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Abstract: This study explores the intersection of personality, attention and task performance in
traditional 2D and immersive virtual reality (VR) environments. A visual search task was developed
that required participants to find anomalous images embedded in normal background images in
3D space. Experiments were conducted with 30 subjects who performed the task in 2D and VR
environments while their eye movements were tracked. Following an exploratory correlation analysis,
we applied machine learning techniques to investigate the predictive power of gaze features on human
data derived from different data collection methods. Our proposed methodology consists of a pipeline
of steps for extracting fixation and saccade features from raw gaze data and training machine learning
models to classify the Big Five personality traits and attention-related processing speed/accuracy
levels computed from the Group Bourdon test. The models achieved above-chance predictive
performance in both 2D and VR settings despite visually complex 3D stimuli. We also explored
further relationships between task performance, personality traits and attention characteristics.

Keywords: eye tracking; gaze-based interaction; virtual reality game; visual attention; personality traits

1. Introduction

The field of human–computer interaction (HCI) has evolved by integrating insights
from cognitive and behavioral sciences to enhance user experiences. One key aspect is
personality, the patterns of thoughts, feelings, and actions that make us unique, as defined
in the five-factor model: extraversion, neuroticism, open-mindedness, agreeableness, and
conscientiousness [1].

Scientific studies show that personality significantly impacts how individuals interact
with systems and interfaces [2–4]. Therefore, it can be claimed that personality-based
interface design serves various domains and applications [5].

In parallel to personality, attention—another key cognitive function—holds an im-
portant role within the HCI context. Individual variations in attentional allocation during
engagement with interfaces critically influence both user experience as well as task perfor-
mance [6]. Traditional tools like the Group Bourdon test [7] have been utilized to measure
this sustained attention [8]. Difficulties sustaining attention can affect maintaining stable
performance on prolonged tasks, causing fatigue [9]. Moreover, research shows that atten-
tional capacities fluctuate, occasionally causing attention lapses that result in undesired
actions, even in optimal conditions [10].

To gain insights into these cognitive and behavioral processes, researchers have turned
to the study of eye movements. Eye tracking, as a way to measure eye movements, provides
insights into visual attention, behavior, emotions, and other cognitive processes [11]. Using
machine learning approaches, features based on eye movements have proven effective in
predicting various aspects of human behavior, such as visual attention [12,13], problem-
solving [14,15], cognitive load [16,17], and personality traits [18–20].
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Building upon research on cognition, behavior, eye tracking and virtual reality (VR)
technologies provides a platform for exploring these mechanisms in realistic yet controlled
settings. In the past decade, VR has initiated a paradigm shift across various sectors, in-
cluding education, professional training, and business [21–23]. By integrating eye tracking,
VR technologies allow for an in-depth study of behaviors, attention, and task performance,
providing objective gaze data on individual differences.

The capability of such novel interaction via multimodal data processing is only one
part of the truly effective cooperation between humans and computers. The ability to adapt
to individual human needs is key to increasing the effectiveness and acceptance of these
systems [24]. Rather than looking at complex, multimodal manufacturing systems, we
focused on readily available, off-the-shelf tools for multimodal data capture and associated
methodologies. In our experiments, we take advantage of an immersive VR environment
combined with eye tracking to provide users with one of the least intrusive but most
enjoyable data capture environments.

Previous research in personality prediction using gaze data has largely been conducted
in simplistic 2D stimuli on desktop displays [2–4,25,26], which, while providing valuable
insights, have limited the ability to replicate the complexity and immersion of real-world
scenarios. One of the few exceptions is the study by Hoppe et al. [18], which measured eye
movements in everyday scenarios to predict personality traits, demonstrating the potential
for more naturalistic environments. Nevertheless, this study has drawbacks due to the
complexities and unpredictability of real-world contexts. Consequently, these 2D studies
may still not capture complex real-world cognitive behaviors and contexts to the same
extent as immersive VR environments [27,28].

Predictive modeling specifically using the Group Bourdon test as an attention measure
has not yet been fully exploited in 2D or VR environments. Simultaneously, the potential of
using gaze features to predict personality traits in the context of a 3D stimulus game within
these environments has not been fully explored.

Figure 1 presents a visual overview of our proposed classification pipeline. In this
scientific work, we provide the following major contributions:

1. We designed and developed a classification pipeline that incorporates machine learn-
ing models to predict self-reported personality traits (extracted from the BFI-2 test [29])
and attention-related characteristics (derived from the Group Burdon test) from
gaze data.

2. We investigated the influence of personality traits and attention-related attributes on
participants’ task performance in an outlier search game.

3. We studied the effects of factors such as hand control type, task duration, and game
environment (2D vs. VR) on the performance of the classification models.

The main outcome of our work aims to address the basic limitations of the adaptive
interface research domain by developing models that can predict attentional attributes from
gaze data, as well as classify personality traits and assess these traits and attention levels’
impact on task performance. The further objective of our research is to explore the feasibility
of a user-centred interface design through easily implementable data collection methods.

The rest of this paper is organized as follows. Section 2 overviews the related theoret-
ical background and other relevant scientific works that highlight the visual search, eye
movement, human attention and personality in general and are linked with virtual reality
topics. Section 3 introduces the developed outlier search game, the experimental design,
collected and derived data, and data pre-processing details together with feature extraction
and training of the classification models. Results with numerical visualizations are shown
in Section 4. Section 5 includes a discussion of the findings, with separate sections on corre-
lation analysis and classification outcomes. Finally, Sections 6 and 7 discuss the limitations
and conclude our work.
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Figure 1. Schematic representation of our proposed classification pipeline. The process starts with the
collection of personal data and the recording of game logs. We then extract gaze features from both
2D and VR data sets. In the VR/2D sessions’ box (see (lower left corner)), T refers to the total number
of features. As the next step of the pipeline, we apply feature selection within nested cross-validation
to classify personality traits and attention groups.

2. Related Work

The background literature relevant to this work spans several key domains, including
visual search behavior, personality and attention assessment in traditional settings, and the
use of virtual reality technologies to study these psychological constructs.

In the following subsections, we first review research on visual search and perfor-
mance, with a focus on findings related to individual differences. Next, we survey im-
portant work investigating associations between eye movement, personality traits as well
as attention using traditional experimental paradigms. We then examine recent studies
centered on virtual reality systems for analyzing personality expression and attention
mechanisms in immersive environments.

2.1. Visual Search

Visual search, the perceptual process of selectively guiding gaze to find targets in
a scene, involves complex interactions between bottom-up salience, top-down guidance,
scene structure, search history, and target value, as described by Wolfe and Horowitz [30].
Moreover, beyond these external drivers, the role of individual differences is increasingly
recognized to influence visual search performance. For example, Peltier [31] found that
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individual characteristics like working memory capacity, vigilance, and attentional control
can predict performance in low-prevalence visual search tasks.

Specifically, the relationship between personality traits and visual search has been a
focus of recent research. Conscientiousness, one of the Big Five personality dimensions,
was found to correlate positively with visual search accuracy by Biggs et al. [32]. Ad-
ditionally, Woods et al. [33] demonstrated visual preferences could predict personality
traits. Furthermore, the effects of personality extend to other individual factors as well,
with research indicating sex-specific personality traits [34] and Autism Quotient scores [35]
influence visual search strategies.

This indicates that visual search guidance integrates external attentional drivers with
person-specific internal factors that interact to influence gaze patterns and attentional
allocation. Additional characterization of these individual mediators could enable the
development of intelligent search systems capable of dynamically predicting and enhancing
visual hunting performance in an individually tailored manner.

2.2. Eye Movements, Attention and Personality

This subsection provides an insight into the recent scientific literature based on gaze
data, attentional mechanisms and personality traits used in different research scenarios.

Research on gaze data has largely focused on predicting cognitive and emotional
states. Skaramagkas et al.’s study [36] presents an example of how gaze-related features can
be effectively employed to predict emotional arousal and valence in emotionally charged
situations. Appel et al. [17] demonstrated how eye movements can be used to infer
cognitive load. Similarly, Jaques et al. [37] investigated educational settings and explored
the predictive capability of gaze data in detecting student disengagement in intelligent
tutoring systems. Finally, Zhou et al. [38] expanded this cognitive and emotional predictive
perspective to a practical setting by forecasting situational awareness in automated driving.
These studies suggest that combining gaze with context-specific information can enhance
state prediction.

A secondary area of research revolves around the use of gaze data for the enhancement
of task performance. Raptis et al. [39] demonstrated how gaze data can expose cognitive
strategies in pattern recognition tasks. Huang et al. [40] utilized gaze patterns to predict
task intent in collaborative interactions. These studies suggest that analyzing gaze patterns
can expose cognitive strategies, which could allow for the tailored design of systems
that optimize performance in diverse tasks and collaborative settings. In addition, gaze
data have proven useful not only for predicting cognitive and emotional states but also
for examining individual differences and predicting human errors. Dumais et al. [41]
emphasized the relevance of individual differences in gaze patterns during web searches.
Following this, Kasneci et al. [42] harnessed gaze data to discern individual differences
in IQ tests, indicating the potential for gaze data to reveal cognitive variability. Lastly,
Saboundji et al. [43] leveraged both gaze and cursor movements to predict human errors in
a divided attention task.

Recent studies have demonstrated the potential for using gaze patterns as predictive
biomarkers for personality traits. Leveraging eye tracking technology to unobtrusively
measure visual attention provides unique insights into the links between gaze behavior
and individual differences in personality. The pivotal study of Hoppe et al. [18] first
showed that eye movement patterns during everyday tasks could effectively predict four
of the Big Five traits—neuroticism, extraversion, agreeableness, and conscientiousness.
Chen et al. [44] examined gaze behavior during interactions with recommendation inter-
faces, connecting personality to user preferences. Berkovsky et al. [19] then introduced new
frameworks using multimodal eye tracking and physiological data during image and video
viewing to objectively infer traits. While controlled lab studies have provided a valuable
starting point, future research must address potential biases and limitations by moving
towards more naturalistic VR and real-world settings. Overall, innovative methodologies
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leveraging gaze data show promise for reliably assessing personality but require further
validation outside controlled environments.

