
advanced feature extraction techniques, but small object detection remains challenging
in very cluttered environments or when objects are very far from the camera [19,21]. In
the ablation study, we compare three different Yolo architectures (Yolov5, Yolov7, and
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Yolov8) combined with five sizes ranging from nano to extra-large, resulting in a total of
12 variants, which were included in the ablation study. Yolov5 utilizes the CSPDarknet53
backbone while Yolov7 employs the Extended-ELAN backbone. Yolov8 utilizes the same
backbone as Yolov7 but is enhanced with an anchor-free detector and multi-scale prediction
to ensure real-time processing while maintaining the accuracy of small object detection.
Yolov8 is a new state-of-the-art computer vision model built by Ultralytics (Frederick, MD,
USA) [21], the creators of Yolov5. The Yolov8 model contains out-of-the-box support for
object detection, classification, and segmentation tasks, accessible through a Python package
as well as a command line interface. The models were trained with hyperparameters set
to 50, 100, and 200 epochs. Validation was performed using batch sizes of 2 and 4, with
the SGD optimizer configured at a learning rate of 0.001. This study compared different
Yolo variants to evaluate which architecture or modifications most effectively enhanced
model performance. The Yolo variants tested included Yolov5 (Yolov5n-Seg, Yolov5s-Seg,
Yolov5m-Seg, Yolov5l-Seg, and Yolov5x-Seg), Yolov7 (Yolov7-Seg and Yolov7x-Seg), and
Yolov8 (Yolov8n-Seg, Yolov8s-Seg, Yolov8m-Seg, Yolov8l-Seg, and Yolov8x-Seg). With
12 pre-trained models of Yolo variants available, 72 different models were produced after
training with the US cardiac image dataset, which allowed for a comparative evaluation of
the model performance in determining the optimal performance of each variant.

The performance of each model was assessed using several metrics: precision (B),
recall (B), mAP50 (B), and mAP50–95 (B) for bounding box (B) detection, as well as precision
(M), recall (M), mAP50 (M), and mAP50–95 (M) for mask (M) detection. It can be observed
from the confusion matrix that Yolov8 outperformed the other models, both Yolov5 and
Yolov7 (Figure 4). The performance metrics considered were derived from validation
data and testing data (unseen). The mAP (B) reaches around 98% for the validation data
and 72% for the unseen data, while the mAP (M) reaches around 71% for the validation
data and 61% for the unseen data. For developing the Yolo model in this study, Yolov8
was selected. To identify the most suitable Yolov8 model for the proposed framework for
detecting defects in pediatric cardiac US images, we evaluated all the variants under various
conditions, including normal versus abnormal classification, five view classifications, and
defect detection. A comprehensive experiment and a detailed comparison of the results are
provided in the subsequent section with an in-depth analysis.

3.2. Normal–Abnormal Classification

In the ablation study, we found that the Yolov8 architecture outperformed both the
Yolov5 and Yolov7 models. To enhance Yolov8’s performance in predicting CSDs, we
implemented a stacking process to improve the hole detection results on the cardiac septum.
The first step in this process involved classifying conditions as normal or abnormal. The
Yolo classification process is different from that of traditional classification models. Instead
of separately predicting bounding boxes and class probabilities, Yolo performs both tasks
simultaneously in a single neural network architecture [21].

We utilize frames extracted from US videos, with validation and test results conducted
on unseen data. The confusion matrix aids in identifying incorrect frames. Among the
five Yolo architectures tested, Yolov8l (large) demonstrates a superior performance. It
achieved 100% accuracy, sensitivity, and specificity during training. However, when tested
with unseen data, it achieved an accuracy of 77.19%, sensitivity of 90.69%, and specificity
of 71.80% (Figure 5). The loss response for both the training and validation consistently
highlighted YOLOv8l as the top performer among the architectures tested (Figure 6).
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3.3. Standard View Classification

This study discusses the CSD classification using five standard echocardiographic
views. This classification is usually performed to facilitate the analysis of the cardiac struc-
ture and function. Such a process is the essential first step in interpreting echocardiograms.
These views include the subcostal views, apical views, and parasternal views, which are
significant for the diagnosis of various ASDs, VSDs, and AVSDs. The YoloV8x reaches the
best accuracy, sensitivity, and specificity performance for both the validation and unseen
data in our classification results, as seen in Table 2. There was no significant decrease in
the performance values between the training and testing processes, indicating that Yolov8l
demonstrates the model’s suitability for performing view classification. Specifically, it
effectively classifies views such as A4CH, A5CH, PLAX, PSAX, and SC.

