Physicochemical Characterization, Bioactive Compounds, and Antioxidant Capacity from Stenocereus queretaroensis: Mexican Endemic Fruits with High Potential Functionality
<p><span class="html-italic">Stenocereus queretaroensis</span> fruits; (<b>A</b>) Red, (<b>B</b>) White, (<b>C</b>) Purple, and (<b>D</b>) Yellow.</p> "> Figure 2
<p>HPLC chromatogram of phenolic compounds. (<b>A</b>) Chromatogram of phenolic standards. (1) gallic acid, (2) protocatechuic acid, (3) gallocatechin, (4) neochlorogenic acid, (5) 3,4-dihydroxyphenylacetic, (6) 4-hydroxybenzoic acid, (7) chlorogenic acid, (8) 4-hydroxyphenyl acetic, (9) vanillic acid, (10) epigallocatechin, (11) syringic acid, (12) 3-hydroxybenzoic acid, (13) caffeic acid, (14) catechin, (15) 4-hydroxybenzaldehyde, (16) epicatechin, (17) homovanillic acid, (18) 3-(4-hydroxyphenylpropionic acid), (19) rutin, (20) coumaric acid, (21) trans-ferulic acid, (22) ellagic acid, (23) synaptic acid, (24) benzoic acid, (25) myricetin, (26) trans-hydroxycinnamic acid, (27) salicylic acid, (28) 2,5-dihydroxybenzoic, (29) trans-cinnamic acid, (30) quercetin, (31) luteolin, (32) naringenin, and (33) kaempferol. Chromatogram of phenolic compounds from red (<b>B</b>), white (<b>C</b>), purple (<b>D</b>), and yellow (<b>E</b>) <span class="html-italic">S. queretaroensis fruits</span>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Physicochemical Parameters
Proximal Chemical Composition
2.4. Bioactive Compounds
2.4.1. Total Content of Betalains
2.4.2. Total Carotenoids
2.4.3. Total Soluble Phenols
2.4.4. Profile of Phenolic Compounds
2.5. Antioxidant Capacity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Parameters
3.2. Proximal Chemical Composition
3.3. Bioactive Compounds
3.4. Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Casas, A.; Caballero, J.; Valiente-Banuet, A. Use, management and domestication of columnar cacti in south-central Mexico: A historical perspective. J. Ethnobiol. 1999, 19, 71–95. [Google Scholar]
- Casas, A.; Pickersgill, B.; Caballero, J.; Valiente-Banuet, A. Ethnobotany and domestication in Xoconochtli, Stenocereus stellatus (Cactaceae), in the Tehuacán valley and la Mixteca Baja, México. Econ. Bot. 1997, 51, 279–292. [Google Scholar] [CrossRef]
- Flores-Monter, Y.N.; Reyna-Trujillo, T.J.; Cervantes-Ramírez, M.C.; Luna-Morales, C.C. Distribución geográfica y potencial de Stenocereus pruinosus y Stenocereus stellatus (Cactaceae) en la Mixteca Poblana, México. Cact. Suc. Mex. 2011, 56, 4–20. [Google Scholar]
- Cervantes-Arista, C.; Roma-Guerrero, A.; Oidor-Chan, V.H.; Díaz de León-Sánchez, F.; Álvarez-Ramírez, E.L.; Pelayo-Zaldívar, C.; Sierra-Palacios, E.C.; Mendoza-Espinoza, J.A. Chemical characterization, antioxidant capacity, and anti-hyperglycemic effect of Stenocereus stellatus fruits from the arid Mixteca Baja region of Mexico. Food Chem. 2020, 328, 127076. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Thawkar, B.; Dubey, S.; Jadhav, P. Pharmacological potentials of betalains. J. Complement. Integr. Med. 2018, 15, 1553–3840. [Google Scholar] [CrossRef] [PubMed]
