Assessing the Impact of Reference Evapotranspiration Models on Decision Support Systems for Irrigation
<p>Simple linear regression model (blue line) for P2-<math display="inline"><semantics> <mrow> <mi>E</mi> <msub> <mi>T</mi> <mn>0</mn> </msub> </mrow> </semantics></math>∼ FAO56-<math display="inline"><semantics> <mrow> <mi>E</mi> <msub> <mi>T</mi> <mn>0</mn> </msub> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">m</mi> <mo>·</mo> <msup> <mi mathvariant="normal">d</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>). Data for the year 2009, Geisenheim, Germany.</p> "> Figure 2
<p>Residuals (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">m</mi> <mo>·</mo> <msup> <mi mathvariant="normal">d</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>) versus predicted (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">m</mi> <mo>·</mo> <msup> <mi mathvariant="normal">d</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>) plot of the regression model P2-<math display="inline"><semantics> <mrow> <mi>E</mi> <msub> <mi>T</mi> <mn>0</mn> </msub> </mrow> </semantics></math>∼<math display="inline"><semantics> <mrow> <mi>E</mi> <msub> <mi>T</mi> <mn>0</mn> </msub> </mrow> </semantics></math>: P2-<math display="inline"><semantics> <mrow> <mi>E</mi> <msub> <mi>T</mi> <mn>0</mn> </msub> <mo>−</mo> <mover accent="true"> <mrow> <mi>P</mi> <mn>2</mn> </mrow> <mo stretchy="false">^</mo> </mover> </mrow> </semantics></math>-<math display="inline"><semantics> <mrow> <mi>E</mi> <msub> <mi>T</mi> <mn>0</mn> </msub> </mrow> </semantics></math> versus <math display="inline"><semantics> <mover accent="true"> <mrow> <mi>P</mi> <mn>2</mn> </mrow> <mo stretchy="false">^</mo> </mover> </semantics></math>-<math display="inline"><semantics> <mrow> <mi>E</mi> <msub> <mi>T</mi> <mn>0</mn> </msub> </mrow> </semantics></math>. With the null line (black), residual mean (red line), and polynomial trend line of residuals (blue line, <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mn>1.07</mn> <mspace width="0.166667em"/> <mi>·</mi> <mspace width="0.166667em"/> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>−</mo> <mn>0.82</mn> <mspace width="0.166667em"/> <mi>·</mi> <mspace width="0.166667em"/> <mi>x</mi> <mo>−</mo> <mn>0.04</mn> <mo>,</mo> <mi>α</mi> <mo>=</mo> <mn>0.01</mn> <mo>,</mo> <mi>a</mi> <mi>d</mi> <mi>j</mi> <mo>.</mo> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.03</mn> </mrow> </semantics></math>).</p> "> Figure 3
<p>Ranks of variable importance (%IncMSE), for the Random Forest Models P2-<math display="inline"><semantics> <mrow> <mi>E</mi> <msub> <mi>T</mi> <mn>0</mn> </msub> </mrow> </semantics></math> and FAO56-<math display="inline"><semantics> <mrow> <mi>E</mi> <msub> <mi>T</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, using weather data of the years 2000–2009 (Explanation of parameters in <a href="#horticulturae-04-00049-t001" class="html-table">Table 1</a>).</p> "> Figure 4
<p><math display="inline"><semantics> <mrow> <mi>E</mi> <msub> <mi>T</mi> <mn>0</mn> </msub> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">m</mi> <mo>·</mo> <msup> <mi mathvariant="normal">d</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>) predicted by global radiation (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">J</mi> <mo>·</mo> <msup> <mi mathvariant="normal">m</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <mo>·</mo> <msup> <mi mathvariant="normal">d</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>), based on functions of random forest models for P2-<math display="inline"><semantics> <mrow> <mi>E</mi> <msub> <mi>T</mi> <mn>0</mn> </msub> </mrow> </semantics></math> and FAO56-<math display="inline"><semantics> <mrow> <mi>E</mi> <msub> <mi>T</mi> <mn>0</mn> </msub> </mrow> </semantics></math>. The shaded box marks a similar the sudden rise of both <math display="inline"><semantics> <mrow> <mi>E</mi> <msub> <mi>T</mi> <mn>0</mn> </msub> </mrow> </semantics></math>s in response to the global radiation.</p> "> Figure 5
<p>Boxplot of relative irrigation water differences (IWD %), <math display="inline"><semantics> <mrow> <mi>G</mi> <msub> <mi>S</mi> <mrow> <mi>P</mi> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> − <math display="inline"><semantics> <mrow> <mi>G</mi> <msub> <mi>S</mi> <mrow> <mi>F</mi> <mi>A</mi> <mi>O</mi> <mn>56</mn> </mrow> </msub> </mrow> </semantics></math>, by GS simulations for the six vegetable crops. Black line = median, Boxes = second and third quantile, points = outliers.</p> "> Figure 6