Table 2. The view classification performance for five architectures.

Architecture
Accuracy (%) Sensitivity (%) Specificity (%)

Validation Unseen Validation Unseen Validation Unseen

YoloV8n 97.45 90.74 97.32 89.72 99.36 97.74
YoloV8s 97.41 90.84 97.27 89.23 99.35 97.74
YoloV8m 97.50 90.22 97.37 88.76 99.37 97.59
YoloV8l 97.45 92.26 97.33 91.22 99.36 98.11
YoloV8x 97.50 91.50 97.37 90.45 99.37 97.92
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In our model for view classification, the training loss measures how well the model
fits the training data, while the validation loss evaluates its generalization to new, unseen
data. Typically, the training loss decreases during training as the model learns to fit the
training data (Figure 7). Conversely, the validation loss is crucial for detecting overfitting.
Ideally, the validation loss should be as low as possible, often when the training loss
is substantially lower. The stabilization of both losses at a specific point indicates an
optimal fit.

J. Imaging 2024, 10, x FOR PEER REVIEW 14 of 24

Figure 7. View classification result on training and validation loss.

3.4. Defect Detection
Defect detection is the essential process of identifying and diagnosing anomalies 

within the heart. The timely detection of these anomalies is critical for initiating appropri-
ate treatment and effectively managing CSD conditions, which can profoundly influence 
a child’s health and overall well-being. Based on the normal–abnormal and view classifi-
cation results, we employed Yolov8l to perform defect detection. The mAP was utilized to 
assess the performance of both the validation and unseen data. We utilized the five stand-
ard cardiac views to ensure thorough results: A4CH, A5CH, PLAX, PSAX, and SC. These 
views play a pivotal role in precisely evaluating the cardiac chamber wall classes, includ-
ing RA, RV, LA, LV, and identifying any septal defects (H) within the heart (Figure 8).

Figure 8. The CSD detection performance using our framework on five standard views.

Chamber wall detection (LA, RA, LV, RV) across the five views yielded satisfactory 
results, both in terms of the validation and unseen data, with the mAP value exceeding 
90%. However, in the defect detection or hole (H) detection, the mAP average value 
dropped below 85%. The A4CH and SC views successfully detect with a mAP of over 80%, 
whereas A5CH, PLAX, and PSAX only achieve mAP values below 65% for the validation 
data and below 60% for the unseen data. It can be observed that achieving accurate detec-
tion in both the A4CH and A5CH views poses significant challenges due to their similar-
ity. The main point of differentiation in the A5CH view is the presence of the aorta in the 
middle of the chamber wall. As a result, errors are quite common during both the 

Figure 7. View classification result on training and validation loss.

3.4. Defect Detection

Defect detection is the essential process of identifying and diagnosing anomalies
within the heart. The timely detection of these anomalies is critical for initiating appropriate
treatment and effectively managing CSD conditions, which can profoundly influence a
child’s health and overall well-being. Based on the normal–abnormal and view classification
results, we employed Yolov8l to perform defect detection. The mAP was utilized to assess
the performance of both the validation and unseen data. We utilized the five standard
cardiac views to ensure thorough results: A4CH, A5CH, PLAX, PSAX, and SC. These views
play a pivotal role in precisely evaluating the cardiac chamber wall classes, including RA,
RV, LA, LV, and identifying any septal defects (H) within the heart (Figure 8).

J. Imaging 2024, 10, x FOR PEER REVIEW 14 of 24

Figure 7. View classification result on training and validation loss.