- Taban, B.M.; Stavropoulou, E.; Winkelströter, L.K.; Bezirtzoglou, E. Value-added effects of using aromatic plants in foods and human therapy. Food Sci. Technol. 2021, 42, e43121. [Google Scholar] [CrossRef]
- Gibson, A.C.; Horak, K.E. Systematic anatomy and phylogeny of Mexican columnar cacti. Ann. Missouri Bot. Gard. 1978, 65, 999–1057. [Google Scholar] [CrossRef]
- Quiroz-González, B.; García-Mateos, R.; Corrales-García, J.J.E.; Colinas-León, M.T. Pitaya (Stenocereus spp.): An under-utilized fruit. J. Prof. Assoc. Cactus Dev. 2018, 20, 82–100. [Google Scholar] [CrossRef]
- Arriaga-Ruiz, M.C.; Neri-Luna, C.; Pimienta-Barrios, E.; Sánchez-Martínez, J. El fruto del pitayo silvestre (Stenocereus queretaroensis (Weber) Buxbaum), una alternativa alimenticia, nutricional y socioeconómica en época de estiaje. Cienc. Nat. Agropecu. 2015, 2, 362–367. [Google Scholar]
- Soto-Castro, D.; Chávez-Gutiérrez, M.; León-Martínez, M.; Santiago García, P.A.; Aragón Lucero, I.; Antonio-Antonio, F. Spray drying microencapsulation of betalain rich extracts from Escontria chiotilla and Stenocereus queretaroensis fruits using cactus mucilage. Food Chem. 2019, 272, 715–722. [Google Scholar] [CrossRef]
- Beltrán-Orozco, M.C.; Oliva-Coba, T.G.; Gallardo-Velázquez, T.; Osorio-Revilla, G. Ascorbic acid, phenolic content, and antioxidant capacity of red, cherry, yellow and white types of pitaya cactus fruit (Stenocereus stellatus Riccobono). Agrociencia 2009, 43, 153–161. [Google Scholar]
- García-Cruz, L.; Salinas-Moreno, Y.; Valle-Guadarrama, S. Betalains, phenolic compounds and antioxidant activity in pitaya de mayo (Stenocereus griseus H.). Rev. Fitotec. Mex. 2012, 35, 1–5. [Google Scholar]
- Balderas, V.G.; Palafox, G.L.; Castro, A.S.; Saucedo, C. Evaluación de las propiedades físicas y calidad organoléptica y nutricional de frutos de pitaya (Stenocereus pruinosus). Rev. Iberoam. Cienc. 2016, 3, 86–92. [Google Scholar]
- Gaytán-Andrade, J.; Aguilar, C.; López-López, L.; Cobos-Puc, L.; Silvia-Belmares, S. Perspectives for food development from Pitayo Stenocereus queretaroensis (Weber) Buxbaum. In Handbook of Research on Food Science and Technology; Chávez-Gonzáles, M.L., Buenrostro-Figueroa, J.J., Aguilar, C.N., Eds.; Vol 1: Food Technology and Chemistry; Apple Academic Press: New York City, NY, USA, 2019; pp. 149–157. [Google Scholar]
- Aryal, D.; Joshi, S.; Thapa, N.K.; Chaudhary, P.; Basaula, S.; Joshi, U.; Parajuli, N. Dietary phenolic compounds as promising therapeutic agents for diabetes and its complications: A comprehensive review. Food Sci. Nutr. 2024, 12, 1–21. [Google Scholar] [CrossRef]
- Gaytán-Andrade, J.J.; Cobos-Puc, L.E.; Iliná, A.; Moreno-Dávila, I.M.; Aguilar, C.N.; Silva-Belmares, S.Y. Characterization, digestibility and prebiotic effect of the fruit extract of Stenocereus queretaroensis F.A.C. Weber Buxbaum. Rev. Fitotec. Mex. 2020, 43, 325–333. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International. 2000. No. C/630.240 O3/200. Available online: https://www.aoac.org/ (accessed on 15 August 2023).
