Homo- and Copolymer Hydrogels Based on N-Vinylformamide: An Investigation of the Impact of Water Structure on Controlled Release
<p>Contact angle of the homopolymer hydrogels (<b>a</b>) and PNVF-copolymer hydrogel series: (<b>b</b>) P(NVF-co-HEA) and (<b>c</b>) P(NVF-co-CEA). The corresponding images of water droplets are depicted for each composition.</p> "> Figure 2
<p>%EWC (<b>left</b>) and DSC endotherms (<b>right</b>) of (<b>a</b>) homopolymers, (<b>b</b>) P(NVF−co−HEA) hydrogels, and (<b>c</b>) P(NVF−co−CEA) hydrogels.</p> "> Figure 3
<p>Schematic representation of the free to bound water in a high ratio and low ratio system.</p> "> Figure 4
<p>Color parameter measurements are based on the three-dimensional CIE color space; the table shows the total color difference parameter of reference homopolymer hydrogels.</p> "> Figure 5
<p>Dye release profiles of homopolymer—100PNVF, 100PHEA, and 100PCEA (<b>left</b>) and visual color and total color difference parameters of hydrogels (<b>right</b>) before and after dye release: (<b>a</b>) orange II sodium salt, (<b>b</b>) crystal violet, and (<b>c</b>) Congo red.</p> "> Figure 6
<p>Release profiles of (<b>a</b>) P(NVF-co-HEA) hydrogel series and (<b>b</b>) P(NVF-co-CEA) hydrogel series with 0.0001 M orange II sodium salt dye solution.</p> "> Figure 7
<p>Release profiles of (<b>a</b>) P(NVF-co-HEA) hydrogel series and (<b>b</b>) P(NVF-co-CEA) hydrogel series with 0.0001 M crystal violet solution.</p> "> Figure 8
<p>Release profiles of (<b>a</b>) NVF and HEA hydrogel series and (<b>b</b>) NVF and CEA hydrogel series with 0.0001 M Congo red solution.</p> "> Figure 9
<p>Release profiles of the hydrogel samples with dose fraction plotted vs. square root of time for (<b>a</b>) orange II sodium salt, (<b>b</b>) crystal violet, and (<b>c</b>) Congo red.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hydrophilicity and Water Properties
2.2. Transport and Release Properties
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Synthesis of Homo- and Copolymers Hydrogels Based on NVF
4.3. Equilibrium Water Content
4.4. Differential Scanning Calorimetry (DSC)
- Cool from 25 °C to −70 °C
- Hold for 5 min at −70 °C
- Heat from −70 °C to −25 °C at 20 °C/min
- Heat from −25 °C to 25 °C at 10 °C/min
4.5. Contact Angle (CA)
4.6. Dye Uptake and Release
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 2001, 47, 113–131. [Google Scholar] [CrossRef] [PubMed]
- Yakaew, S.; Luangpradikun, K.; Phimnuan, P.; Nuengchamnong, N.; Kamonsutthipaijit, N.; Rugmai, S.; Nakyai, W.; Ross, S.; Ungsurungsei, M.; Viyoch, J.; et al. Investigation into Poloxamer 188-Based Cubosomes as a Polymeric Carrier for Poor Water-Soluble Actives. J. Appl. Polym. Sci. 2022, 139, 51612. [Google Scholar] [CrossRef]
- Otsuka, H.; Nagasaki, Y.; Kataoka, K. PEGylated Nanoparticles for Biological and Pharmaceutical Applications. Adv. Drug Deliv. Rev. 2003, 55, 403–419. [Google Scholar] [CrossRef]
- Kongprayoon, A.; Ross, G.; Limpeanchob, N.; Mahasaranon, S.; Punyodom, W.; Topham, P.D.; Ross, S. Bio-Derived and Biocompatible Poly(Lactic Acid)/Silk Sericin Nanogels and Their Incorporation within Poly(Lactide-Co-Glycolide) Electrospun Nanofibers. Polym. Chem. 2022, 13, 3343–3357. [Google Scholar] [CrossRef]