3.4. Defect Detection
Defect detection is the essential process of identifying and diagnosing anomalies 

within the heart. The timely detection of these anomalies is critical for initiating appropri-
ate treatment and effectively managing CSD conditions, which can profoundly influence 
a child’s health and overall well-being. Based on the normal–abnormal and view classifi-
cation results, we employed Yolov8l to perform defect detection. The mAP was utilized to 
assess the performance of both the validation and unseen data. We utilized the five stand-
ard cardiac views to ensure thorough results: A4CH, A5CH, PLAX, PSAX, and SC. These 
views play a pivotal role in precisely evaluating the cardiac chamber wall classes, includ-
ing RA, RV, LA, LV, and identifying any septal defects (H) within the heart (Figure 8).

Figure 8. The CSD detection performance using our framework on five standard views.

Chamber wall detection (LA, RA, LV, RV) across the five views yielded satisfactory 
results, both in terms of the validation and unseen data, with the mAP value exceeding 
90%. However, in the defect detection or hole (H) detection, the mAP average value 
dropped below 85%. The A4CH and SC views successfully detect with a mAP of over 80%, 
whereas A5CH, PLAX, and PSAX only achieve mAP values below 65% for the validation 
data and below 60% for the unseen data. It can be observed that achieving accurate detec-
tion in both the A4CH and A5CH views poses significant challenges due to their similar-
ity. The main point of differentiation in the A5CH view is the presence of the aorta in the 
middle of the chamber wall. As a result, errors are quite common during both the 

Figure 8. The CSD detection performance using our framework on five standard views.



J. Imaging 2024, 10, 280 13 of 20

Chamber wall detection (LA, RA, LV, RV) across the five views yielded satisfactory
results, both in terms of the validation and unseen data, with the mAP value exceeding 90%.
However, in the defect detection or hole (H) detection, the mAP average value dropped
below 85%. The A4CH and SC views successfully detect with a mAP of over 80%, whereas
A5CH, PLAX, and PSAX only achieve mAP values below 65% for the validation data and
below 60% for the unseen data. It can be observed that achieving accurate detection in
both the A4CH and A5CH views poses significant challenges due to their similarity. The
main point of differentiation in the A5CH view is the presence of the aorta in the middle
of the chamber wall. As a result, errors are quite common during both the validation and
unseen test phases. The parasternal view (PLAX and PSAX) provides a longitudinal slice of
the heart, which may not offer a comprehensive view of all the cardiac structures. Certain
defects, especially those located in less visible areas or those requiring a different angle of
approach, may not be easily detected. However, achieving a mAP value greater than 50%,
the model demonstrated the effective detection of cardiac defects.

Based on the test results obtained using the proposed framework, the model demon-
strates a highly satisfactory performance in defect detection. Utilizing five views, we
measured the mAP bounding box (BBox) and mAP pixel-wise binary mask (Mask) (Table 3).
The mAP BBox quantifies the accuracy of object detection, while the mAP Mask evaluates
the effectiveness of instance segmentation models. Both metrics are crucial for assessing
the performance of the proposed Yolov8l. The results reveal that the achieved mAP ranges
from 60% to 89% for the validation data and from 50% to 80% when tested with the unseen
data. These findings indicate that the defect detection performance exceeds the baseline
mAP threshold of 50%, indicating increased confidence levels in the detection outcomes.

Table 3. Cardiac defect detection performance on mAP(50).

View
Validation (mAP) Unseen (mAP)