- Mañas, E.; Bravo, L.; Saura-Calixto, F. Sources of error in dietary fiber analysis. Food Chem. 1994, 50, 331–342. [Google Scholar] [CrossRef]
- Englyst, H.N.; Cummings, J.H. Improved method for measurement of dietary fiber as non-starch polysaccharides in plant foods. J. Assoc. Off. Anal. Chem. 1988, 71, 808–814. [Google Scholar] [CrossRef]
- Castellanos-Santiago, E.; Yahia, E.M. Identification and quantification of betalains from the fruits of 10 Mexican prickly pear cultivars by high-performance liquid chromatography and electrospray ionization mass spectrometry. J. Agric. Food Chem. 2008, 56, 5758–5764. [Google Scholar] [CrossRef]
- Qin, J.; Yeum, K.J.; Johnson, E.J.; Krinsky, N.I.; Russell, R.M.; Tang, G. Determination of 9-cis β-carotene and γ-carotene in biological samples. J. Nutr. Biochem. 2008, 19, 612–618. [Google Scholar] [CrossRef]
- Montreau, F.R. Sur le dosage des composés phénoliques totaux dans les vins par la méthode Folin-Ciocalteu. Connais Vigne Vin. 1972, 24, 397–404. [Google Scholar] [CrossRef]
- Nolasco-González, Y.; Chacón-López, M.A.; Ortiz-Basurto, R.I.; Aguilera-Aguirre, S.; González-Aguilar, G.A.; Rodríguez-Aguayo, C.; Navarro-Cortez, M.C.; García-Galindo, H.S.; García-Magaña, M.L.; Meza-Espinoza, L.; et al. Annona muricata leaves as a source of bioactive compounds: Extraction and quantification using ultrasound. Horticulturae 2022, 8, 560. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay. Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Meth. Enzymol. 1996, 299, 15–27. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Castro-Enríquez, D.D.; Montaño-Leyva, B.; Del Toro-Sánchez, C.L.; Juárez-Onofre, J.E.; Carvajal-Millán, E.; López-Ahumada, G.A.; Barreras-Urbina, C.G.; Tapia-Hernández, J.A.; Rodríguez-Félix, F. Effect of ultrafiltration of pitaya extract (Stenocereus thurberi) on its phytochemical content, antioxidant capacity, and UPLC-DAD-MS Profile. Molecules 2020, 25, 281. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa-Gómez, J.; Muy-Rangel, M.D. Caracterización fisicoquímica y compuestos bioactivos en los frutos de pitaya (Stenocereus thurberi) de cuatro colores. TIP Rev. Espec. Cienc. Químico-Biológicas 2023, 26, 1–9. [Google Scholar] [CrossRef]
- García-Cruz, L.; Valle-Guadarrama, S.; Salinas-Moreno, Y.; Joaquín-Cruz, E. Physical, chemical, and antioxidant activity characterization of pitaya (Stenocereus pruinosus) fruits. Plant Foods Hum. Nutr. 2013, 68, 403–410. [Google Scholar] [CrossRef]
- Noriega-Juárez, A.D.; Rubio-Carrillo, J.D.; García-Magaña, M.L.; González-Aguilar, G.A.; Meza-Espinoza, L.; Chacón-López, M.A.; Montalvo-González, E. Comparison of individual quick freezing and traditional slow freezing on physicochemical, nutritional and antioxidant changes of four mango varieties harvested in two ripening stages. Food Chem. Adv. 2024, 4, 100590. [Google Scholar] [CrossRef]
- Ramírez, A.; Pacheco de Delahaye, E. Composición química y compuestos bioactivos presentes en pulpas de piña, guayaba y guanábana. Interciencia 2011, 36, 71–75. [Google Scholar]
- Kadem-Bemmo, U.L.; Bindzi, J.M.; Tayou-Kamseu, P.R.; Houketchang-Ndomou, S.C.; Tene-Tambo, S.; Ngoufack-Zambou, F. Physicochemical properties, Nutritional value, and antioxidant potential of jackfruit (Artocarpus heterophyllus) pulp and seed from Cameroon eastern forest. Food Sci. Nutr. 2023, 11, 4722–4734. [Google Scholar] [CrossRef]
- Vicente, A.R.; Manganaris, G.A.; Darre, M.; Ortiz, C.M.; Sozzi, G.O.; Crisosto, C.H. Compositional determinants of fruit and vegetable quality and nutritional value. In Postharvest Handling; Florkowski, W.J., Banks, N.H., Shewfelt, R.L., Prusia, S.E., Eds.; Academic Press: Boston, MA, USA, 2022; pp. 565–619. [Google Scholar]
- National Institute of Health (NIH). 2024. Available online: https://ods.od.nih.gov/factsheets/list-all/ (accessed on 16 March 2024).