- Tuancharoensri, N.; Ross, G.M.; Kongprayoon, A.; Mahasaranon, S.; Pratumshat, S.; Viyoch, J.; Petrot, N.; Ruanthong, W.; Punyodom, W.; Topham, P.D.; et al. In Situ Compatibilized Blends of PLA/PCL/CAB Melt-Blown Films with High Elongation: Investigation of Miscibility, Morphology, Crystallinity and Modelling. Polymers 2023, 15, 303. [Google Scholar] [CrossRef]
- Takemoto, Y.; Ajiro, H.; Asoh, T.A.; Akashi, M. Fabrication of Surface-Modified Hydrogels with Polyion Complex for Controlled Release. Chem. Mater. 2010, 22, 2923–2929. [Google Scholar] [CrossRef]
- Martinelli, A.; D’Ilario, L.; Francolini, I.; Piozzi, A. Water State Effect on Drug Release from an Antibiotic Loaded Polyurethane Matrix Containing Albumin Nanoparticles. Int. J. Pharm. 2011, 407, 197–206. [Google Scholar] [CrossRef]
- Katzhendler, I.; Mäder, K.; Friedman, M.; Friedman, M. Structure and hydration properties of hydroxypropyl methylcellulose matrices containing naproxen and naproxen sodium. Int. J. Pharm. 2000, 200, 161–179. [Google Scholar] [CrossRef]
- Siepmann, J.; Peppas, N.A. Modeling of Drug Release from Delivery Systems Based on Hydroxypropyl Methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2001, 48, 139–157. [Google Scholar] [CrossRef]
- Zentner, G.M.; Cardinal, J.R.; Feijen, J.; Song, S.-Z. Progestin Permeation through Polymer Membranes IV: Mechanism of Steroid Permeation and Functional Group Contributions to Diffusion through Hydrogel Films. J. Pharm. Sci. 1979, 68, 970–975. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Duan, B.; Yu, Z.; Cheng, T.; Yu, L.; Liu, L.; Liu, K. Polymer-Water Interaction Enabled Intelligent Moisture Regulation in Hydrogels. J. Phys. Chem. Lett. 2021, 12, 2587–2592. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A.S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. [Google Scholar] [CrossRef]
- Kröner, M.; Dupuis, J.; Winter, M. N-Vinylformamide—Syntheses and Chemistry of a Multifunctional Monomer. J. Prakt. Chem. 2000, 342, 115–131. [Google Scholar] [CrossRef]
- Xu, J.; Timmons, A.B.; Pelton, R. N-Vinylformamide as a Route to Amine-Containing Latexes and Microgels. Colloid Polym. Sci. 2004, 282, 256–263. [Google Scholar] [CrossRef]
- McAuley, K.B. The Chemistry and Physics of Polyacrylamide Gel Dosimeters: Why They Do and Don t Work. J. Phys. Conf. Ser. 2004, 3, 29–33. [Google Scholar] [CrossRef]
- Patel, S.K.; Rodriguez, F.; Cohen, C. Mechanical and swelling properties of polyacrylamide gel spheres. Polymer 2018, 30, 2198–2203. [Google Scholar] [CrossRef]
- Yu, X.; Li, Y.; Yang, J.; Chen, F.; Tang, Z.; Zhu, L.; Qin, G.; Dai, Y.; Chen, Q. Nanoclay Reinforced Self-Cross-Linking Poly(N-Hydroxyethyl Acrylamide) Hydrogels with Integrated High Performances. Macromol. Mater. Eng. 2018, 303, 1800295. [Google Scholar] [CrossRef]
- Ross, S.; Yooyod, M.; Limpeanchob, N.; Mahasaranon, S.; Suphrom, N.; Ross, G.M. Novel 3D Porous Semi-IPN Hydrogel Scaffolds of Silk Sericin and Poly(N-Hydroxyethyl Acrylamide) for Dermal Reconstruction. Express Polym. Lett. 2017, 11, 719–730. [Google Scholar] [CrossRef]