BBox Mask BBox Mask

A4CH 0.89 0.79 0.80 0.74
A5CH 0.60 0.74 0.50 0.61
PLAX 0.61 0.83 0.57 0.56
PSAX 0.66 0.62 0.60 0.60

SC 0.84 0.78 0.82 0.76

3.5. CSD Decision-Making

The outcomes of the model compared to actual US examinations by pediatric cardiol-
ogy demonstrate a satisfactory performance (Figure 9). During the training process from
169 US videos, there were seven false detections in the ASD condition, while there were
no errors in the VSD, AVSD, and normal conditions. The heart’s anatomy is complex, and
ASDs can vary in size, shape, location, and associated anomalies. This variability makes
it difficult for Yolo to accurately detect and classify defects without extensive training on
diverse datasets. In some echocardiographic views, the area of interest (the atrial sep-
tum) might not be adequately captured, making it difficult for the model to identify the
defect [3,6]. It can be observed, during the validation process, that the proposed model
achieved an accuracy of 95.86%, sensitivity of 96.82%, and specificity of 98.74%. Meanwhile,
during the testing process using the unseen data (US videos from patients not included
in the training data), out of the 35 US videos, only three were diagnosed incorrectly. The
accuracy was 97.17%, sensitivity was 95.80%, and specificity was 98.15%. From Figure 9,
one of the incorrect predictions involved the AVSD condition. Due to the rarity of this
condition, we had only seven US videos available—four for training and the remaining
three for testing. The limited amount of training data resulted in insufficient learning,
leading to one misprediction. Incorrect predictions of AVSDs can occur due to the complex-
ities of medical imaging. AVSDs involve abnormalities in both the septum and the heart’s
atrioventricular valves, which vary in size, shape, and severity across patients, making it
harder for the model to generalize across different cases [24]. In addition, the tricuspid and
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mitral valves are often fused or malformed; detecting these subtle valve abnormalities is
challenging for models trained primarily to detect septal defects, and the misidentification
of valve issues can contribute to misprediction [24]. Moreover, there were 18 US videos of
the perimembranous VSD condition in the testing process; however, 2 of them were incor-
rect predictions. Perimembranous VSDs are located near the tricuspid and aortic valves,
and because of this, they may be obscured by the structures and motion of the valves,
making them harder to detect in imaging studies, especially in 2D imaging techniques
like standard echocardiograms [25]. Standard 2D echocardiograms, which are commonly
used for diagnosis, may not always provide a clear view of the perimembranous area [17].
Despite this challenge, the model successfully detected all the unseen US videos depicting
the normal, ASD, and VSD conditions without errors, indicating a robust performance
overall. It is observed that the proposed model demonstrates a satisfactory performance, as
it maintains a performance on the unseen test data close to that of the trained validation
data. Therefore, it can be concluded that the proposed model effectively recognizes key
features, such as holes, in the US images associated with the CSD condition.
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To evaluate the proposed model under real-time conditions, we measured the latency,
inference time, FPS, and throughput. The results in Table 4 highlight the model’s perfor-
mance with and without GPU acceleration. When using a GPU, latency is significantly
reduced to approximately 11.09 ms, demonstrating a very fast response time. However,
the model takes around 13.69 s to complete a single inference due to the complexity of the
background in the real-time processing of the US CSDs videos. Despite this, the system
achieves a processing speed of 90.38 frames per second, allowing it to render or process over
90 frames each second. Based on this performance, it can be concluded that the proposed
model is suitable for use in a real-time application, achieving a throughput of 249.20 frames
every 5 s.

Table 4. The real-time processing of the proposed model.

Only CPU With GPU

Latency (ms) Inference
time (ms)

FPS
(Hz) Latency (ms) Inference

time (ms)
FPS
(Hz)

67.45 29,597.06 15.31 11.09 13,693.35 90.38
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3.6. Benchmarking with State of the Art

Our proposed end-to-end real time framework was benchmarked against two previous
studies which was a considered a fair experiment, because they have a complete framework
for classifying CSD conditions (Table 5). However, because these studies are very limited,
both only use cases of ASDs. Lin et al. [3] proposed a 3D-UNet architecture for automatic
ASD detection that is applicable to color Doppler echocardiography. They suggested the
four standard views for ASD detection and quantification, i.e., 4cv, PSAX, subxiphoid
sagittal view (SC2A), and subxiphoid 4CV (SC4CV). Regarding the results, they obtained
an average accuracy of 99% in four standard views for ASD detection and identification.
Hong et al. [4] proposed a DL architecture with ResNeSt-200 for ASD detection based on
the subcostal atrium septum (subAS), 4CV, the low parasternal four-chamber (LPS4C),
and PSAX views. They yielded an average accuracy of 99.42%, 91.26% sensitivity, and
99.83% specificity in four standard views. Unlike the method we employed, although still
utilizing the five standard views, the detected CSDs were comprehensive, specifically those
of ASDs, VSDs, and AVSDs. Based on the results of the proposed model, it displays a
95.86% accuracy, 96.82% sensitivity, and 98.74% specificity. Our findings surpass those
of [3] and closely align with the outcomes reported in [4]. However, it is worth noting
that both [3,4] exclusively target one category of CSDs, whereas our study extends its
scope to detect three distinct classes. Moreover, our research includes rigorous testing with
real-time patient data sourced directly from hospital records, underscoring the robustness
and real-world applicability of our approach.