In parallel, the prediction of attention behaviors has seen increasing progress due to
the application of machine learning methods. Initial explorations, such as the work of
Van Der Linden et al. [9], linked professional burnout to attentional difficulties, signifying
cognitive deficits in stressed individuals. Notably, in the pursuit of enhanced precision and
real-world applicability, attention prediction has increasingly incorporated gaze and other
multi-modal data. Li et al. [45] employed a multimodal approach to detect human attention
in e-learning using facial expressions, gaze, and mouse dynamics. The potential of gaze
information has been further illuminated by Broussard et al. [46] and Zaletelj et al. [47],
who used VR and Kinect-based systems in classroom scenarios, respectively, to enhance
the teaching–learning experience through attention-aware interfaces.

Despite these strides, a more robust understanding of the intersection between gaze
data and attention mechanisms remains to be fully explored. For instance, the recent works
of Hassan et al. [48] and Xu et al. [49] demonstrated compelling advancements using EEG
signals and multi-level attention recognition methodologies, but the role of gaze data was
not specifically addressed. Similarly, attention prediction studies by Shavit-Cohen et al. [50]
and Singh et al. [51] utilized virtual reality and deep neural networks, revealing complex
attention dynamics but not explicitly involving gaze. It can be argued that combining
gaze tracking with robust attention measures represents a promising approach to gaining
deeper insights. However, establishing ground truth remains difficult, as attention has
varied definitions and measurement methods. This complexity hinders the development of
consistent predictive algorithms.

2.3. Virtual Reality and Personality

The study and analysis of human behavior and personality in VR is a broad research
topic. Here, we summarize relevant studies related to our paper.

The rapid evolution of virtual reality (VR) technology in recent years has opened new
frontiers for studying the expression and measurement of personality in immersive virtual
environments [52]. While personality assessment has traditionally relied on self-reported
questionnaires prone to biases and real-world observations limited in experimental control,
VR provides a medium to systematically simulate realistic situations and analyze how traits
manifest through embodied interactions and responses [53].

Bouchard et al. [54] pioneered the use of VR in studying the impact of personality
traits on fear responses in phobic environments. Subsequent work by Slater et al. [55]
demonstrated the influence of VR on real-world attitudes and behaviors, showing that
users’ identification with their avatars could have significant real-life implications. VR
studies provide external validity to classic personality frameworks, affirming that our
deeply ingrained traits and dispositions shape social dynamics, emotional processing, and
subjective perceptions alike in both physical and digitally simulated worlds. This narrative
was further enriched by the work of Bailey et al. [56], who demonstrated that traits such as
extroversion and neuroticism could predict user behavior within VR.

A parallel body of research is exploring how individual differences impact perfor-
mance within virtual reality environments. While some studies have investigated the
relationship between personality traits and VR performance, the findings have been incon-
clusive. Rosenthal et al. [57] found that although surgical residents exhibited personality
traits different from the general population, these distinct traits were not predictive of
technical performance in virtual reality laparoscopic tasks. However, more recent research
has identified specific personality traits that correlate with improved performance in VR.
Katifori et al. [58] found that specific personality traits strongly correlated with better task
performance in a virtual reality environment involving object manipulation. These results
suggest that further research is needed to more fully understand how personality impacts
VR interaction and performance.
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Moreover, researchers are leveraging machine learning methods to gain insights from
human behavior in virtual reality. Parra et al. [59] used machine learning by combining eye
tracking and behavioral data to classify individuals based on leadership style in a virtual
workplace. They found that eye tracking measures contributed strongly to discrimination
of leadership styles. Along these lines, Gao and Kasneci [60] showed that eye tracking data
alone can predict users’ experiences with different VR locomotion techniques, revealing
subconscious responses. Khatri et al. [61] similarly demonstrated that a combination of
eye tracking, posture, and interaction data could detect users’ personality traits during
tasks in a virtual store. Moreover, Gao et al. [62] extended such insights to the educational
field by investigating gender differences in computational thinking skills using students’
eye movements in an immersive VR classroom. Their models achieved over 70% accuracy
in gender classification, indicating that eye tracking features can provide discriminative
information in educational contexts as well. By analyzing eye movements and other
unconscious responses to VR stimuli, researchers were able to predict leadership style,
user experience, personality traits, and cognitive abilities, revealing new insights into
how individuals interact with and perceive virtual worlds. As these techniques advance,
they have the potential to enhance the design of personalized VR systems that optimize
experiences for users’ specific traits, needs, and contexts.

2.4. Virtual Reality and Attention

Research underscores attention’s vital role in VR experiences, as demonstrated across
key studies. Bowman et al. [21] established that immersion alone does not determine
VR outcomes—interactive components are critical for engaging attention. Building on
this, Bouchard et al. [54] revealed that heightened subjective presence and anxiety arise in
emotionally provocative VR settings compared to neutral environments. This suggests VR
scenarios may influence attention by eliciting arousal. Furthermore, Seo et al. [63] showed
that virtual avatars in educational VR enhanced attentional processing versus VR alone.
In a practical context, Mosteanu [64] determined multimedia techniques best maintain
student attention during remote VR lessons, pointing to the fragility of attention without
varied stimuli. Moreover, Prpa et al. [65] used respiration-linked audiovisual feedback
to elicit and sustain focused breath awareness during VR meditation. Together, these
studies highlight the vital but multifaceted role of attention in determining the outcomes
of different virtual reality applications. In addition, they identify the need for further
investigation of individual differences and empirically validated strategies to optimize
sustained engagement of attention in areas such as education, gaming, and therapy.

Recent studies are exploring the neural mechanisms supporting VR attention tech-
niques by measuring eye movements during immersion. Quantifying gaze behavior offers
empirical insights into the neurocognitive underpinnings shaping visual attention in action.
Seo et al. [63] quantified visual attention using gaze patterns to demonstrate improved
attentional processing toward avatar instructors, underscoring the importance of social
presence for learning in VR. Moreover, Shavit-Cohen et al. [50] monitored gaze shifts
between competing speakers to reveal auditory attention dynamics in multi-speaker VR
environments. While significant progress elucidating attention’s role in VR has been made,
open questions remain regarding predictive models and adaptable systems to dynamically
optimize interfaces based on users’ differences and attention capabilities, motivating more
personalized techniques grounded in cognitive and neural mechanisms.

3. Materials and Methods

In this section, we provide details on the experimental design and procedures used in
this study. First, we introduce the outlier search game implemented in traditional (2D) and
virtual reality environments. Next, we describe the study participants, apparatus, game
structure, and trials. Finally, we outline the data collection process, pre-processing methods,
feature extraction techniques, and classification models.
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3.1. Outlier Search Game

The game was implemented in two environments: a traditional monitor, mouse,
and keyboard setting versus an immersive VR system with a head-mounted display and
hand controllers. The outlier search game requires players to identify anomalous images
embedded within normal background images in 3D space within a time limit. Each trial
had a time limit of 10 or 15 min. Each game shows a total of 260 images, of which 10 are
outliers. In terms of their distribution, we used 5 different categories and showed players
50 normal and 2 outlier images per category.

One of our motivations for creating the outlier search game, or as the odd-one-out
game is also called, was the popularity and simplicity of the game and the fact that it is
often used in research to test various human cognitive abilities [66,67]. On the other hand,
it has been shown that at a simple level, the recognition of outliers requires little to no
knowledge from the participant, and an earlier implementation of the concept was tested
in a domain expert collaboration task, but without the gamified context [68].

Before the actual data collection, we performed two pilot experiments to test the
experimental setup and the game settings. The data recorded during this time was excluded
from the evaluation. Based on the useful feedback, we clarified the instructions, refined the
data recording protocol and limited the time and the number of outliers so that participants
did not get too tired throughout the entire experiment (6 play sessions). Therefore, we set
the maximum execution time to 15 min, the other version at 10 min and the number of
outliers for each session at 10. Based on user experience feedback the time allowed and
the number of tasks seemed appropriate for participants who were not familiar with VR
games (they were all experienced with a traditional PC setup).

In the traditional setup, we used a custom plugin developed in Typescript and Python,
incorporated into our NipgBoard tool—an interactive online system based on Google’s
TensorBoard [69]. We used its embedding projector functionality to display the game in the
Google Chrome web browser. A visualization of the NipgBoard’s interface can be seen in
Figure 2. Participants were instructed not to alter interface settings or other functions.

The VR version was developed using Unity3D and C#, with the SteamVR plugin
integrating the VR headset with the game. We utilized Unity Edition Professional, ver-
sion 2020.3.1f1, as the game engine. The Unity MainCamera was replaced by the Player
prefab camera. C# scripts enabled VR capabilities. An example view of the virtual reality
environment is shown in Figure 3.

Graphical layouts utilized the MVTec Anomaly Detection image dataset [70]. This
database contains 5000 high-resolution images in 15 classes, each with defective and defect-
free examples. Images displaying scratches, cracks, contamination, or structural damage
are labeled defective. Normal images exhibit no visible flaws. We selected the following
5 classes: bottle, hazelnut, leather, tile, and transistor with 50 normal and 2 anomalous
samples each.

To enable 3D visualization of the image data, we first performed feature extraction us-
ing pre-trained deep neural networks (DNNs). For the traditional setting (2D), we used the
VGG16 ImageNet model [71], while the VR version utilized ResNet50 [72]. We then applied
dimensional reduction techniques on the extracted feature vectors to project the images into
an embedded space. Principal component analysis (PCA) was used in both environments
to reduce the features into three dimensions. For the VR game, we also applied t-distributed
stochastic neighbor embedding (t-SNE) [73] for additional dimensionality reduction.

