A Real-Time End-to-End Framework with a Stacked Model Using Ultrasound Video for Cardiac Septal Defect Decision-Making
<p>The real-time end-to-end framework.</p> "> Figure 2
<p>The US standard cardiac view of A4CH, A5CH, PLAX, PSAX, and SC with color Doppler echocardiography.</p> "> Figure 3
<p>Annotation of chamber wall and cardiac defect.</p> "> Figure 4
<p>A total of 16 samples for performance comparison with 72 variants of Yolo model for CSD prediction to select the best model.</p> "> Figure 5
<p>Normal–abnormal classification performance for five architectures.</p> "> Figure 6
<p>Normal and abnormal cardiac classification results in terms of training and validation loss.</p> "> Figure 7
<p>View classification result on training and validation loss.</p> "> Figure 8
<p>The CSD detection performance using our framework on five standard views.</p> "> Figure 9
<p>All CSD detection performances based on patient.</p> "> Figure 10
<p>The sample of CSD detection images in five views.</p> "> Figure 11
<p>The proposed model of CSD detection in color Doppler echocardiography case.</p> ">
Abstract
:1. Introduction
- ■
- Introducing an end-to-end model designed for facilitating CSD decision-making. This model involves a comprehensive exploration across five cardiac standard views, namely, apical four-chamber, apical five-chamber, parasternal long axis, parasternal short axis, and subcostal.
- ■
- Developing a stacked Yolo model that integrates normal–abnormal classification, view classification, and defect detection to enhance CSD prediction significantly.
- ■
- Proposing a combination of a stacked Yolo model and an inference algorithm for confirmatory diagnostic evaluation and ensuring its capacity in CSD decision-making.
- ■
- Conducting real-time testing to evaluate the proposed model’s performance with subjects in a hospital setting.
2. Materials and Methods
2.1. Data Preparation
2.2. The End-to-End Framework
- Normal–abnormal classification: a Yolov8-based classifier is trained to distinguish between normal cardiac anatomy and potential abnormalities.
- Standard view classification: a Yolov8 model is trained to classify images based on standard echocardiographic views, adapting its detection capabilities to recognize specific views that are most relevant for identifying cardiac defects.
- Defect detection: After an abnormality is detected and the view is classified, the model detects specific cardiac defects. Given that defects vary in size and type, Yolov8 is employed to accurately detect and classify these variations, which may present differently across cardiac images.
- Decision-making algorithm: the final step integrates medical knowledge to make a precise decision based on the presence, position, and type of defect, as well as the echocardiographic view.
2.2.1. Normal–Abnormal Classification
2.2.2. Standard View Classification
Algorithm 1. Inference_View_Echo. |
Input: echocardiograph video, view classifier Output: view of echocardiograpy video Initialization: assign zero to variaible view_A4CH, view_A5CH, view_PLAX, view_PSAX, view_SC BEGIN for frame in video do view_frame← view_classifier.predict (frame) if view_frame = “A4CH” then view_A4CH++ else if view_frame = “A5CH” then view_A5CH++ else if view_frame = “PLAX” then view_PLAX++ else if view_frame = “PSAX” then view_PSAX++ else view_SC++ view← max (view_A4CH, view_A5CH, view_PLAX, view_PSAX, view_SC) return view END |
2.2.3. Defect Detection
2.2.4. CSDs Decision-Making
- ASDs: if the class-predicted cardiac view is A4CH or SC, and the IoU of the hole in the atrium is >0.01 and IoU of the hole in the ventricle is ≤0.01.
- VSDs: if the class-predicted cardiac view is A5CH or PLAX or PSAX, and IoU of the hole in the atrium is ≤0.01 and IoU of the hole in the ventricle is > 0.01.
- AVSDs: if the class-predicted cardiac view is A4CH, and IoU of the hole in the atrium is > 0.01 and IoU of the hole in the ventricle is > 0.01.
- If the knowledge-based decision is not fulfilled, then the predicted class is normal.