Table 5. Benchmarking previous studies of CSD detection.

Authors CSDs DL Architecture Accuracy (%) Sensitivity (%) Specificity (%)

Lin et al. [3] ASD 3D-UNet 99 88 89
Hong et al. [4] ASD ResNeSt-200 99.42 91.26 99.83

Our model
(validation) ASD, VSD, AVSD Yolov8l

95.86 96.82 98.74

Real-time testing 97.17 95.80 98.15

3.7. The CSD Visualization

Detecting defects can be challenging due to the heart being a complex three-dimensional
organ with intricate structures. Some defects may be subtle or located in areas where they
are obscured by other cardiac structures, making them difficult to identify from a single
imaging plane. Our framework uses a combination of five views to make a CSD decision. A
visualization of our results to show an object detection scheme on the chamber wall and
hole is shown in Figure 10. There are walls that separate the chambers, and each chamber
has its own walls. The septum is the primary wall that divides the cardiac into left and right
sides. There is the interatrial septum between the atria and the interventricular septum
between the ventricles. LA, LV, RA, RV are objects that must be detected on the chamber
wall, so as to assist in determining the position of defects or holes. By identifying the
position of defects or holes in these walls, it helps in diagnosing the type of CSD.

The value obtained in each image represents the confidence level of the detection
results. For the purposes of this study, a confidence value exceeding 0.5 can be deemed
indicative of a reliable decision. It can be observed that all the confidence values are above
the baseline value, meaning that the proposed Yolov8l model is capable of exhibiting a
reliable detection performance for defects in the cardiac septum.
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3.8. Color Doppler Echocardiography Case

In this study, we tested the proposed model using color Doppler echocardiography.
The predicted outcomes for the cardiac defects are visualized in Figure 11, displaying the
results from five Yolov8 architectures. These models are trained to identify specific views
required for evaluating CSDs and detect the presence of cardiac defects. In this depiction,
the US video utilizes red to represent blood flow toward the transducer and blue to signify
blood flow away from the transducer [4]. This capability enables our proposed model of
cardiac defect detection to be available not only for the original echocardiography but also
with the additional insights provided by color Doppler echocardiography. Among the
five proposed architectures, Yolov8l consistently delivers a satisfactory performance and
effectively detects holes in the septum. The resulting confidence values exhibit considerable
variability, spanning from 0.84 to 0.43. This range of confidence values signifies the model’s
adeptness in detecting CSDs through color Doppler echocardiography.
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Utilizing DL in color Doppler echocardiography for detecting CSDs offers numerous
advantages [3,4]. It streamlines the evaluation of echocardiographic videos, a typically
time-intensive process necessitating expert clinical skills. DL can automate this task, saving
valuable time and resources. Furthermore, DL models are capable of discerning intricate
patterns within echocardiographic images that may elude human experts, enhancing the
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potential for precise diagnoses [5]. This integration of DL technology holds promise for
improving the efficiency and accuracy of CSD detection in clinical settings.

3.9. Limitations

While this research demonstrates good performance, future developments should
take into account the following considerations: (i) The dataset utilized did not contain
information on defect sizes, resulting in the detection model not accounting for the various
types of cardiac septal defects. It would be beneficial for defect sizes to be incorporated
as one of the parameters in decision-making. (ii) The data were limited by the study’s
retrospective nature, and the study included a relatively small number of patients. Al-
though our model achieved good performance in the external test set, testing the model in
a prospective multi-center cohort is warranted. (iii) In this study, only three types of defects
were utilized: secundum ASDs, outlet perimembranous VSDs, and complete/incomplete
AVSDs. Future research will encompass additional cases like primum ASDs, sinus venosus
ASDs, doubly committed VSDs, and muscular VSDs to generalize the framework for all
types of CSDs. In conclusion, although the current prototype exhibits promise, continuous
research and development play a vital role in refining the proposed model, addressing its
limitations, and ensuring its relevance across a broader spectrum of scenarios within the
realm of pediatric cardiology health.