These methods produced well-separated, distinguishable image clusters based on
the learned feature representations. Simple observation of the 3D visualizations showed
a clear separation between the different image categories. The 2D and 3D environments
were similar in terms of the display of the full image set: all 5 image clouds were in the
field of view at launch and the participant had the freedom to choose which image set to
observe first. The NipgBoard projection space allowed the participant to operate the zoom
and rotation from an external view. In VR, the participant started from a central point and
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all the images surrounded his position, with navigation allowing him to bypass or even
pass through the images.

Figure 2. Example screenshot from the NipgBoard interface. On the (left), various display settings
and dimension reduction options can be selected. Correctly selected items have a green overlay and
incorrect selections have a red overlay, as shown in the (upper left) corner. In the middle, sample
images from the MVTec Anomaly Detection dataset can be seen in the 3D projector panel after the
PCA application. These grouped image sets represent the bottle, hazelnut, transistor, leather and tile
categories. On the right side, the enlarged version of the currently selected image is presented, and
below it, the timer, outlier counter, and F1 score are shown as text.

Figure 3. Screenshot from the HTC Vive Pro Eye headset’s VR view. In the (upper left) corner,
the displayed gloves represent the player’s hand in the virtual environment, the small squares in
the field of view are samples from the MVTec Anomaly Detection dataset. On the top, a green
overlayed cluster of images (bottles) can be seen, as both outliers have been found there. In the
(bottom right) corner, a red overlayed image (tile category) is an incorrect selection. From left to right,
the displayed numbers in the middle are the outlier counter, the timer, and the current F1 score. The
small transparent circle in the middle represents the target of the participant’s gaze.
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To illustrate the visual possibilities offered by the virtual environment, Figure 4 shows
a series of images captured from the VR view. To facilitate participants’ attention to the
task, no extra visual background elements were used.

Figure 4. Illustrative screenshots from the outlier search game in the virtual reality environment.
The (top row) shows the OHF mode, and the (bottom row) presents the THF technique. A blue
grid appears due to proximity, alerting the person wearing the VR headset where the edges of the
safe play area are in the real world. The screenshots show changes in ambient light conditions and
instances where participants observe objects very close and far away.

Differing user input modalities naturally characterize the traditional and VR scenarios.
In the traditional setting, users navigate among the displayed images using a mouse or
keyboard, with actions performed via mouse clicks. Conversely, in the VR environment,
navigation is achieved through free movement in the designated play area, utilizing one or
both controllers to execute interactions by pressing the controller buttons.

In general, we aimed to make the game environments as similar as possible in terms of
task-solving, game mechanics and feedback methods. The biggest challenge was to create
similar navigation in 2D and 3D spaces. The traditional input method in 2D is primarily
the mouse, so since we wanted to simulate smooth and free mouse movement in the virtual
environment, flying techniques seemed to be the appropriate method instead of jumping
or teleporting in space.

It is a natural need that participants wish to receive real-time feedback on their per-
formance. We wanted to avoid participants selecting too many images without actual
observation or considered choice so that incorrect selections would be penalized. Their
actual performance was reported back to them by the F1 value, the calculation of which
was explained to them beforehand. To inform users about their real-time progress and the
success or failure of their actions, various visual feedback mechanisms were implemented.
Both game environments provided the following system responses:

• Green overlays on images following a correct selection;
• Red overlays on images after an incorrect selection;
• Blue overlays on images under active observation with the mouse cursor or gaze;
• After the successful selection of both outliers within an image group, all remaining

images received green overlays;
• The remaining time, outlier counter, and F1 score were dynamically updated and

displayed in the NipgBoard interface or in the VR field of view.

The NipgBoard interface further displayed feedback with text messages corresponding
to correct, incorrect, and repeated selections. Moreover, to monitor user performance in real-
time, we utilized commonly used evaluation metrics. The F1 score, an effective measure
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for classifier model efficiency, is a weighted average of precision and recall values, yielding
a score between 0 (worst) and 1 (best). Precision measures the ratio of correct predictions
to total predictions made by the model, while recall (true positive rate) represents the
ratio of correct predictions to all possible correct predictions. In the context of the outlier
search game, a correct prediction corresponds to a participant selecting a true outlier image,
whereas an incorrect or false prediction arises when a normal, non-outlier image is selected.

To enable accurate calculations, deselecting images once they were selected was
prohibited. The game concludes under two scenarios: either the time limit is reached, or
all 10 outliers are found within the allocated time. Participant performance metrics were
designated for incorrect image selection (misclicks), completion time, and F1 score for each
game trial.

3.2. Experimental Design

For the sake of completeness, we describe the whole process of the experiments and
data collection, but due to the focus of the current study on gaze-related analysis, the wider
evaluation of the data collected from the questionnaires and other logs will not be detailed.
The experimental design consisted of three main phases: introduction, training, and data
collection. The flowchart with details of each stage is represented in Figure 5.

Figure 5. Flowchart of the experimental design with the three main phases: the introduction, training,
and data collection. Each stage contains the list of official tests and questionnaires, the time schedule
and the order of tasks for the conductors and participants.

We started with an instruction phase, where the general concept of the experiment,
outlier search game design, and different control methods of the game environments were
explained to the participants. As part of this stage, the general data protection regulation
(GDPR) form, the Big Five Inventory-2 (shortly BFI-2) personality traits test [29] and general
information forms about prior gaming experience were filled out. Participants were also
asked to complete the pen-and-paper Group Bourdon attention test. The game experience
form was a short Likert-scale questionnaire—our original work.

To avoid any doubts about whether the image is an outlier or not, a short training
session was also carried out in the introduction stage. During the training, two pairs per
image class were presented, for a total of 10 comparison exercises. Participants had to
compare the two given images and decide which one was the outlier. Questions and free
discussion were allowed on the solutions.

The final step of this phase was to assign a random order to the six pre-defined game
modes and to inform the participant accordingly. The possible variations of game settings
in terms of environment, navigation technique, and time frame can be seen in Table 1.

In the training phase, participants were allowed to try out the following two navigation
modes in virtual reality: one-handed flying (OHF) and two-handed flying (THF). Drawing
on relevant literature, we chose navigation methods that are generally considered to be easy
or enjoyable for users to learn but also sufficiently different to be comparable. According to
the study of Drogemuller et al. [74] where they compared different, commonly used VR
navigation techniques, they found that two-handed flying is the fastest and most preferred
among the 25 involved participants. Based on their findings, one-handed flying was also
reported as one of the methods that was easiest to understand and perform. On this
basis, we decided to choose a rather simple method (OHF) and a more enjoyable but more
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complex one (THF). As they require the use of hands in different ways, they are sufficiently
distinct to be further evaluated.

Table 1. List of the six pre-defined game trials. The variables are the game environment, navigation
methods, and given time intervals.

Game Environment Navigation Method Time Interval

Virtual Reality One-handed Flying (OHF) 10 min
Virtual Reality One-handed Flying (OHF) 15 min
Virtual Reality Two-handed Flying (THF) 10 min
Virtual Reality Two-handed Flying (THF) 15 min
Traditional setting Mouse and Keyboard 10 min
Traditional setting Mouse and Keyboard 15 min

OHF is an unimanual navigation technique that indicates that the user is pointing in
the desired direction, and the further the arm is stretched, the faster the movement. THF is
a bimanual method for navigation in virtual environments, in which the user uses both
hands to describe a vector that determines the direction and speed.

After the VR training, the traditional experiment setup was also introduced to the
participants. The navigation can be performed with mouse movements and clicks or with
the keyboard’s arrow keys. In the projection space of NipgBoard, one can zoom in/out
using the mouse scroll wheel, shift position by holding down the right mouse button and
moving the cursor, and rotate the camera view by holding down the left mouse button and
moving the cursor. To practice the navigation in the traditional setting, we used a similar
data set as in the experiment, and in the VR setting, we used the normal and defective
elements of the following categories from the MVTec Anomaly database: carpet, grid,
wood, and pill. The distribution of outliers and non-outliers was the same as in the actual
experiment. In this phase, we did not record gameplay logs or personal data.

The number of outliers per game trial was the same for all participants, but to exclude
the possibility that users remembered the location of the outliers, the defective samples
were different in each attempt. We prepared six sets of data for the experiment and four
backup sets.

The data collection phase was the final stage of the experimental work. In this session,
participants were asked to solve the pre-selected, randomly sequenced outlier search tasks.
The participants were tested individually. Each experiment took approximately three hours.
Each participant had one attempt to complete the experimental stage. However, if dizziness
or fatigue is reported while navigating in virtual reality, the experiment is stopped and
the user can repeat it later with a different set of data. If any technical problems occurred,
the game trial was also repeated. Participants were allowed extra rest time upon request.
The outlier images were shown to the participants after each experiment as solutions to
the gameplay.

Depending on the game parameters, the participants filled out questionnaires after
game trials. After each game, participants responded to a Likert-scale questionnaire we
created about their experiences in each game session. We aimed to collect the usability
characteristics in terms of navigation, game environment, and time limit parameters.

Furthermore, if the environment was virtual reality, participants were asked to fill
in a simulator sickness questionnaire (SSQ) [75] to indicate the subjective occurrence and
severity of any symptoms they might have on a detailed symptom list. As the work of
Bimberg et al. [76] shows, the SSQ can be applied to novel virtual reality research, despite
its limitations.

After the six game trials had been completed, participants filled in a questionnaire
on the overall user experience and a form measuring subjective sense of presence. The
summary questionnaire was compiled by us and allowed the participants to compare
and rate all game settings. The sense of presence form used was based on the work of
Witmer et al. [77], where the relationship between task performance and the phenomenon
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of presence in a virtual environment was investigated. Lastly, in the form of a short,
informal interview, participants were allowed to share their comments on the experiment.