<p>Occurrence (%) of irrigation count differences, ICD, of <math display="inline"><semantics> <mrow> <mi>G</mi> <msub> <mi>S</mi> <mrow> <mi>P</mi> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> relative to <math display="inline"><semantics> <mrow> <mi>G</mi> <msub> <mi>S</mi> <mrow> <mi>F</mi> <mi>A</mi> <mi>O</mi> <mn>56</mn> </mrow> </msub> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>G</mi> <msub> <mi>S</mi> <mrow> <mi>P</mi> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> − <math display="inline"><semantics> <mrow> <mi>G</mi> <msub> <mi>S</mi> <mrow> <mi>F</mi> <mi>A</mi> <mi>O</mi> <mn>56</mn> </mrow> </msub> </mrow> </semantics></math>) as simulated using the six vegetable crops.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geisenheim Irrigation Scheduling
2.2. Data
- is reference evapotranspiration (),
- net radiation at the crop surface (),
- G soil heat flux density (),
- T mean daily air temperature at 2 height (),
- wind speed at 2 height (),
- mean saturation vapor pressure (),
- actual vapor pressure (),
- saturation vapor pressure deficit (),
- slope vapor pressure curve (), and
- psychrometric constant (), and:
- is actual vapor pressure (),
- mean saturation vapor pressure (), and
- mean relative air humidity (%).
2.3. Sensitivity Analysis with Random Forest
2.4. Regression Model
2.5. Simulations
2.6. Computer Software
3. Results and Discussion
3.1. Regression
3.2. Sensitivity of Random Forest
3.3. Simulations of GS
3.3.1. The Precision of the CWB and Model
3.3.2. Numerical and Statistical Issues
3.3.3. Practical Considerations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AFC | Available field capacity of the soil |
BBCH | Crop phenology index |
CWB | Crop water balance |
GS | Geisenheim Irrigation Scheduling |
Reference evapotranspiration | |
Actual crop evapotranspiration | |
FAO56 | Reference evapotranspiration based on the FAO56 paper |
GS simulation model with FAO56 | |
GS simulation model with P2 | |
ICD | Differences in total counts of irrigation events |
IWD | Differences in total amounts of irrigation water |
P2 | Adjusted Penman reference evapotranspiration |
%IncMSE | Relative increase in mean squared error |
References
- Earthscan (Ed.) The State of the World’s Land and Water Resources for Food and Agriculture: Managing Systems at Risk, 1st ed.; Earthscan: Milton Park, UK; New York, NY, USA, 2011. [Google Scholar]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Cahn, M.; Johnson, L. New Approaches to Irrigation Scheduling of Vegetables. Horticulturae 2017, 3, 28. [Google Scholar] [CrossRef]
- Doorenbos, J.; Pruitt, W.O.; Aboukhaled, A.; Damagnez, J.; Dastane, N.G.; Van Der Berg, C.; Rijtema, P.E.; Ashford, O.M.; Frère, M. Crop Water Requirements; FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 1977. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. 6541. [Google Scholar]
- Allen, R.G.; Pereira, L.S. Estimating Crop Coefficients from Fraction of Ground Cover and Height. Irrig. Sci. 2009, 28, 17–34. [Google Scholar] [CrossRef]
- Thornthwaite, C.W.; Mather, J.R.; Carter, D. Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance; Drexel Institute of Technology, Laboratory of Climatology: Centerton, AR, USA, 1957. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef]
- Droogers, P.; Allen, R.G. Estimating Reference Evapotranspiration under Inaccurate Data Conditions. Irrig. Drain. Syst. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Yrisarry, J.B.; et al. A Recommendation on Standardized Surface Resistance for Hourly Calculation of Reference ETo by the FAO56 Penman-Monteith Method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Liu, X.; Mei, X.; Li, Y.; Wang, Q.; Zhang, Y.; Porter, J.R. Variation in Reference Crop Evapotranspiration Caused by the Ångström–Prescott Coefficient: Locally Calibrated versus the FAO Recommended. Agric. Water Manag. 2009, 96, 1137–1145. [Google Scholar] [CrossRef]
- Johnson, L.; Cahn, M.; Martin, F.; Melton, F.; Benzen, S.; Farrara, B.; Post, K. Evapotranspiration Based Irrigation Scheduling of Lettuce and Broccoli. HortScience 2015, 51, 935–940. [Google Scholar]
- Mannini, P.; Genovesi, R.; Letterio, T. IRRINET: Large Scale DSS Application for On-Farm Irrigation Scheduling. Procedia Environ. Sci. 2013, 19, 823–829. [Google Scholar] [CrossRef]