4. Conclusions

Our study introduces an innovative real-time framework tailored for pediatric US
video analysis to enhance the diagnosis of CSDs. By integrating DL techniques, specifically
leveraging the Yolo architecture, our model achieves a high accuracy and robust perfor-
mance in CSD decision-making, with satisfactory performance. Notably, the Yolov8l model
demonstrates a precise real-time performance, as evidenced by testing on US video sourced
directly from Dr. Mohammad Hoesin General Hospital in Palembang, Indonesia. During
the validation phase, the proposed model achieved an accuracy of 95.86%, sensitivity of
96.82%, and specificity of 98.74%. When tested with unseen data, an accuracy of 97.17%,
sensitivity of 95.80%, and specificity of 98.15%. With only 3 misdiagnoses out of 35 US
videos, this comprehensive approach shows strong potential to streamline clinical decision-
making and improve patient outcomes in pediatric cardiology. This framework represents
a significant advancement in the digitization of echocardiography, promising enhanced
efficiency and accuracy in diagnosing CSDs, ultimately benefiting pediatric patients and
healthcare practitioners alike.

Author Contributions: S.N.: wrote the manuscript, formal analysis, methodology, and funding
acquisition. R.N. and R.U.P.: medical verification. A.I.S., M.N.R. and R.B.: designed computer
programs and curated the data. B.T. and F.F.: formal analysis and methodology. A.D., A.I. and A.W.A.:
resources, analysis, formal analysis, and methodology. S.M.: contributed data or analysis tools and
formal analysis. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Intelligent System Research Group (ISysRG), and funded
by Universitas Sriwijaya under Professional Research 2024.

Institutional Review Board Statement: This research was approved by the Research Ethics Com-
mittee of Dr. Mohammad Hoesin Hospital, Palembang with Ethics Certificate Number No. 38/kep-
krsmh/2021 (June, 2021).

Informed Consent Statement: All methods were carried out in accordance with relevant guidelines
and regulations. All experimental protocols were approved by Dr. Mohammad Hoesin General
Hospital, Palembang, Indonesia, and informed consents was obtained from all subjects and/or their
legal guardians.

Data Availability Statement: The datasets generated and/or analyzed in this study are available in
https://github.com/ISySRGg/Echo-Infant (accessed on 20 July 2023).

https://github.com/ISySRGg/Echo-Infant


J. Imaging 2024, 10, 280 19 of 20

Acknowledgments: We thank the Intelligent System Research Group, Universitas Sriwijaya, Indone-
sia, for their full support of the research infrastructure.

Conflicts of Interest: The authors declare that they have no competing interests.

References
1. Corbett, L.; Forster, J.; Gamlin, W.; Duarte, N.; Burgess, O.; Harkness, A.; Li, W.; Simpson, J.; Bedair, R. A practical guideline for

performing a comprehensive transthoracic echocardiogram in the congenital heart disease patient: Consensus recommendations
from the British Society of Echocardiography. Echo Res. Pract. 2022, 9, 10. [CrossRef] [PubMed]

2. Tromp, J.; Bauer, D.; Claggett, B.L.; Frost, M.; Iversen, M.B.; Prasad, N.; Petrie, M.C.; Larson, M.G.; Ezekowitz, J.A.; Solomon, S.D.
A formal validation of a deep learning-based automated workflow for the interpretation of the echocardiogram. Nat. Commun.
2022, 13, 6776. [CrossRef] [PubMed]

3. Lin, X.; Yang, F.; Chen, Y.; Chen, X.; Wang, W.; Li, W.; Wang, Q.; Zhang, L.; Li, X.; Deng, Y.; et al. Echocardiography-based AI for
detection and quantification of atrial septal defect. Front. Cardiovasc. Med. 2023, 10, 985657. [CrossRef] [PubMed]