In terms of data collection, in the traditional setting, we captured facial videos of the
participants using a simple off-the-shelf HD webcam, gaze data with the Tobii Nano device,
and mouse coordinates, screen capturing, keyboard, and game events using our custom
python scripts. In the virtual reality environment, we collected the following data: user
actions and game events, gameplay frames, navigation coordinates, and gaze data. For
gaze data, we collected logs of gaze origin, gaze direction, and blinks, which were built-in
variables in the HTC Vive Pro Eye.

Apparatus and Participants

Various virtual reality headsets are available in the market, and according to An-
gelov et al. [78], HTC Vive Pro is the best performer in terms of technical parameters. The
final chosen apparatus for the experiment was the HTC Vive Pro Eye, which includes eye
tracking. This device has a resolution of 1440 × 1600 per eye, a field-of-view of 110 nominal,
and an optical frame rate of 90 Hz. To ensure eye tracking in the traditional game environ-
ment, we used the Tobii Pro Nano eye tracker attached below the monitor. This device has
a sampling rate of 60 Hz, and it has a video-based eye tracking technique that relies on
pupil and corneal reflection with dark and bright pupil illumination modes.

For running both game environments we used an AMD Ryzen 7 2700 eight-core
computer, a 3.2 GHz processor with 32 GB RAM, an NVIDIA GeForce GTX-1080 video
card, and a Windows 10 Home Operating System.

The actual experiments were carried out with the involvement of 30 participants, with
11 females and 19 males, aged from 20 to 41 (M = 26.26, SD = 4.37).

Most of the participants (29) were right-handed, and one person was ambidextrous. In
terms of eyesight, 15 participants did not need vision correction, 2 wore contact lenses and
13 wore glasses. Regarding the experience with virtual reality, participants reported that
18 had no previous experience with VR, 5 had tried it occasionally but not in games, and
7 were familiar with VR games. Concerning experience in using the mouse, 18 participants
declared themselves to be very skilled and used a gamer mouse, while 12 participants
reported being sufficiently skilled in using a mouse.

The volunteers were instructed that data about their gameplays will be logged for
further analysis and the answers from the additional tests and questionnaires will be used
as well. The participants were asked to sign a GDPR consent form before the experiments,
and the Ethics Committee of the Faculty of Informatics, Eötvös Loránd University approved
the study. We anonymized personal data before further evaluation.

3.3. Collected and Derived Data as Ground Truth

This section provides details on the ground truth data collected and derived for the
correlation and classification tasks. Separate subsections refer to game performance metrics
from game logs, personality trait scores from questionnaires, and attention-related groups
extracted from the Group Burdon test.

3.3.1. Game Performance Metrics

To evaluate participant performance in each game session, we extracted two key perfor-
mance metrics: misclicks and completion time. Misclicks refer to the number of erroneous
clicks made on non-outlier images during each unique game session. A higher misclick
count within a session implies diminished performance. Completion time represents the
total time, measured in seconds, expended by a participant to complete each unique game
session. Longer completion times within a given session indicate poorer performance.

These metrics were calculated based on game logs tracking correct selections, incorrect
selections, and session duration. They provide quantitative measures of performance on
the outlier search task. Moreover, a key relationship exists between completion time and
misclicks, known as the speed-accuracy trade-off [79]. Specifically faster completion times
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often lead to more errors. By analyzing these metrics individually for each session, nuanced
insights can be gained regarding how factors such as the environment, navigation method,
and time constraints influence efficiency and accuracy over time.

Big Five Personality Traits

The Big Five Inventory-2 (BFI-2) questionnaire was administered to each participant
to assess personality based on the five-factor model: extraversion, agreeableness, conscien-
tiousness, neuroticism, and open-mindedness.

The BFI-2 contains 60 items measured on a 5-point Likert scale. It generates a continu-
ous score between 0 and 100 for each of the Big Five traits. These scores served as ground
truth labels for training machine learning models to predict personality solely from gaze
features. A visual overview can be seen in Figure 6.

Figure 6. Score distributions for Big 5 Personality Traits calculated from the BFI-2 test, measured on a
5-point Likert scale. The values are scores between 0 and 100 for each trait.

3.3.2. Attention Assessment Using the Group Bourdon Test

Simple psychological tests like the Bourdon–Wiersma dot cancellation test [8] and
the Group Bourdon test, a variation in the previously mentioned attention test [7], are
commonly used to measure attention ability and concentration levels in human studies.
For example, Van der Linden et al. [9] used the Bourdon-Wiersma test to assess attention
difficulties in individuals with professional burnout. Wolan et al. [80] applied the same
test to measure improvements in children’s psychomotor development after dog-assisted
therapy. The Group Bourdon test was used by Hoonhout et al. [81] to evaluate the effects
of different lighting conditions on performance. These types of tests are brief, easy to
administer online or on paper, and provide a straightforward analysis.

The Group Bourdon test [7] was, therefore, utilized in this study as a reliable means of
evaluating participants’ attention abilities along the dimensions of processing speed and
accuracy. This pen-and-paper test requires participants to visually scan structured point
patterns on a sheet and identify target point groups while avoiding errors of commission
and omission.

Specifically, each participant was instructed to mark only the groups of four points
among configurations of three, four, or five points arranged in rows on a paper sheet.
Five 1-min trials were administered, with participants scanning as far down the sheet as
possible during each trial before the administrator stopped them. The last point group
scanned was marked on each sheet to quantify progress. To obtain quantitative performance
measures, the following raw metrics were manually counted after each trial:

• N: Total number of point groups scanned,
• Ac: Number of incorrectly marked groups (errors of commission),
• Ao: Number of missed target groups (errors of omission),
• Ae = Ac + Ao: Total number of errors,
• t: Total time (number of minutes).

Using these notations and definitions, two key performance indicators have been
calculated to present the results of the Group Burdon test. The first is processing speed,
which indicates an individual’s ability to detect, perceive and respond to rapid changes in
the environment. In simple terms, it measures the speed of visual scanning and cognitive
processing [82].
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The second assessment is processing accuracy, which refers to the precision and quality
of the selection. This measures the accuracy of an individual’s attention, which reflects the
ability to perform tasks accurately under pressure [83].

Taken together, these measures provide a partial clinical picture of each participant’s
attentional ability. We define the following attention-related groups as performance assess-
ments of the Group Burdon test.

• Processing speed (Vp): total number of point groups scanned per unit time (Grp/minute)
(Equation (1)),

• Processing Accuracy (K): ratio of correct responses to the total attempted answers
(Equation (2)).

Vp =
N
t

(1)

K =
N − Ae

N
(2)

3.4. Data Pre-Processing

To enable categorization for the classification task, the continuous personality trait
scores (ranging from 0 to 100) were divided into low, medium, and high categories using a
data-driven binning approach. Specifically, boundaries for the three bins were determined
by first inspecting the distribution of scores for each trait independently (see Figure 6).
Thresholds were then defined at the 33% and 66% percentile scores, resulting in evenly
spaced bins each containing approximately one-third of the participants. This binning
strategy ensured a balanced classification while maximizing separation between categories
based on the empirical score distributions.

Unlike personality traits, attention-related scores were discretized into two classes of
high and low based on a similar data-driven binning approach. This binary representation
was chosen for simplicity since no precedents existed for establishing standardized category
boundaries. To determine the binning threshold, the distribution of processing speed values
and processing accuracy ratios were analyzed (see Figure 7). The histograms revealed
natural cut points that split participants into two evenly-populated groups—one with
relatively high scores and one with lower scores. For processing speed, the threshold was
identified at 170 groups/min. Values above this limit were labeled as high processing speed,
while scores below it were designated as low processing speed. Likewise, for processing
accuracy, the distribution suggested 0.975 as the cut point, with scores > 0.975 categorized
as high processing accuracy and scores < 0.975 categorized as low processing accuracy.

Figure 7. Calculation of performance metrics based on Group Burdon test scores. On the left, the
score distribution can be seen for the processing speed (group/minute), which shows how many
groups of points the participant observed during the given time. The right side of the graph shows
the processing accuracy rate, which indicates the proportion of correct selections, taking into account
both missed groups and incorrect selections.

While our initial discretization of personality traits into low, medium, and high cate-
gories was designed for the classification task, we adjusted our strategy for the correlation
analysis. Specifically, to facilitate consistent statistical testing alongside the binary attention-
related groups, we adopted an additional median split, consolidating the three personality
trait categories into two classes (low and high).
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This arbitrary split was solely employed to allow for an easier correlation analysis as
well as to enable the use of uniform statistical methods. It is important to note that the
correlation analysis is exploratory, and the presence of false positives (type I error) cannot
be completely excluded, but the details of the statistical results and the effect size give a
good indication of the results.

Finally, quality control checks revealed corrupted gaze log files for two participants.
To enable analysis accuracy and data integrity, these individuals were excluded from all
subsequent analyses.

3.5. Feature Extraction from Gaze Data

We pre-processed the raw gaze data via feature engineering. We first performed
linear interpolation on the missing gaze vectors and then proceeded to extract eye move-
ment events.

In the VR environment, we detected fixations and saccades using a modified Velocity-
Threshold Identification (I-VT) suitable for the VR setting [84]. Since there is no prior
knowledge on gaze velocity and duration thresholds for fixation and saccades detection in
the VR setups. We first experimented with threshold values used in [62] but these yielded
negative performance in the classification tasks. Therefore, we utilized I-VT in conjunction
with the Median Absolute Deviation (MAD), which is a robust estimator of dispersion that
is resilient to the influence of outliers and can automatically find a coherent separation
threshold [85]. In the 2D environment, we utilized the Robust Eye Movement Detection
for Natural Viewing (REMoDNaV) algorithm [86]. REMoDNaV is a robust eye movement
detection method that accounts for variations in the distance between participants’ eyes
and the eye tracker over time, making it suitable for scenarios with varying distances and
ensuring its robust performance. Furthermore, it performs robustly on data with temporally
varying noise levels.