Algorithm 2. Inference_CSDs |
Input: echocardiograph video, view, segment_model_A4CH, segment_model_A5CH, segment_model_PLAX, segment_model_PSAX, segment_model_SC Output: echocardiography cardiac septal defects BEGIN if view = “A4CH” then predicted_wall-chamber_and_hole← segment_model_A4CH.predict (video) else if view = “A5CH” then predicted_ wall-chamber _and_hole← segment_model_A5CH.predict (video) else if view = “PLAX” then predicted_ wall-chamber _and_hole← segment_model_LA.predict (video) else if view = “PSAX” then predicted_ wall-chamber _and_hole← segment_model_SA.predict (video) else predicted_ wall-chamber _and_hole← segment_model_SC.predict (video) if “hole” in predicted_ wall-chamber _and_hole then iou_hole_atrial← calculate_iou (hole, atrial) iou_hole_ventricle← calculate_iou (hole, ventricle) if (view = “A4CH” or view = “SC”) and iou_hole_atrial > 0.01 and iou_hole_ventricle≤ 0.01 then return “Atrial Septal Defect” else if (view = “A5CH” or view = “LA” or view = “SA”) and iou_hole_atrial <= 0.01 and iou_hole_ventricle > 0.01 then return “Ventricular Septal Defect” else if (view = “A4CH”) and iou_hole_atrial > 0.01 and iou_hole_ventricle > 0.01 then return “Atrial Ventricular Septal Defect” endif else return “Normal” endif |
2.3. Model Evaluation
2.4. Platform
2.5. Ethics
3. Result and Discussion
3.1. The Ablation Study
3.2. Normal–Abnormal Classification
3.3. Standard View Classification
3.4. Defect Detection
3.5. CSD Decision-Making
3.6. Benchmarking with State of the Art
3.7. The CSD Visualization
3.8. Color Doppler Echocardiography Case
3.9. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corbett, L.; Forster, J.; Gamlin, W.; Duarte, N.; Burgess, O.; Harkness, A.; Li, W.; Simpson, J.; Bedair, R. A practical guideline for performing a comprehensive transthoracic echocardiogram in the congenital heart disease patient: Consensus recommendations from the British Society of Echocardiography. Echo Res. Pract. 2022, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Tromp, J.; Bauer, D.; Claggett, B.L.; Frost, M.; Iversen, M.B.; Prasad, N.; Petrie, M.C.; Larson, M.G.; Ezekowitz, J.A.; Solomon, S.D. A formal validation of a deep learning-based automated workflow for the interpretation of the echocardiogram. Nat. Commun. 2022, 13, 6776. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Yang, F.; Chen, Y.; Chen, X.; Wang, W.; Li, W.; Wang, Q.; Zhang, L.; Li, X.; Deng, Y.; et al. Echocardiography-based AI for detection and quantification of atrial septal defect. Front. Cardiovasc. Med. 2023, 10, 985657. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Sheng, Q.; Dong, B.; Wu, L.; Chen, L.; Zhao, L.; Liu, Y.; Zhu, J.; Liu, Y.; Xie, Y.; et al. Automatic detection of secundum atrial septal defect in children based on color Doppler echocardiographic images using convolutional neural networks. Front. Cardiovasc. Med. 2022, 9, 604. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Cinteza, E.; Vasile, C.M.; Busnatu, S.; Armat, I.; Spinu, A.D.; Vatasescu, R.; Duica, G.; Nicolescu, A. Can Artificial Intelligence Revolutionize the Diagnosis and Management of the Atrial Septal Defect in Children? Diagnostics 2024, 14, 132. [Google Scholar] [CrossRef]