4. Hong, W.; Sheng, Q.; Dong, B.; Wu, L.; Chen, L.; Zhao, L.; Liu, Y.; Zhu, J.; Liu, Y.; Xie, Y.; et al. Automatic detection of secundum
atrial septal defect in children based on color Doppler echocardiographic images using convolutional neural networks. Front.
Cardiovasc. Med. 2022, 9, 604. [CrossRef] [PubMed]

5. Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56.
[CrossRef]

6. Cinteza, E.; Vasile, C.M.; Busnatu, S.; Armat, I.; Spinu, A.D.; Vatasescu, R.; Duica, G.; Nicolescu, A. Can Artificial Intelligence
Revolutionize the Diagnosis and Management of the Atrial Septal Defect in Children? Diagnostics 2024, 14, 132. [CrossRef]

7. Zhang, J.; Gajjala, S.; Agrawal, P.; Tison, G.H.; Hallock, L.A.; Beussink-Nelson, L.; Lassen, M.H.; Fan, E.; Aras, M.A.; Jordan,
C.; et al. Fully automated echocardiogram interpretation in clinical practice: Feasibility and diagnostic accuracy. Circulation
2018, 138, 1623–1635. [CrossRef]

8. Miura, K.; Yagi, R.; Miyama, H.; Kimura, M.; Kanazawa, H.; Hashimoto, M.; Kobayashi, S.; Nakahara, S.; Ishikawa, T.; Taguchi,
I.; et al. Deep learning-based model detects atrial septal defects from electrocardiography: A cross-sectional multicenter
hospital-based study. EClinicalMedicine 2023, 63, 102141. [CrossRef]

9. Otto, C.M.; Freeman, R.V.; Schwaegler, R.G.; Linefsky, J. Echocardiography Review Guide E-Book: Companion to the Textbook of Clinical
Echocardiography; Elsevier Health Sciences: Amsterdam, The Netherlands, 2019.

10. Simpson, L.L. Screening for congenital heart disease. In Queenan’s Management of High-Risk Pregnancy: An Evidence-Based Approach;
Wiley: Hoboken, NJ, USA, 2024; pp. 50–59.

11. Madani, A.; Arnaout, R.; Mofrad, M.; Arnaout, R. Fast and accurate view classification of echocardiograms using deep learning.
NPJ Digit Med. 2018, 1, 6. [CrossRef]

12. Alerhand, S.; Choi, A.; Varga, P. Cardiac ultrasound for pediatric emergencies. Pediatr. Ann. 2021, 50, e424–e431. [CrossRef]
13. Liu, B.; Chang, H.; Yang, D.; Yang, F.; Wang, Q.; Deng, Y.; Li, L.; Lv, W.; Zhang, B.; Yu, L.; et al. A deep learning framework

assisted echocardiography with diagnosis, lesion localization, phenogrouping heterogeneous disease, and anomaly detection. Sci.
Rep. 2023, 13, 3. [CrossRef] [PubMed]

14. Edupuganti, M.; Rathikarani, V.; Chaduvula, K. A real and accurate ultrasound fetal imaging based heart disease detection using
deep learning technology. Int. J. Integr. Eng. 2022, 14, 56–68. [CrossRef]

15. Liu, Y.; Huang, Q.; Han, X.; Liang, T.; Zhang, Z.; Lu, X.; Dong, B.; Yuan, J.; Wang, Y.; Hu, M.; et al. Atrial Septal Defect Detection
in Children Based on Ultrasound Video Using Multiple Instances Learning. J. Imaging Inform. Med. 2024, 37, 965–975. [CrossRef]
[PubMed]

16. Saptri, A.I.; Nurmaini, S.; Rachmatullah, M.N.; Tutuko, B.; Darmawahyuni, A.; Firdaus, F.; Rini, D.R.; Islami, A. Deep learning-
based real time detection for cardiac objects with fetal ultrasound video. Inform. Med. Unlocked 2023, 36, 101150. [CrossRef]