During fixation, the visual gaze is sustained on a single location for a specific period.
These fixations are valuable indicators of attention and cognitive processing activity [87,88].
As part of our features, we used fixation rate, which is the number of fixations per second,
fixation duration, which is the total duration of fixations, and extracted three statistical
descriptors, namely, mean, standard deviation, and max from the duration of the fixations.

Saccades provide valuable information and have been found to have a strong correla-
tion with visual search behavior [89]. In the same manner as fixation, we used saccade rate,
saccade duration, and the corresponding statistical descriptors from the duration.

To extract gaze features from the raw logs, we used CatEyes [90] Python Toolbox,
which includes REMoDNaV and the modified I-VT. Initially, for each individual setting
in 2D (2D-10, 2D-15) and VR (OHF-10, OHF-15, THF-10, THF-15), we extracted our set of
fixation and saccades features. This resulted in a collection of 10 gaze features per setting.
Then, we concatenated the features from all settings for each environment to form the final
set of features, referred to as “2D-All” and “VR-All”.

Finally, to ensure the most effective predictive performance for both the Big Five traits
and attention-related groups, we employed a feature selection approach to retain only
the most informative gaze features. Firstly, we calculated the importance of each gaze
feature using three different metrics, namely chi-squared, mutual information, and ANOVA
F-value. Among these metrics, mutual information yielded the best results overall and was
selected as our feature selection metric.

Then, we iteratively trained our models by increasing the number of features from
k = 1 to T, where T is the total number of features for each 2D/VR setting. Specifically,
T = 10 for individual settings in 2D/VR, T = 20 for 2D-All, and T = 40 for VR-All. We
repeated this process until we obtained the best F1 average performance. This allowed us to
identify the k gaze features with the highest mutual information scores and retain only those
features in our final set of features. By doing so, we aimed to reduce the dimensionality of
the feature space and improve the performance of our predictive models.
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3.6. Machine Learning Classification Models

For the classification task, we evaluated the performance of four machine learning
models including Random Forest (RF), K-Nearest Neighbors (KNN), Support Vector Ma-
chine (SVM), and Gradient Boost (GB):

• Random Forest (RF) [91] is a machine learning algorithm that uses an ensemble
of decision trees to make predictions. This method involves constructing multiple
decision trees on subsets of the training data and aggregating the results to obtain a
final prediction. The hyper-parameters considered are the number of estimators and
the depth.

• k-Nearest Neighbour (KNN) [92] is a non-parametric method based on the principle
of finding the k-number of nearest neighbors to a given data point and making
predictions based on the majority class or average value of these neighbors. The
algorithm requires the choice of a distance metric and the selection of a value for k.
Thus, only those two hyper-parameters were considered.

• Gradient Boost (GB) [93] is one of the most powerful tools for building predictive
models for classification. It defines an ensemble prediction as a combination of weak
learner models, which are typically decision trees. GB requires the selection of a
learning rate, the number of estimators, and the maximum depth of trees, among
others. Only those hyper-parameters were considered in our study.

• Support Vector Classifier (SVC) is a linear discriminative algorithm that seeks to
find a hyperplane that separates the data into the respective classes in the case of
classification. SVM requires the choice of a kernel function and a regularization
parameter, C, that controls the trade-off between having a complex boundary and
ensuring that the boundary does not over-fit the data. We only considered those
hyper-parameters in our study.

3.7. Training Procedure

We employed a nested cross-validation strategy to train our models and fine-tune the
selected hyperparameters. This involved using a 5-fold stratified cross-validation approach.
For each iteration, the data were divided into a training set, validation set, and test set, with
20% of the participants being selected as the test set, 20% of the remaining participants
as the validation set, and the rest as the training set. The data splits were performed in a
participant-dependent manner to prevent overfitting and generalize the models to unseen
data. The cross-validation was repeated 10 times to eliminate any participant-group effects
on the model. Based on the validation results, the most optimized hyperparameters were
selected using the F1 score as the main metric. The final model training was performed
on the combined training and validation set and the performance evaluation using the
held-out test set. The average F1 score and accuracy of a model are computed based
on the results of all 50 iterations. Due to nearly balanced classes, the theoretical chance
level was approximately 33% in the case of personality estimation and 50% in the case of
attention-related group prediction.

4. Results

In this section, abbreviations will be utilized to refer to various navigation methods
and given time limit combinations. For the VR settings, we use the following: OHF-10 (one-
handed flying with a 10-min time limit), OHF-15 (one-handed flying with a 15-min time
limit), THF-10 (two-handed flying with a 10-min time limit), THF-15 (two-handed flying
with a 15-min time limit). For an extended evaluation, we also use VR-All, where all VR
settings (all types of the aforementioned navigation method and time limit combinations)
and features are concatenated. In terms of the 2D environment, the changing settings
parameter was the time limit; thus, we use 2D-10 (10-min time limit) and 2D-15 (15-min
time limit), as well as 2D-All, which is the concatenation of corresponding features of those
two settings.
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4.1. Correlation Results

Prior to the classification task, we conducted an investigation to explore the potential
correlation between the two game performance metrics: the number of misclicks and
completion time, which served as our dependent variables, and personality/attention-
related groups, which were our independent variables. The purpose of this investigation
was to determine whether there was a significant relationship between these variables and
to provide a rationale for the importance of predicting these ground truths.

To examine such correlations, we employed a series of two-sample independent t-tests.
To ensure that our t-tests were reliable, we only considered results that met the necessary
assumptions for t-tests. Specifically, we assessed the normality of both our dependent
and independent variables using the Shapiro–Wilk test and only included t-tests with
values greater than 0.05, indicating that the variables were normally distributed. The
independent t-tests revealed significant and marginally significant differences between our
pairs of variables.

4.1.1. Correlation between Game Performance and Attention-Related Groups

To compare performance between attention-related groups, we conducted t-tests
on two sets of participants: those with high processing accuracy versus those with low
processing accuracy, and those with high processing speed versus those with low processing
speed. These comparisons were based on the performance metrics described previously in
Section 3.4 and visualized in Figure 7.

The results did not reveal any significant differences in the 2D environment. Therefore,
only the results from the VR will be reported. Table 2 summarizes the results of the
relationship between attention-related groups and performance in VR tasks.

Table 2. Results for Group Burdon performance metrics and VR game performance comparison. It
outlines task settings, attention-related groups (high vs. low), and dependent variables (misclicks
and completion time). Mean values with standard deviations are provided for both high and low
categories for either processing accuracy or processing speed. Statistical testing results (t-values and
p-values) indicate the significance of differences between groups, while Cohen’s d measures the effect
size of the attention mechanism on performance. Note: Negative Cohen’s d values indicate that the
mean of the “Low” group is higher than the mean of the “High” group, reflecting the direction of the
effect size.

Task Setting Attention-
Related Group

Dependent
Variable Mean (High) ± SD Mean (Low) ± SD t-Value p-Value Effect Size

(Cohen’s d)

VR (OHF-10) Proc. Accuracy
(ratio)

Completion
time (s) 582.91 ± 56.05 458.29 ± 146.69 46.0 0.004 1.122

VR (OHF-15) Proc. Speed
(group/min)

Misclicks
(counts) 3.53 ± 3.1 1.6 ± 1.82 154.0 0.054 0.759

VR (OHF-15) Proc. Speed
(group/min)

Completion
time (s) 682.02 ± 199.44 515.29 ± 241.75 151.0 0.056 0.752

VR (THF-10) Proc. Speed
(group/min)

Misclicks
(counts) 3.47 ± 2.75 1.4 ± 1.14 171.5 0.015 0.983

VR (THF-10) Proc. Speed
(group/min)

Completion
time (s) 695.13 ± 238.42 508.34 ± 234.49 161.0 0.04 0.79

VR (THF-15) Proc. Speed
(group/min)

Completion
time (s) 563.7 ± 118.39 439.22 ± 216.24 144.5 0.069 0.714

In the processing accuracy groups, for the OHF-10 setting, participants with lower
processing accuracy levels completed the task significantly faster compared to those with
higher processing accuracy levels.

For the processing speed groups, for the THF-10 setting, participants with higher
processing speed levels demonstrated significantly more misclicks and longer completion
times compared to the participants with lower processing speed levels. The OHF-15 and
THF-15 settings also show marginally significant associations, with participants with higher
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processing speed levels exhibiting more misclicks and longer completion times compared
to participants with lower processing speed levels.

4.1.2. Correlation between Game Performance and Personality Traits

To examine performance differences among personality groups, we conducted t-tests
for each of the Big Five traits. Particularly, we compared participants with high levels of a
trait against those with low levels of the same trait. The basis for these comparisons was
the performance metrics outlined earlier in Section 3.4.

Table 3 summarizes the results exploring the relationship between personality traits
and performance within 2D and VR environments. It outlines specific task settings, the
personality traits investigated (of which yielded positive results—extraversion, consci-
entiousness, open-mindedness), and dependent variables of interest (misclicks and com-
pletion time). Mean values (with standard deviations) are provided for high and low
groups within each trait. Statistical results (t-values and p-values) reveal the significance of
these correlations, while Cohen’s d demonstrates the effect size of each personality trait on
task performance.

Table 3. Correlation results for personality traits and dependent variables in both 2D and 3D game
settings. Statistical testing results (t-values and p-values) indicate the significance of differences
between groups, while Cohen’s d measures the effect size of the personality trait on performance.
Note: negative Cohen’s d values indicate that the mean of the “Low” group is higher than the mean
of the “High” group, reflecting the direction of the effect size.