- Zhang, J.; Gajjala, S.; Agrawal, P.; Tison, G.H.; Hallock, L.A.; Beussink-Nelson, L.; Lassen, M.H.; Fan, E.; Aras, M.A.; Jordan, C.; et al. Fully automated echocardiogram interpretation in clinical practice: Feasibility and diagnostic accuracy. Circulation 2018, 138, 1623–1635. [Google Scholar] [CrossRef]
- Miura, K.; Yagi, R.; Miyama, H.; Kimura, M.; Kanazawa, H.; Hashimoto, M.; Kobayashi, S.; Nakahara, S.; Ishikawa, T.; Taguchi, I.; et al. Deep learning-based model detects atrial septal defects from electrocardiography: A cross-sectional multicenter hospital-based study. EClinicalMedicine 2023, 63, 102141. [Google Scholar] [CrossRef]
- Otto, C.M.; Freeman, R.V.; Schwaegler, R.G.; Linefsky, J. Echocardiography Review Guide E-Book: Companion to the Textbook of Clinical Echocardiography; Elsevier Health Sciences: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Simpson, L.L. Screening for congenital heart disease. In Queenan’s Management of High-Risk Pregnancy: An Evidence-Based Approach; Wiley: Hoboken, NJ, USA, 2024; pp. 50–59. [Google Scholar]
- Madani, A.; Arnaout, R.; Mofrad, M.; Arnaout, R. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit Med. 2018, 1, 6. [Google Scholar] [CrossRef]
- Alerhand, S.; Choi, A.; Varga, P. Cardiac ultrasound for pediatric emergencies. Pediatr. Ann. 2021, 50, e424–e431. [Google Scholar] [CrossRef]
- Liu, B.; Chang, H.; Yang, D.; Yang, F.; Wang, Q.; Deng, Y.; Li, L.; Lv, W.; Zhang, B.; Yu, L.; et al. A deep learning framework assisted echocardiography with diagnosis, lesion localization, phenogrouping heterogeneous disease, and anomaly detection. Sci. Rep. 2023, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Edupuganti, M.; Rathikarani, V.; Chaduvula, K. A real and accurate ultrasound fetal imaging based heart disease detection using deep learning technology. Int. J. Integr. Eng. 2022, 14, 56–68. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Q.; Han, X.; Liang, T.; Zhang, Z.; Lu, X.; Dong, B.; Yuan, J.; Wang, Y.; Hu, M.; et al. Atrial Septal Defect Detection in Children Based on Ultrasound Video Using Multiple Instances Learning. J. Imaging Inform. Med. 2024, 37, 965–975. [Google Scholar] [CrossRef] [PubMed]
- Saptri, A.I.; Nurmaini, S.; Rachmatullah, M.N.; Tutuko, B.; Darmawahyuni, A.; Firdaus, F.; Rini, D.R.; Islami, A. Deep learning-based real time detection for cardiac objects with fetal ultrasound video. Inform. Med. Unlocked 2023, 36, 101150. [Google Scholar] [CrossRef]
- Nurmaini, S.; Sapitri, A.I.; Tutuko, B.; Rachmatullah, M.N.; Rini, D.R.; Darmawahyuni, A.; Firdaus, F.; Mandala, S.; Nova, R.; Bernolian, N. Automatic echocardiographic anomalies interpretation using a stacked residual-dense network model. BMC Bioinform. 2023, 24, 365. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Ju, R.-Y.; Cai, W. Fracture Detection in Pediatric Wrist Trauma X-ray Images Using YOLOv8 Algorithm. arXiv 2023, arXiv:2304.05071. [Google Scholar] [CrossRef]
- Terven, J.; Cordova-Esparza, D. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Ultralytics, yolov8; Ultralytics: Frederick, MD, USA, 2024; Available online: https://github.com/ultralytics/ultralytics (accessed on 6 June 2023).