17. Nurmaini, S.; Sapitri, A.I.; Tutuko, B.; Rachmatullah, M.N.; Rini, D.R.; Darmawahyuni, A.; Firdaus, F.; Mandala, S.; Nova, R.;
Bernolian, N. Automatic echocardiographic anomalies interpretation using a stacked residual-dense network model. BMC
Bioinform. 2023, 24, 365. [CrossRef]

18. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

19. Ju, R.-Y.; Cai, W. Fracture Detection in Pediatric Wrist Trauma X-ray Images Using YOLOv8 Algorithm. arXiv 2023,
arXiv:2304.05071. [CrossRef]

20. Terven, J.; Cordova-Esparza, D. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8
and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [CrossRef]

21. Ultralytics, yolov8; Ultralytics: Frederick, MD, USA, 2024; Available online: https://github.com/ultralytics/ultralytics (accessed
on 6 June 2023).

22. Zion, D.; Gillam, L.; Loff, B. The Declaration of Helsinki, CIOMS and the ethics of research on vulnerable populations. Nat. Med.
2000, 6, 615–617. [CrossRef]

23. American Academy of Pediatrics. Committee on Bioethics and Committee on Hospital Care. Palliative care for children. Pediatrics
2000, 106, 351–357.

https://doi.org/10.1186/s44156-022-00006-5
https://www.ncbi.nlm.nih.gov/pubmed/36253815
https://doi.org/10.1038/s41467-022-34245-1
https://www.ncbi.nlm.nih.gov/pubmed/36351912
https://doi.org/10.3389/fcvm.2023.985657
https://www.ncbi.nlm.nih.gov/pubmed/37153469
https://doi.org/10.3389/fcvm.2022.834285
https://www.ncbi.nlm.nih.gov/pubmed/35463790
https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.3390/diagnostics14020132
https://doi.org/10.1161/CIRCULATIONAHA.118.034338
https://doi.org/10.1016/j.eclinm.2023.102141
https://doi.org/10.1038/s41746-017-0013-1
https://doi.org/10.3928/19382359-20210913-01
https://doi.org/10.1038/s41598-022-27211-w
https://www.ncbi.nlm.nih.gov/pubmed/36593284
https://doi.org/10.30880/ijie.2022.14.07.005
https://doi.org/10.1007/s10278-024-00987-1
https://www.ncbi.nlm.nih.gov/pubmed/38347394
https://doi.org/10.1016/j.imu.2022.101150
https://doi.org/10.1186/s12859-023-05493-9
https://doi.org/10.1038/s41598-023-47460-7
https://doi.org/10.3390/make5040083
https://github.com/ultralytics/ultralytics
https://doi.org/10.1038/76174


J. Imaging 2024, 10, 280 20 of 20

24. Stos, B.; Lévy, M.; Héry, E.; Durand, I.; Askinazi, E.; Thorey, V.; De Boisredon, M.; Gardella, C. Accurate detection of atrioventricular
septal defect (AVSD) in fetal ultrasound using artificial intelligence. Arch. Cardiovasc. Dis. 2024, 117, S220–S221. [CrossRef]

25. Yu, X.; Ma, L.; Wang, H.; Zhang, Y.; Du, H.; Xu, K.; Wang, L. Deep learning-based differentiation of ventricular septal defect from
tetralogy of Fallot in fetal echocardiography images. Technol. Health Care 2024, 32, 457–464. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.acvd.2024.07.004
https://doi.org/10.3233/THC-248040
https://www.ncbi.nlm.nih.gov/pubmed/38759068

	Introduction 
	Materials and Methods 
	Data Preparation 
	The End-to-End Framework 
	Normal–Abnormal Classification 
	Standard View Classification 
	Defect Detection 
	CSDs Decision-Making 

	Model Evaluation 
	Platform 
	Ethics 

	Result and Discussion 
	The Ablation Study 
	Normal–Abnormal Classification 
	Standard View Classification 
	Defect Detection 
	CSD Decision-Making 
	Benchmarking with State of the Art 
	The CSD Visualization 
	Color Doppler Echocardiography Case 
	Limitations 

	Conclusions 
	References