Task Setting Personality Trait Dependent
Variable Mean (High) ± SD Mean (Low) ± SD t-Value p-Value Effect Size

(Cohen’s d)

2D (10 min) Extraversion Misclicks
(counts) 2.07 ± 1.84 0.73 ± 0.85 165.5 0.02 0.935

2D (10 min) Extraversion Completion
time (s) 505.27 ± 105.07 375.13 ± 164.85 164.0 0.019 0.941

2D (15 min) Conscientiousness Completion
time (s) 417.27 ± 226.79 603.74 ± 228.32 −52.0 0.046 −0.819

2D (15 min) Conscientiousness Misclicks
(counts) 1.18 ± 2.25 3.63 ± 3.73 −41.0 0.066 −0.795

2D (10 min) Open-mindedness Completion
time (s) 495.15 ± 124.25 398.18 ± 159.09 148.0 0.09 0.679

2D (10 min) Open-mindedness Misclicks
(counts) 1.08 ± 1.14 4.0 ± 4.07 57.0 0.02 0.977

VR (OHF-15) Conscientiousness Completion
time (s) 453.39 ± 186.55 682.76 ± 221.54 −46.0 0.009 −1.120

VR (OHF-10) Extraversion Misclicks
(counts) 2.87 ± 2.36 1.07 ± 1.53 178.0 0.024 0.905

VR (OHF-15) Agreeableness Completion
time (s) 675.55 ± 220.88 483.31 ± 211.65 −152.0 0.029 −0.889

VR (OHF-10) Agreeableness Misclicks
(counts) 2.61 ± 2.41 1.0 ± 1.29 159.0 0.049 0.833

VR (THF-15) Extraversion Misclicks
(counts) 3.2 ± 3.06 1.53 ± 1.96 154.5 0.09 0.650

In the 2D environment, regarding extraversion, participants in the high extraversion
group demonstrated significantly more misclicks and longer completion times within
the 2D-10 setting. Interestingly, the 2D-15 setting revealed that participants in the high
Conscientiousness group showed significantly shorter completion times and marginally
fewer misclicks. Finally, higher levels of open-mindedness in the 2D-10 setting were
marginally associated with longer completion times, but interestingly, were also linked to
significantly fewer misclicks.

Within the VR environment, participants in the high conscientiousness group (OHF-15
setting) exhibited significantly shorter completion times. Those in the high agreeableness
group showed significantly longer completion times (OHF-15 setting) and significantly
more misclicks (OHF-10 setting). Conversely, participants in the high extraversion group
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demonstrated significantly more misclicks in the OHF-10 setting and marginally more
misclicks within the THF-15 setting.

4.2. Classification Results

Tables 4 and 5 show a performance comparison of our four models (RF, KNN, GB, and
SVC) for the prediction of the Big Five traits (refer to Table 4) and attention-related groups
(refer to Table 5) in both VR and 2D environments. In the VR environment, the evaluation
was performed using four individual settings (OHF-10, OHF-15, THF-10, THF-15) and
the corresponding feature concatenation (VR-All). The evaluation in the 2D setting was
performed using two individual settings (2D-10, 2D-15) and the corresponding feature
concatenation (2D-All). We report the average F1 score and performance accuracy for each
model across every setting and ground truth.

Firstly, in terms of personality prediction (see Table 4), we evaluated the concatena-
tion of features (VR-All) in both settings. In the VR environment, KNN demonstrated
the strongest performance for agreeableness (F1 = 43.32, acc = 44.73), conscientiousness
(F1 = 52.21, acc = 52.02), and neuroticism (F1 = 46.07, acc = 47.35), while GB exhibited
higher performance for extraversion (F1 = 54.77, acc = 53.33). For open-mindedness, SVC
performed well (F1 = 41.62, acc = 40.05), and RF performed above the theoretical chance
level but did not surpass the performance of any other models.

In the 2D environment, RF exhibited the strongest performance for agreeableness
(F1 = 39.15, acc = 38.45). KNN achieved the best performance for neuroticism (F1 = 49.77,
acc = 50.01), extraversion (F1 = 48.94, acc = 46.01), and open-mindedness (F1 = 39.01,
acc = 42.64). Conversely, no model outperformed theoretical chance levels for conscientiousness.

In both the VR and 2D settings, the highest-performing model in terms of F1 score
generally also demonstrated the highest accuracy, which may be attributed to the balanced
ground truth. However, we observed exceptions, including open-mindedness in 2D, as
well as conscientiousness and extraversion in VR settings.

Next, we analyzed the performance of individual settings. We found that for each
combination of trait and setting, at least one of the models used in this study performed
above theoretical chance levels in predicting personality traits. Notable exceptions were
conscientiousness in 2D-10 and open-mindedness in 2D-15, where no model achieved
above-chance performance. This indicates that personality trait prediction is generally
a viable task, regardless of the specific setting. Additionally, the optimal model varied
across traits and settings. However, KNN consistently outperformed other models for
conscientiousness in VR and neuroticism in 2D.

Moreover, our investigation of attention-related groups in Table 5 revealed a distinct
performance within VR-All and 2D-All settings. Regarding processing speed, the SVC
model achieved the highest performance in the VR-All setting (F1 = 76.81, acc = 76.00). In
2D-All, GB and KNN exhibited comparable superiority (KNN: F1 = 61.51, acc = 61.50; GB:
F1 = 61.02, acc = 62.40). For processing accuracy across both 2D-All and VR-All settings, RF
consistently outperformed other models (VR-All: F1 = 79.02, acc = 79.00; 2D-All: F1 = 72.03,
acc = 73.89).
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Table 4. Comparative performance for personality traits across 2D and VR settings. The models’ F1 score and accuracy are displayed. The highest score is indicated
by the values in bold.

Trait Model
VR Setting 2D Setting

OHF-10 THF-10 OHF-15 THF-15 VR-All 2D-10 2D-15 2D-All
F1 acc. F1 acc. F1 acc. F1 acc. F1 acc. F1 acc. F1 acc. F1 acc.

Agreeableness GB 31.28 29.35 34.41 32.05 39.59 37.34 38.57 38.79 35.74 37.34 34.02 32.24 39.63 40.22 33.19 35.25
KNN 35.25 34.05 37.02 37.35 37.77 36.72 49.31 50.03 43.32 44.73 40.32 39.01 36.42 39.82 33.42 34.62

RF 38.45 37.36 30.12 28.01 37.45 35.33 36.15 36.73 34.72 34.73 30.74 33.03 36.56 37.87 39.15 38.45
SVC 33.01 32.03 33.23 32.72 30.65 30.01 39.79 40.75 35.19 35.31 33.55 32.21 32.75 33.24 35.05 36.65

Conscientiousness GB 35.73 38.01 46.72 48.03 46.15 48.05 39.84 41.37 49.38 50.07 33.38 34.04 30.41 29.88 28.84 29.23
KNN 47.41 49.36 49.27 50.72 49.76 52.01 42.15 42.72 52.21 52.02 32.02 32.24 37.18 38.01 33.47 33.06

RF 37.79 41.34 49.23 50.71 45.42 48.07 28.94 31.36 50.27 52.77 29.39 32.22 30.22 31.45 28.87 29.45
SVC 39.59 48.01 41.33 47.33 38.42 40.71 41.17 44.06 42.15 41.36 31.63 31.04 28.47 28.62 31.74 32.44

Extraversion GB 37.68 37.34 51.64 50.75 42.86 42.72 57.79 57.32 54.77 53.33 27.09 27.89 33.86 36.26 31.15 32.22
KNN 35.71 36.73 43.52 44.74 39.13 36.76 46.69 47.37 48.17 45.39 35.17 37.27 45.32 44.44 48.94 46.01

RF 31.75 34.00 54.12 54.75 34.57 36.79 42.96 45.35 53.36 54.76 28.45 28.88 40.76 40.85 30.23 29.25
SVC 30.77 29.35 51.33 51.39 38.35 40.76 45.54 46.73 49.51 49.35 42.86 44.00 22.56 25.41 35.28 35.46

Neuroticism GB 31.67 32.76 44.17 45.39 29.76 29.35 36.85 38.04 44.11 45.35 34.85 35.25 41.42 43.88 38.32 49.41
KNN 37.14 40.02 48.48 50.01 34.70 35.36 38.79 43.32 46.07 47.35 51.74 51.84 51.14 57.26 49.77 50.01

RF 36.15 41.34 43.43 44.04 34.55 39.34 32.04 34.03 43.94 44.77 37.02 46.22 44.11 45.47 40.43 41.24
SVC 40.93 46.01 32.64 44.74 34.24 45.35 31.84 46.07 32.45 44.02 41.17 52.65 41.47 40.25 41.51 52.64

Open-mindedness GB 50.04 50.06 30.83 32.07 38.89 37.32 27.26 26.07 38.19 38.07 45.67 45.81 28.92 31.24 38.85 39.64
KNN 45.56 46.05 41.42 40.78 49.47 47.35 40.25 40.05 38.89 38.01 49.16 49.47 33.91 36.88 39.01 42.64

RF 40.39 40.01 26.16 28.02 39.16 38.73 24.62 24.04 35.72 34.72 39.23 41.67 28.22 31.82 37.25 39.68
SVC 31.59 34.03 39.45 38.70 35.12 36.05 35.08 36.00 41.62 40.05 40.26 43.42 29.93 37.03 37.88 41.66

Table 5. Group Burdon prediction performance (attention-related categories) for 2D and VR settings. The models’ F1 score and accuracy are displayed. The highest
score is indicated by the values in bold.

Attention-Related Group Model
VR Setting 2D Setting

OHF-10 THF-10 OHF-15 THF-15 VR-All 2D-10 2D-15 2D-All
F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc.