- Pérez-Loredo, M.G.; Hernández-De Jesús, L.; Barragán-Huerta, B.E. Extraction of red pitaya (Stenocereus stellatus) bioactive compounds applying microwave, ultrasound and enzymatic pretreatments. Agrociencia 2017, 51, 135–151. [Google Scholar]
- García-Cruz, L.; Dueñas, M.; Santos-Buelgas, C.; Valle-Guadarrama, S.; Salinas-Moreno, Y. Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (Stenocereus spp.) fruit from two species (S. pruinosus and S. stellatus). Food Chem. 2017, 234, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Verona-Ruiz, A.; Urcia-Cerna, J.; Paucar-Menacho, L.M. Pitahaya (Hylocereus spp.): Cultivo, características fisicoquímicas, composición nutricional y compuestos bioactivos. Sci. Agropecu. 2020, 11, 439–453. [Google Scholar] [CrossRef]
- Pérez-Orozco, A.F.; Sosa, V. Comparative estimations of betalains and sugars in fruits of five species of Selenicereus (Cactaceae). Act. Bot. Mex. 2022, 129, e1991. [Google Scholar] [CrossRef]
- Wu, L.C.; Hsu, H.W.; Chen, Y.C.; Chiu, C.C.; Lin, Y.I.; Ho, J.A.A. Antioxidant and antiproliferative activities of red pitaya. Food Chem. 2006, 95, 319–327. [Google Scholar] [CrossRef]
- Rodríguez-Félix, A.; Fortiz-Hernández, J.; Tortoledo-Ortiz, O. Physico-chemical characteristics, and bioactive compounds of red fruits of sweet pitaya (Stenocereus thurberi). J. Prof. Assoc. Cactus Dev. 2019, 21, 87–100. [Google Scholar] [CrossRef]
- Cruz, M.M.; Reyes, J.; Ángeles, H.G.; Del Rosario, J.M.; Lirazan, M.B.; Estacio, R.C.; Corales, L.M.; Dalmacio, L.M. Antioxidant, anti-tyrosinase, and anti-angiogenic activities of dragon fruit (Hylocereus spp.). Food Res. 2022, 6, 403–410. [Google Scholar] [CrossRef]
- García-Cruz, L.; Valle-Guadarrama, S.; Guerra-Ramírez, D.; Martínez-Damián, M.T.; Zuleta-Prada, H. Cultivation, quality attributes, postharvest behavior, bioactive compounds, and uses of Stenocereus: A review. Sci. Hortic. 2022, 304, 1–11. [Google Scholar] [CrossRef]
- Pérez-González, A.; Rebollar-Zepeda, A.M.; León-Carmona, J.R.; Galano, A. Reactivity indexes and OH bond dissociation energies of a large series of polyphenols: Implications for their free radical scavenging activity. J. Mex. Chem. Soc. 2012, 56, 241–249. [Google Scholar] [CrossRef]
- Foti, M.C.; Daquino, C.; Geraci, C. Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH· radical in alcoholic solutions. J. Org. Chem. 2004, 69, 2309–2314. [Google Scholar] [CrossRef]
Parameters | Fruits | |||
---|---|---|---|---|
Red | White | Purple | Yellow | |
Total soluble solids (°Brix) | 10.53 ± 0.29 b | 10.73 ± 0.06 b | 10.50 ± 0.35 b | 12.07 ± 0.21 a |
Acidity percentage (% citric acid) | 0.34 ± 0.03 a | 0.45 ± 0.13 a | 0.38 ± 0.03 a | 0.36 ± 0.06 a |
pH | 4.60 ± 0.01 a | 4.40 ± 0.01 b | 4.47 ± 0.06 b | 4.27 ± 0.12 c |
Parameters (g/100 g or % fw) | Fruits | |||
---|---|---|---|---|
Red | White | Purple | Yellow | |
Moisture | 87.70 ± 0.54 b | 83.76 ± 1.43 a | 85.62 ± 1.12 ab | 84.77 ± 1.56 a |