- Cahn, M.; English, M.J.; Hartz, T. Irrigation and Nitrogen Management Web-Based Software for Lettuce Production. In Proceedings of the Fertilizer Research and Education Program Conference, Tulare, CA, USA, 16–17 November 2011; p. 19. [Google Scholar]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.; et al. An Overview of the Crop Model STICS. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- Mateos, L.; Lopez-Cortijo, I.; Sagardoy, J.A. SIMIS: The FAO Decision Support System for Irrigation Scheme Management. Agric. Water Manag. 2002, 56, 193–206. [Google Scholar] [CrossRef]
- Wolf, J.; de Wit, A. Calibration of WOFOST Crop Growth Simulation Model for Use within CGMS; Report; RIZa; SC-DLO: Wageningen, The Netherlands, 2003. [Google Scholar]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 2009, 101, 426. [Google Scholar] [CrossRef] [Green Version]
- Leib, B.G.; Elliott, T.V.; Matthews, G. WISE: A Web-Linked and Producer Oriented Program for Irrigation Scheduling. Comput. Electr. Agric. 2001, 33, 1–6. [Google Scholar] [CrossRef]
- Smith, M. CROPWAT: A Computer Program for Irrigation Planning and Management, Ver. 5.7 ed.; Number 46 in FAO Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Roma, Italy, 1992. [Google Scholar]
- Stöckle, C.O.; Donatelli, M.; Nelson, R. CropSyst, a Cropping Systems Simulation Model. Eur. J. Agron. 2003, 18, 289–307. [Google Scholar] [CrossRef]
- Hartmann, H.D.; Pfülb, E.; Zenegerle, K.H. Wasserverbrauch und Bewässerung von Gemüse; Geisenheimer Berichte der Forschungsanstalt Geisenheim: Geisenheim, Germany, 2000; Volume 44. [Google Scholar]
- Geisenheim University. Geisenheim Irrigation Scheduling; Department of Vegetable Crops: Geisenheim, Germany, 2017. [Google Scholar]
- Martí, P.; González-Altozano, P.; López-Urrea, R.; Mancha, L.A.; Shiri, J. Modeling Reference Evapotranspiration with Calculated Targets. Assessment and Implications. Agric. Water Manag. 2015, 149, 81–90. [Google Scholar] [CrossRef]
- Kisi, O. Evapotranspiration Modeling Using a Wavelet Regression Model. Irrig. Sci. 2011, 29, 241–252. [Google Scholar] [CrossRef]
- Ozkan, C.; Kisi, O.; Akay, B. Neural Networks with Artificial Bee Colony Algorithm for Modeling Daily Reference Evapotranspiration. Irrig. Sci. 2011, 29, 431–441. [Google Scholar] [CrossRef]
- Kisi, O. Least Squares Support Vector Machine for Modeling Daily Reference Evapotranspiration. Irrig. Sci. 2013, 31, 611–619. [Google Scholar] [CrossRef]
- Kumar, M.; Raghuwanshi, N.S.; Singh, R.; Wallender, W.W.; Pruitt, W.O. Estimating Evapotranspiration Using Artificial Neural Network. J. Irrig. Drain. Eng. 2002, 128, 224–233. [Google Scholar] [CrossRef]
- Martí, P.; González-Altozano, P.; Gasque, M. Reference Evapotranspiration Estimation without Local Climatic Data. Irrig. Sci. 2011, 29, 479–495. [Google Scholar] [CrossRef]
- Ballesteros, R.; Ortega, J.F.; Moreno, M.Á. FORETo: New Software for Reference Evapotranspiration Forecasting. J. Arid Environ. 2016, 124, 128–141. [Google Scholar] [CrossRef]
- Federer, C.A.; Vörösmarty, C.; Fekete, B. Intercomparison of Methods for Calculating Potential Evaporation in Regional and Global Water Balance Models. Water Resour. Res. 1996, 32, 2315–2321. [Google Scholar] [CrossRef]
- Utset, A.; Farré, I.; Martínez-Cob, A.; Cavero, J. Comparing Penman–Monteith and Priestley–Taylor Approaches as Reference-Evapotranspiration Inputs for Modeling Maize Water-Use under Mediterranean Conditions. Agric. Water Manag. 2004, 66, 205–219. [Google Scholar] [CrossRef]
- Xu, C.Y.; Chen, D. Comparison of Seven Models for Estimation of Evapotranspiration and Groundwater Recharge Using Lysimeter Measurement Data in Germany. Hydrol. Process. 2005, 19, 3717–3734. [Google Scholar] [CrossRef]
- Meier, U. Entwicklungsstadien Mono- Und Dikotyler Pflanzen–BBCH-Monografie; Juli us Kühn-Institut (JKI): Braunschweig, Germany, 2018. [Google Scholar]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Pappenberger, F.; Iorgulescu, I.; Beven, K.J. Sensitivity Analysis Based on Regional Splits and Regression Trees (SARS-RT). Environ. Model. Softw. 2006, 21, 976–990. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar]
- Brewer, C. Designing Better Maps: A Guide for GIS Users, 2nd ed.; Esri Press: Redlands, CA, USA, 2015. [Google Scholar]
- Xie, Y. Knitr: A Comprehensive Tool for Reproducible Research in R. In Implementing Reproducible Computational Research; Stodden, V., Leisch, F., Peng, R.D., Eds.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2014; ISBN 978-1466561595. [Google Scholar]
- Xie, Y. Dynamic Documents with R and Knitr, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2015; ISBN 978-1498716963. [Google Scholar]
- Xie, Y. Knitr: A General-Purpose Package for Dynamic Report Generation in R, R package version 1.13; 2016. Available online: https://yihui.name/knitr/ (accessed on 27 November 2018).