Processing Speed GB 69.23 69.00 74.89 74.67 53.70 54.00 64.53 64.33 68.75 69.00 68.91 69.80 44.93 47.10 61.02 62.40
KNN 68.65 68.33 78.00 78.00 57.66 58.33 68.05 68.33 68.87 68.61 64.96 64.20 55.73 59.90 61.51 61.50

RF 69.87 69.67 73.58 73.33 58.15 58.33 63.44 63.33 72.00 71.33 72.52 73.40 55.88 59.10 59.86 61.20
SVC 51.01 51.33 67.66 67.33 56.77 57.33 60.40 60.67 76.81 76.00 53.72 60.90 48.30 60.90 47.65 56.60

Processing Accuracy GB 73.44 73.00 64.84 66.00 51.74 52.70 45.31 46.38 71.24 71.36 70.50 71.00 59.94 61.68 67.52 68.90
KNN 78.06 78.30 67.34 69.70 52.01 56.00 57.15 60.75 75.95 76.79 73.83 74.70 62.00 63.36 66.24 67.91

RF 78.81 79.00 56.77 59.77 50.62 53.00 50.76 53.39 79.02 79.00 71.92 73.00 62.25 64.00 72.03 73.89
SVC 69.34 69.72 57.37 61.00 45.00 58.00 48.73 52.74 67.02 68.00 61.88 66.77 63.81 69.69 63.89 65.23
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To delve deeper into individual settings, as previously noted in personality prediction,
the highest-performing model is dependent on the ground truth predicted and the specific
setting used. Within the VR environment, a clear divide emerges for processing speed:
RF dominates in OHF-10 (F1 = 69.87, acc = 69.67) and OHF-15 (F1 = 58.15, acc = 58.33),
while KNN excels in THF-10 (F1 = 78.00, acc = 78.00 ) and THF-15 (F1 = 68.05, acc = 68.33).
For processing accuracy, KNN consistently leads in THF-10 (F1 = 67.34, acc = 69.70), OHF-
15 (F1 = 52.01, acc = 56.00), and THF-15 (F1 = 57.15, acc = 60.75). Interestingly, OHF-10
sees comparable performance between KNN (F1 = 78.06, acc = 78.30) and RF (F1 = 78.81,
acc = 79.00). The 2D environment presents different results: RF demonstrates superiority in
processing speed across 2D-10 (F1 = 72.52, acc = 73.40) and 2D-15 (F1 = 55.88, acc = 59.10).
RF also maintains the highest performance in processing accuracy for 2D-10 (F1 = 71.92,
acc = 73.00), but SVC performs best in 2D-15 (F1 = 63.81, acc = 69.69). GB did not surpass
the performance of any other model.

Tables 6 and 7 represent the average F1 score trait-wise and setting-wise, with only
the best-performing models taken into account. We adopted two averaging approaches:
trait-wise and setting-wise. For the former, we calculated the F1 score by averaging
across all settings for each Big Five trait or attention-related group (processing speed and
processing accuracy). For the latter, we averaged the F1 score across all Big Five traits or
attention-related groups (processing speed and processing accuracy) for each setting. We
conducted this analysis for both the 2D and VR environments, with Table 6 representing F1
averages setting-wise for personality prediction and attention-related groups and Table 7
representing F1 averages trait-wise.

Table 6. Setting-wise presentation of F1 scores averaged over personality traits and attention-
related groups.

Category
VR Setting 2D Setting

VR-All THF-10 THF-15 OHF-10 OHF-15 2D-10 2D-All 2D-15

Personality 47.55 46.04 45.59 43.22 42.84 43.45 43.45 41.39

Attention 77.93 72.66 72.59 64.34 55.08 66.77 73.15 61.31

Table 7. A comprehensive look at F1 score averages over settings, presented trait-wise for personality
traits and group-wise for attention-related groups.

Category Traits VR 2D

Personality

Agreeableness 41.48 39.65
Conscientiousness 48.12 41.67

Extraversion 49.39 41.61
Neuroticism 44.51 50.82

Open-mindedness 41.74 45.66

Attention-related Proc. Accuracy 66.86 70.85
Proc. Speed 70.18 63.30

Regarding personality prediction for trait-wise average performance (Table 7), we
observed a clear distinction in the most accurately classified traits between VR and 2D
environments. Neuroticism exhibited the highest classification performance in 2D, while
extraversion led in VR. Conversely, agreeableness consistently demonstrated the lowest
classification performance across both environments. Additionally, in VR, agreeableness
and open-mindedness displayed similar performance levels. Moreover, our analysis high-
lights significant disparities in classification performance between the two environments.
Specifically, conscientiousness and extraversion yielded higher prediction performance
in VR compared to 2D. In contrast, neuroticism and open-mindedness exhibited superior
performance in the 2D setting compared to VR.
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Regarding setting-wise comparisons (Table 6), our analysis revealed notable findings.
In VR, feature fusion within VR-All outperformed individual VR settings, demonstrating
the benefits of data aggregation. Interestingly, 2D-All performance was comparable to
that of 2D-10. Additionally, task duration significantly impacted personality prediction
performance. Settings with a 10-min duration yielded superior results across both VR
and 2D environments compared to those with a 15-min duration. Furthermore, two-
handed VR settings proved highly effective for personality estimation compared to the
one-handed setting.

Regarding attention group prediction, Table 7 reveals a distinct performance contrast
between VR and 2D. While 2D environments excelled in predicting overall processing
accuracy, VR settings demonstrated superior performance for predicting processing speed.
When considering setting-wise comparisons (Table 6), a notable pattern emerges: feature
fusion across all settings (2D-All, VR-All) consistently outperformed in both environments.
Additionally, within VR, the 10-min task setting consistently yielded the highest performance.

Interestingly, mirroring our findings in personality trait prediction, the type of hand
control significantly impacted performance in attention-related prediction with two-hand
VR settings being the most effective and the 10-min setting being optimal for both VR and
2D environments.

5. Discussion

In this section, we first examine the key correlations found between game performance
metrics (completion time, number of misclicks) and the measured human factors like
attention-related and personality traits. We then overview the classification results for
predicting processing speed, processing accuracy and personality from gaze, including
model comparisons and performance differences across traits and settings. Finally, we
analyze the overall classification results through average performance measures.

5.1. Correlation Findings for the Attention-Related Groups

We compared participants’ game performance across 2D and VR environments, fo-
cusing on their attention-related group (high proc. accuracy vs. low proc. accuracy and
high proc. speed vs. low proc. speed). Interestingly, significant differences were observed
only in the VR environment, with no noteworthy findings in the 2D environment. This
may result from the immersive nature of VR, known to elicit more engaging and realistic
responses from participants [94].

The findings indicate that differences between high and low processing accuracy
groups become more evident in the one-handed flying setting with a 10-min time limit.
This suggests that the performance gaps between processing accuracy groups become
more pronounced when participants are constrained to using one hand and have a shorter
time frame to complete the task. In other task settings, including two-handed flying and
extended time limits, these distinctions are less apparent.

When comparing the 10-min task settings (OHF-10 and THF-10) to the 15-min task set-
tings (OHF-15 and THF-15), we found that a shorter time limit resulted in more pronounced
differences between processing speed groups. In the 10-min settings, participants in the
higher processing speed groups exhibited an increased number of misclicks and longer
completion times. On the other hand, the 15-min settings revealed less distinct differences
between the processing speed groups, with only marginal variations observed in comple-
tion times and misclicks. This suggests that time constraints may affect the prominence of
differences between processing speed groups, with tighter time limits potentially emphasiz-
ing the disparities between high and low processing speed participants. In accordance with
the findings in [95], under time pressure, attention narrows, leading to decreased efficiency
in perceptual processing and ultimately resulting in reduced performance.

The trade-off between processing accuracy and processing speed is a well-established
phenomenon in cognitive psychology, often referred to as the speed-accuracy trade-off [79].
By utilizing the Group Burdon test as a dependable metric to measure processing speed and
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accuracy, our findings suggest that categorizing individuals according to their attention
test outcomes allows us to effectively discern their performance in the outlier search game
within the VR setting.

5.2. Correlation Findings for Personality Traits

For a more comprehensive interpretation, the evaluation was also applied to compare
groups of game performance metrics and personality traits in both game environments.

In the 2D environment, participants with high extraversion scores displayed a higher
number of misclicks across both VR and 2D environments. Longer game completion
times were observed as well; however, this finding was limited to the 2D environment.
In alignment with [58], no significant difference was found concerning task completion
time in the VR environment. These observations align with existing literature, suggesting
that individuals with high levels of extraversion are more likely to engage in risk-taking
behavior and demonstrate a greater risk propensity [96–98]. Extraverted individuals might
perform poorly under monotonous conditions or in vigilance tasks, as they may not be as
involved in the task as introverts and are more likely to commit fatigue-related errors [99].

We observed notable performance differences related to conscientiousness levels in
both 2D and VR environments. Participants with low conscientiousness demonstrated
significantly longer completion times in the 15-min settings, while a slightly higher number
of misclicks were observed solely in the 2D environment. The relationship between con-
scientiousness and task-solving performance in our study is supported by [100,101], who
emphasized the tendency of conscientious individuals to be more organized, disciplined,
and achievement-oriented. Although our findings regarding the number of misclicks are
marginal, they align with studies on conscientiousness and accident involvement [102–104],
indicating that conscientious individuals generally make fewer errors across various settings.

In the 2D environment, a slight association was observed between high open-minded-
ness and longer completion times in the 10-min setting. Participants with high open-
mindedness also demonstrated a significantly lower number of misclicks in the same setting.
Our results imply that open-mindedness might have a subtle impact on performance in 2D
tasks, while no significant differences were observed in the VR environment.

The findings suggest that individuals who score high on open-mindedness may be
more attentive and cautious, which could lead to fewer errors. However, their exploratory
nature might lead to longer completion times, as they engage more thoroughly with the task
at hand. As reported in [105] open-mindedness is positively related to cognitive ability and
intellectual engagement. The relationship between open-mindedness and performance in
our study can be attributed to the cognitive and behavioral tendencies associated with this
trait. Consequently, this relationship led to more careful decision-making and a reduced
error rate, albeit with slightly longer completion times.

Regarding agreeableness, our study did not yield any significant results in the 2D envi-
ronment. However, in the VR environment, participants with lower levels of agreeableness
completed the task in a significantly shorter time, while those with higher levels of agree-
ableness demonstrated a greater number of misclicks. The literature on the relationship
between agreeableness and individual task performance presents varied and inconclusive
results. Consistent with our findings, individuals with higher levels of agreeableness tend
to make more errors in assigned tasks. Empirical research supports this, showing that
individuals with higher conscientiousness outperform their more agreeable counterparts
in self-regulation tasks [106]. Regarding the number of misclicks in our study, our results
align with [107], which found that individuals with higher agreeableness may display an
optimistic tendency, leading to faster decision-making when clicking on objects, even if
those objects are incorrect.