Ashes | 0.27 ± 0.05 a | 0.35 ± 0.13 a | 0.36 ± 0.12 a | 0.36 ± 0.01 a |
Fats | 0.40 ± 0.02 c | 0.42 ± 0.21 ab | 0.19 ± 0.03 bc | 0.62 ± 0.15 a |
Proteins | 0.72 ± 0.10 b | 1.21 ± 0.11 a | 1.18 ± 0.13 a | 1.16 ± 0.06 a |
Soluble dietary fiber | 0.33 ± 0.06 b | 0.49 ± 0.02 a | 0.17 ± 0.01 c | 0.19 ± 0.03 c |
Insoluble dietary fiber | 3.54 ± 0.52 a | 4.80 ± 0.34 b | 4.67 ± 0.58 b | 4.31 ± 0.55 b |
Total dietary fiber | 3.87 ± 0.47 d | 5.30 ± 0.35 a | 4.83 ± 0.59 b | 4.50 ± 0.55 c |
Reducing sugars | 5.70 ± 0.53 b | 7.28 ± 0.19 a | 6.60 ± 0.67 b | 7.48 ± 0.47 a |
Kilocalories (Kcal) | 35 | 44 | 38 | 45 |
Parameter (mg/100 g fw) | Fruits | |||
---|---|---|---|---|
Red | White | Purple | Yellow | |
Betacyanins | 13.95 ± 0.20 a | n.d. | 12.27 ± 0.21 b | 6.22 ± 0.46 c |
Betaxanthins | 7.34 ± 0.74 c | n.d. | 7.43 ± 0.06 b | 8.59 ± 0.08 a |
Total betalains | 20.29 ± 0.72 a | n.d. | 19.70 ± 0.09 b | 14.81 ± 0.47 c |
Carotenoids | n.d. | n.d. | n.d. | 9.21 ± 0.14 a |
Total soluble phenols | 58.35 ± 1.98 b | 68.33 ± 2.91 a | 54.86 ± 1.89 b | 62.14 ± 2.68 b |
Phenolic Compounds (µg/100 g fw) | TR (min) | nm | Equation | R2 | Fruits | |||
---|---|---|---|---|---|---|---|---|
Red | White | Purple | Yellow | |||||
Hydroxybenzoic acids | ||||||||
Gallic acid | 10.62 | 270 | y = 262.9x − 402.9 | 0.9979 | 1348.13 ± 26.61 a | 759.54 ±71.29 c | 883.51 ± 68.74 c | 1031.77 ± 40.56 b |
Protocatechuic acid | 14.01 | 270 | y = 391.51x − 112.2 | 0.9997 | 253.98 ± 2.44a | 241.56 ± 17.94a | 196.45 ± 14.09b | 167.82 ± 3.14c |
4-Hydroxybenzoic acid | 18.76 | 270 | y = 376.93x − 287.2 | 0.9989 | 232.13 ± 45.28a | 264.87 ± 27.31a | 295.73 ± 38.39a | 148.88 ± 15.43b |
Syringic acid | 20.57 | 280 | y = 395.91x − 320.3 | 0.9993 | 185.53 ± 12.23 b | 445.55 ± 21.01 a | 152.08 ± 6.52 b | 160.39 ± 20.40 b |
Vanillic acid | 19.86 | 270 | y = 286.35x − 300.0 | 0.9997 | 207.50 ± 0.72 a | 175.91 ± 7.78 b | 139.82 ± 12.80 c | 176.24 ± 11.18 b |
Salicylic acid | 30.85 | 300 | y = 250.15x − 121.1 | 0.9996 | 56.57 ± 10.27 c | 171.13 ± 15.76 a | 130.97 ± 21.43 b | 51.81 ± 10.48 c |
Hydroxycinnamic acids | ||||||||
Trans cinnamic acid | 34.05 | 280 | y = 1070.9x − 1271.9 | 0.9983 | 112.21 ± 1.32 c | 170.02 ± 3.84 b | 175.85 ± 2.76 b | 187.81 ± 1.66 a |
p-Coumaric acid | 25.02 | 310 | y = 496.93x + 1844.1 | 0.9695 | 346.74 ± 0.87 a | 304.12 ± 0.39 b | 290.86 ± 0.45 c | 214.93 ± 1.11 c |
Caffeic acid | 21.56 | 320 | y = 637.32x − 421.9 | 0.9995 | 109.93 ± 3.89 b | 154.82 ± 1.13 b | 142.12 ± 0.79 c | 162.29 ± 2.34 a |
Chlorogenic acid | 19.01 | 320 | y = 389.28x − 533.9 | 0.992 | 390.88 ± 69.57 a | 340.63 ± 69.46 a | 379.21 ± 60.01 a | 307.67 ± 70.42 a |
Neochlorogenic acid | 17.75 | 270 | y = 288.88x − 947.3 | 0.9984 | 417.11 ± 3.15 a | 399.86 ± 3.95 b | 390.96 ± 6.59 b | 317.80 ± 2.79 c |
Trans ferulic acid | 25.39 | 320 | y = 343.49x − 328.2 | 0.9984 | 105.85 ± 4.89 b | 175.39 ± 4.35 a | 102.68 ± 17.52 b | 178.57 ± 0.48 a |