- Gong, L.; Xu, C.Y.; Chen, D.; Halldin, S.; Chen, Y.D. Sensitivity of the Penman–Monteith Reference Evapotranspiration to Key Climatic Variables in the Changjiang (Yangtze River) Basin. J. Hydrol. 2006, 329, 620–629. [Google Scholar] [CrossRef]
- DeJonge, K.C.; Ahmadi, M.; Ascough, J.C.; Kinzli, K.D. Sensitivity Analysis of Reference Evapotranspiration to Sensor Accuracy. Comput. Electr. Agric. 2015, 110, 176–186. [Google Scholar] [CrossRef]
- Howell, T.A. Irrigation Efficiency. Encyclopedia of Water Science; Marcel Dekker: New York, NY, USA, 2003; pp. 467–472. [Google Scholar]
- Zhang, L.; Merkley, G.P.; Pinthong, K. Assessing Whole-Field Sprinkler Irrigation Application Uniformity. Irrig. Sci. 2013, 31, 87–105. [Google Scholar] [CrossRef]
- Batchelor, C.H. The Accuracy of Evapotranspiration Estimated with the FAO Modified Penman Equation. Irrig. Sci. 1984, 5, 223–233. [Google Scholar] [CrossRef]
Value | Abbreviation | Unit |
---|---|---|
Penman-P2- | P2- | |
FAO56 Penman–Monteith- | FAO56- | |
Temperature mean (24 h) | Temperature | |
Temperature mean (max/min) | Tmm | |
Temperature maxima | Tmax | |
Temperature minima | Tmin | |
Relative air humidity mean (24 h) | AirHumidity | % |
Global radiation | Radiation | |
Wind speed at 2 height mean (24 h) | Windspeed2m |
Crop | IWD | ± | IC | ± | IC | ± | ICD | ± |
---|---|---|---|---|---|---|---|---|
Broccoli | 1.18 | 3.38 | 11.50 | 2.32 | 11.75 | 2.70 | 0.25 | 0.45 |
Bush bean | 5.45 | 12.57 | 7.46 | 1.80 | 7.75 | 1.86 | 0.29 | 0.46 |
Carrot | 2.84 | 4.19 | 15.98 | 3.83 | 16.36 | 4.01 | 0.39 | 0.54 |
Cauliflower | 4.03 | 4.32 | 16.78 | 1.82 | 17.44 | 2.10 | 0.67 | 0.63 |
Leek | 6.76 | 7.14 | 17.00 | 5.36 | 17.76 | 5.54 | 0.76 | 0.70 |
Onion | 1.87 | 5.88 | 17.25 | 4.58 | 17.58 | 4.74 | 0.33 | 0.65 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olberz, M.; Kahlen, K.; Zinkernagel, J. Assessing the Impact of Reference Evapotranspiration Models on Decision Support Systems for Irrigation. Horticulturae 2018, 4, 49. https://doi.org/10.3390/horticulturae4040049
Olberz M, Kahlen K, Zinkernagel J. Assessing the Impact of Reference Evapotranspiration Models on Decision Support Systems for Irrigation. Horticulturae. 2018; 4(4):49. https://doi.org/10.3390/horticulturae4040049
Chicago/Turabian StyleOlberz, Matthias, Katrin Kahlen, and Jana Zinkernagel. 2018. "Assessing the Impact of Reference Evapotranspiration Models on Decision Support Systems for Irrigation" Horticulturae 4, no. 4: 49. https://doi.org/10.3390/horticulturae4040049
APA StyleOlberz, M., Kahlen, K., & Zinkernagel, J. (2018). Assessing the Impact of Reference Evapotranspiration Models on Decision Support Systems for Irrigation. Horticulturae, 4(4), 49. https://doi.org/10.3390/horticulturae4040049