5.3. Classification Results

Our personality classification results (see Table 4) highlight the potential of gaze
features in predicting personality traits in both 2D and VR environments. Our results
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demonstrate above-chance-level (33%) predictions in most settings, regardless of the task
settings we controlled for, such as time limits in 2D and both time limits and hand control
in VR, with performance not exceeding chance levels for conscientiousness (2D-10 and
2D-All) and open-mindedness (2D-15). To the best of our knowledge, our study is the
first to explore personality trait predictions from gaze in a VR environment, building on
previous laboratory-based studies that established a link between personality traits and eye
movement characteristics [13,20,108,109]. The results show that optimal models vary across
traits and settings, suggesting that a one-size-fits-all approach may not be suitable for all
scenarios. It is important to note that the 3D stimulus in our 2D and VR environments
is challenging, requiring different cognitive factors we did not account for in this study,
such as cognitive load and memory capacity. Future research could investigate these
cognitive factors.

Regarding attention-related group prediction, our findings show that RF was the top-
performing model in both 2D-All and VR-All for predicting processing accuracy only, in
contrast to personality results where no single model outperformed the rest across both 2D-
All and VR-All. KNN ranked second in certain individual settings, likely due to its strength
in handling a smaller number of features. The classification results for attention-related
groups suggest gaze features may have the potential for predicting processing accuracy
and processing speed levels as categorized by the Group Bourdon test, with performance
surpassing chance levels. Considering the associations found in our correlation results
between game performance and attention-related groups, we suggest that predicting
attention-related groups holds significant potential for enhancing smart interface design.
For instance, as suggested by previous studies on user-adaptive systems [110,111], adaptive
interfaces can be developed by considering an individual’s attention-related attributes such
as processing speed and processing accuracy levels.

For individuals with low processing accuracy, the interface could be more explicit,
asking users to confirm their decisions, while for higher processing speed individuals, the
pace of the interface could be slowed down to ensure fewer mistakes are made. It should
also be noted that a person’s cognitive abilities may vary significantly depending on other
environmental factors such as fatigue, motivation, cognitive load, tolerance of monotony,
etc. Incorporating assistive tools that interact with users based on their attention-related
levels could further enhance their experience and performance [112]. These insights may
prove valuable in practical applications, such as making hiring decisions or customizing
interfaces, where assessing individuals based on specific traits is crucial.

5.4. Performance Average

In Tables 6 and 7, we examined the effects of time constraints and hand control types
on the classification performance of personality traits and attention-related groups in both
2D and VR environments. We found that the predictability of personality traits varied
between the two environments.

In 2D, neuroticism was the most accurately predicted trait, with performance surpass-
ing 50%, while the remaining traits had performance within the 39–45% range. On the
other hand, consciousness and extraversion showed higher predictability in VR than in 2D.
This variation can be attributed to factors such as immersion, user interaction, and sensory
feedback, which influence the expression of personality in VR environments. Studies have
shown that the increased sense of presence in VR enables users to express their personality
traits more naturally, as they engage in highly immersive experiences [94,113]. This is in
contrast to the limited keyboard and mouse inputs available in 2D environments. Moreover,
multi-sensory feedback in VR [114] fosters realistic and emotionally engaging experiences,
potentially eliciting more pronounced behaviors linked to specific personality traits.

The reasons for neuroticism’s higher predictability in 2D remain unclear. One possible
explanation is the game-induced frustration levels experienced by participants, which may
be captured and measured through the neuroticism trait. In 2D settings, repetitive and less
varied interactions may inadvertently reveal patterns associated with neuroticism, such as
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higher levels of anxiety, stress, or frustration. Furthermore, performance on tasks in 2D
environments may be influenced by emotional states closely related to neuroticism, such as
difficulty concentrating [115].

In the case of attention-related group prediction, when comparing 2D and VR envi-
ronments, we observed that 2D interfaces are more favorable for processing accuracy in
attention-related tasks, which could be explained by their simpler, more familiar layout
that reduces cognitive load, allowing for a more focused and precise attentional behavior.
On the other hand, VR environments excel in boosting attention’s processing speed, and a
possible explanation could be attributed once again to the immersive and engaging nature
of VR that stimulates quicker, more reflexive responses as well as more real-life engagement.
This immersive aspect, by creating a sense of presence and urgency, may activate faster
cognitive processing as users navigate through the more complex and dynamic VR space.

When analyzing the effects of time constraints and hand control types, we observed
that two-handed controls in VR setups were, on average, the most effective for personality
prediction. Additionally, a 10-min task duration yielded superior results. We believe that
two-handed controls provide a more natural and intuitive interaction within the virtual
environment, enabling users to perform a wider range of actions and gestures [116]. This
increased level of interaction can result in a more immersive experience, thereby enhancing
the expression of users’ personalities. The performance discrepancy in personality pre-
diction between the 10-min and 15-min VR settings could stem from factors such as task
engagement, fatigue, and learning effects [117,118]. Participants in a 10-min setting may
remain more engaged and focused during the shorter task duration, leading to clearer and
more consistent behavioral patterns that facilitate personality prediction [119].

Regarding attention-related groups, time constraints, and hand control types, we
found that tasks lasting 10 min and using one-handed control demonstrated superior
performance, aligning with the observation that shorter durations often lead to better
prediction in personality predictions. Interestingly, the performance difference between
10- and 15-min tasks was less pronounced when employing two-handed controls. In com-
paring one-handed versus two-handed controls, regardless of task duration, a significant
performance advantage was noted for the two-handed control options.

Our analysis did not show any advantages of fusing gaze features in 2D personality
prediction, as better results were obtained in the 10-min settings compared to 2D-All.
The fusion of features from our 2D sessions might have introduced noise or redundancy,
negatively affecting model performance. In contrast, merging features from VR sessions
resulted in a modest yet significant improvement in performance. For attention-related
groups (processing accuracy and processing speed), our results show that combining
different features from individual settings works well in both 2D and VR environments,
leading to better attention-related group prediction performance, unlike in personality trait
prediction. Our findings also suggest that feature concatenation across various settings
can enhance performance, particularly in VR, encouraging future research to explore more
sophisticated feature fusion methods.

6. Limitations and Future Work

The results and conclusions of our study are primarily limited to the specific context
of gaze behavior in relation to personality traits and attention-related groups during our
VR/2D task. The impact of these factors on various types of tasks involving different
navigation and locomotion techniques or more complex tasks remains uncertain. Moreover,
our findings may not necessarily generalize to different settings or populations. Therefore,
we perceive this work as a starting point for further exploration of the relationship between
personality traits, attention-related groups, and gaze behavior within various interaction
techniques and types of tasks, both within and beyond the VR/2D environments.

The relatively small sample size of 28 participants could impact our results, potentially
leading to a higher variance in our models’ performance and limiting the generalizability of
our findings. Despite this limitation, we managed to achieve above-baseline performance.
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Furthermore, our study focused primarily on the predictability of personality traits and
attention-related groups, without investigating the individual contributions of saccade and
fixation features. Moreover, our study utilized a minimal subset of gaze features, excluding
velocity-based features and smooth pursuit. Incorporating a more comprehensive set of
gaze features in future work could provide deeper insights into the relationship between
gaze behavior and the psychological aspects they represent.

Another set of limitations in our study relates to potential confounding factors that
may influence our statistical results. For instance, we did not account for the possibility
of a learning effect, whereby participants may improve their performance over time due
to repeated exposure to the VR/2D tasks. Additionally, the possible impact of fatigue on
participants’ performance may not have been adequately addressed in the study design.
Prolonged periods of task engagement can lead to mental and physical fatigue, which
can harm gaze behavior and other cognitive processes. Lastly, one potential confounding
variable in our statistical study is the order in which participants completed the experiments
(2D and VR). Because we did not counterbalance the order of the experiments, some
participants may have completed the VR experiment first, while others completed the 2D
experiment first. This order effect could introduce systematic biases in our correlation results.

Finally, since the statistical analysis is exploratory and aims to provide a rationale for
the classification task, we did not apply strict corrections for multiple comparisons, which
may lead to an increased chance of false positive findings (Type I errors).

7. Conclusions

Our results represent a novel approach to exploring the relationship between gaze
behavior, personality traits and attentional features in both 2D and VR environments using
machine learning techniques.

In our experiments, we have taken advantage of the immersive virtual environment
and latent eye tracking beyond the traditional gaming environment to obtain data on
personality traits during more natural behaviors, which is a more convenient method and a
better experience than personality tests. Additionally, our study stands out for introducing
the concept of attention-related characteristics (processing accuracy and processing speed)
as ground truth and their relationship with participants’ game performance.

We developed multiple classification models based on the extracted gaze features. Sev-
eral models exhibited superior performance, achieving above-chance performance levels in
all settings. We found detectable correlations between performance in the outlier search
game and participants’ attention-related groups and certain personality traits. The immer-
sive nature of VR and its increased sense of presence appear to influence the expression of
specific traits, such as extraversion and conscientiousness, leading to more pronounced
gaze behavior patterns that facilitate prediction.

Based on the obtained results, we believe that time constraints and types of manual
control may affect the classification performance of personality traits and attention-related
groups. Furthermore, we observed differences in classification performance between
VR and 2D environments, highlighting the potential impact of the environment on gaze
behavior and prediction accuracy.

Ultimately, our findings have practical implications for the development of adaptive
interfaces and assistive tools that cater to individual users’ attention levels and personality
traits. By leveraging gaze behavior to predict psychological aspects, we can design more
personalized and effective user experiences in various domains, ranging from education
to entertainment.
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