Phenolic aldehydes | ||||||||
4-Hydroxybenzaldehyde acid | 22.06 | 285 | y = 1083.8x + 415.7 | 0.9966 | 140.16 ± 0.96 b | 235.95 ± 10.04 a | 227.92 ± 0.94 a | 241.73 ± 1.28 a |
Hydroxyphenyl acetic acids | ||||||||
3,4-dihydroxyphenylacetic acid | 18.11 | 280 | y = 47.712x − 21.511 | 0.9995 | 393.70 ± 4.05 b | 604.35 ± 12.25 a | 277.31 ± 12.99 c | 280.01 ± 3.09 c |
Flavonoids | ||||||||
Catechin | 21.95 | 280 | y = 84.567x − 63.346 | 0.9992 | 230.35 ± 95.11 c | 363.5 ± 33.16 b | 517.70 ± 49.57 a | 392.36 ± 6.67 b |
Gallocatechin | 16.22 | 270 | y = 15.557x − 26.384 | 0.9980 | 880.98 ± 43.40 a | 762.43 ± 22.86 b | 724.98 ± 25.96 b | 597.24 ± 25.50 c |
Epigallocatechin | 20.08 | 270 | y = 23.341x − 31.289 | 0.9995 | 247.47 ± 15.01 a | 213.09 ± 13.88 a | 251.74 ± 26.92 a | 296.10 ± 22.49 a |
Naringenin | 38.89 | 290 | y = 587.5x − 304.69 | 0.9995 | 49.05 ± 0.84 b | 94.97 ± 1.28 a | 38.22 ± 0.78 c | 37.66 ± 0.40 c |
Myricetin | 28.34 | 270 | y = 298.06x − 154.5 | 0.9995 | 123.24 ± 9.20 c | 216.02 ± 15.18 a | 119.68 ± 16.78 c | 148.92 ± 4.95 b |
AOX (mM Trolox/100 g fw) | Fruits | |||
---|---|---|---|---|
Red | White | Purple | Yellow | |
DPPH | 156.9 ± 67.63 b | 188.50 ± 13.44 b | 119.99 ± 7.96 c | 265.20 ± 11.86 a |
ABTS | 84.28 ± 0.88 a | 72.32 ± 3.86 b | 77.51 ± 3.70 b | 72.48 ± 6.35 b |
FRAP | 736.02 ± 65.30 a | 580.48 ± 39.63 b | 568.38 ± 59.16 b | 512.66 ± 14.33 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noriega-Juárez, A.D.; Nolasco-González, Y.; Vázquez-Mora, J.; García-Magaña, M.d.L.; Montalvo-González, E. Physicochemical Characterization, Bioactive Compounds, and Antioxidant Capacity from Stenocereus queretaroensis: Mexican Endemic Fruits with High Potential Functionality. Horticulturae 2024, 10, 451. https://doi.org/10.3390/horticulturae10050451
Noriega-Juárez AD, Nolasco-González Y, Vázquez-Mora J, García-Magaña MdL, Montalvo-González E. Physicochemical Characterization, Bioactive Compounds, and Antioxidant Capacity from Stenocereus queretaroensis: Mexican Endemic Fruits with High Potential Functionality. Horticulturae. 2024; 10(5):451. https://doi.org/10.3390/horticulturae10050451
Chicago/Turabian StyleNoriega-Juárez, Alma Delia, Yolanda Nolasco-González, Jesús Vázquez-Mora, María de Lourdes García-Magaña, and Efigenia Montalvo-González. 2024. "Physicochemical Characterization, Bioactive Compounds, and Antioxidant Capacity from Stenocereus queretaroensis: Mexican Endemic Fruits with High Potential Functionality" Horticulturae 10, no. 5: 451. https://doi.org/10.3390/horticulturae10050451
APA StyleNoriega-Juárez, A. D., Nolasco-González, Y., Vázquez-Mora, J., García-Magaña, M. d. L., & Montalvo-González, E. (2024). Physicochemical Characterization, Bioactive Compounds, and Antioxidant Capacity from Stenocereus queretaroensis: Mexican Endemic Fruits with High Potential Functionality. Horticulturae, 10(5), 451. https://doi.org/10.3390/horticulturae10050451