- Zion, D.; Gillam, L.; Loff, B. The Declaration of Helsinki, CIOMS and the ethics of research on vulnerable populations. Nat. Med. 2000, 6, 615–617. [Google Scholar] [CrossRef]
- American Academy of Pediatrics. Committee on Bioethics and Committee on Hospital Care. Palliative care for children. Pediatrics 2000, 106, 351–357. [Google Scholar]
- Stos, B.; Lévy, M.; Héry, E.; Durand, I.; Askinazi, E.; Thorey, V.; De Boisredon, M.; Gardella, C. Accurate detection of atrioventricular septal defect (AVSD) in fetal ultrasound using artificial intelligence. Arch. Cardiovasc. Dis. 2024, 117, S220–S221. [Google Scholar] [CrossRef]
- Yu, X.; Ma, L.; Wang, H.; Zhang, Y.; Du, H.; Xu, K.; Wang, L. Deep learning-based differentiation of ventricular septal defect from tetralogy of Fallot in fetal echocardiography images. Technol. Health Care 2024, 32, 457–464. [Google Scholar] [CrossRef] [PubMed]
Class | Data | Total US Videos | Total US Images |
---|---|---|---|
Normal | Training | 61 | 53,256 |
Validation | 13,315 | ||
Real-time testing | 14 | 8500 | |
(unseen data) | |||
Abnormal | Training | 126 | 54,276 |
(ASD, VSD, and AVSD) | Validation | 13,570 | |
Real-time testing | 21 | 8189 | |
(unseen data) | |||
Total | 222 | 151,106 |
Architecture | Accuracy (%) | Sensitivity (%) | Specificity (%) | |||
---|---|---|---|---|---|---|
Validation | Unseen | Validation | Unseen | Validation | Unseen | |
YoloV8n | 97.45 | 90.74 | 97.32 | 89.72 | 99.36 | 97.74 |
YoloV8s | 97.41 | 90.84 | 97.27 | 89.23 | 99.35 | 97.74 |
YoloV8m | 97.50 | 90.22 | 97.37 | 88.76 | 99.37 | 97.59 |
YoloV8l | 97.45 | 92.26 | 97.33 | 91.22 | 99.36 | 98.11 |
YoloV8x | 97.50 | 91.50 | 97.37 | 90.45 | 99.37 | 97.92 |
View | Validation (mAP) | Unseen (mAP) | ||
---|---|---|---|---|
BBox | Mask | BBox | Mask | |
A4CH | 0.89 | 0.79 | 0.80 | 0.74 |
A5CH | 0.60 | 0.74 | 0.50 | 0.61 |
PLAX | 0.61 | 0.83 | 0.57 | 0.56 |
PSAX | 0.66 | 0.62 | 0.60 | 0.60 |
SC | 0.84 | 0.78 | 0.82 | 0.76 |
Only CPU | With GPU | ||||
---|---|---|---|---|---|
Latency (ms) | Inference time (ms) | FPS (Hz) | Latency (ms) | Inference time (ms) | FPS (Hz) |
67.45 | 29,597.06 | 15.31 | 11.09 | 13,693.35 | 90.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurmani, S.; Nova, R.; Sapitri, A.I.; Rachmatullah, M.N.; Tutuko, B.; Firdaus, F.; Darmawahyuni, A.; Islami, A.; Mandala, S.; Partan, R.U.; et al. A Real-Time End-to-End Framework with a Stacked Model Using Ultrasound Video for Cardiac Septal Defect Decision-Making. J. Imaging 2024, 10, 280. https://doi.org/10.3390/jimaging10110280
Nurmani S, Nova R, Sapitri AI, Rachmatullah MN, Tutuko B, Firdaus F, Darmawahyuni A, Islami A, Mandala S, Partan RU, et al. A Real-Time End-to-End Framework with a Stacked Model Using Ultrasound Video for Cardiac Septal Defect Decision-Making. Journal of Imaging. 2024; 10(11):280. https://doi.org/10.3390/jimaging10110280
Chicago/Turabian StyleNurmani, Siti, Ria Nova, Ade Iriani Sapitri, Muhammad Naufal Rachmatullah, Bambang Tutuko, Firdaus Firdaus, Annisa Darmawahyuni, Anggun Islami, Satria Mandala, Radiyati Umi Partan, and et al. 2024. "A Real-Time End-to-End Framework with a Stacked Model Using Ultrasound Video for Cardiac Septal Defect Decision-Making" Journal of Imaging 10, no. 11: 280. https://doi.org/10.3390/jimaging10110280
APA StyleNurmani, S., Nova, R., Sapitri, A. I., Rachmatullah, M. N., Tutuko, B., Firdaus, F., Darmawahyuni, A., Islami, A., Mandala, S., Partan, R. U., Arum, A. W., & Bastian, R. (2024). A Real-Time End-to-End Framework with a Stacked Model Using Ultrasound Video for Cardiac Septal Defect Decision-Making. Journal of Imaging, 10(11), 280. https://doi.org/10.3390/jimaging10110280