- Zhao, C.; Zheng, J. Synthesis and Characterization of Poly(N-Hydroxyethylacrylamide) for Long-Term Antifouling Ability. Biomacromolecules 2011, 12, 4071–4079. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, J.; Li, X.; Wu, J.; Chen, S.; Chen, Q.; Wang, Q.; Gong, X.; Li, L.; Zheng, J. Probing Structure-Antifouling Activity Relationships of Polyacrylamides and Polyacrylates. Biomaterials 2013, 34, 4714–4724. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Ren, B.; Zhang, Y.; Ma, J.; Xu, L.; Chen, Q.; Zheng, J. Super Bulk and Interfacial Toughness of Physically Crosslinked Double-Network Hydrogels. Adv. Funct. Mater. 2017, 27, 1703086. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, Y.; Gao, L.; Bai, T.; Wang, W.; Cui, Y.; Liu, W. A Mechanically Strong, Highly Stable, Thermoplastic, and Self-Healable Supramolecular Polymer Hydrogel. Adv. Mater. 2015, 27, 3566–3571. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, E.; Wiecinska, P.; Szafran, M. 2-Carboxyethyl Acrylate as a New Monomer Preventing Negative Effect of Oxygen Inhibition in Gelcasting of Alumina. Ceram. Int. 2016, 42, 13682–13688. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Vossoughi, J.; Sundberg, D.C. Partitioning of 2-Carboxyethyl Acrylate between Water and Vinyl Monomer Phases Applied to Emulsion Polymerization: Comparisons with Hydroxy Acrylate and Other Vinyl Acid Functional Monomers. Ind. Eng. Chem. Res. 2015, 54, 2447–2452. [Google Scholar] [CrossRef]
- Mahomed, A.; Tighe, B.J. The Design of Contact Lens Based Ocular Drug Delivery Systems for Single-Day Use: Part (I) Structural Factors, Surrogate Ophthalmic Dyes and Passive Diffusion Studies. J. Biomater. Appl. 2014, 29, 341–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mera, S.L.; Davies, J.D. Differential Congo Red Staining: The Effects of PH, Non-Aqueous Solvents and the Substrate. Histochem. J. 1984, 16, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T. Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension. J. Pharm. Sci. 1961, 50, 874–875. [Google Scholar] [CrossRef]
- Perioli, L.; Ambrogi, V.; Angelici, F.; Ricci, M.; Giovagnoli, S.; Capuccella, M.; Rossi, C. Development of Mucoadhesive Patches for Buccal Administration of Ibuprofen. J. Control. Release 2004, 99, 73–82. [Google Scholar] [CrossRef]
- Viyoch, J.; Sudedmark, T.; Srema, W.; Suwongkrua, W. Development of hydrogel patch for controlled release of alpha-hydroxy acid contained in tamarind fruit pulp extract. Int. J. Cosmet. Sci. 2005, 27, 89–99. [Google Scholar] [CrossRef]
- Ostrowska-Czubenko, J.; Pierõg, M.; Gierszewska-Druzyńska, M. Water State in Chemically and Physically Crosslinked Chitosan Membranes. J. Appl. Polym. Sci. 2013, 130, 1707–1715. [Google Scholar] [CrossRef]
- Li, W.; Xue, F.; Cheng, R. States of Water in Partially Swollen Poly(Vinyl Alcohol) Hydrogels. Polymer 2005, 46, 12026–12031. [Google Scholar] [CrossRef]
- Tranoudis, I.; Efron, N. Water Properties of Soft Contact Lens Materials. Contact Lens Anterior Eye 2004, 27, 193–208. [Google Scholar] [CrossRef] [PubMed]
Sample Code | Main Monomer (%w/w) | Co-Monomer (%w/w) | CrossLinker (%w/w of Monomer) | Photo-Initiator (%w/w of Monomer) | |
---|---|---|---|---|---|
NVF | HEA | CEA | |||
100PNVF | 100 | - | - | 3 | 1 |
100PHEA | - | 100 | - | 3 | 1 |
100PCEA | - | - | 100 | 3 | 1 |
75PNVF25PHEA | 75 | 25 | - | 3 | 1 |
50PNVF50PHEA | 50 | 50 | - | 3 | 1 |
75PNVF25PCEA | 75 | - | 25 | 3 | 1 |
50PNVF50PCEA | 50 | - | 50 | 3 | 1 |
Composition | %EWC | Free to Bound Water Ratio |
---|---|---|
100PNVF | 94.57 | 16.7:1 |
100PHEA | 80.80 | 4.5:1 |
100PCEA | 52.42 | 1.3:1 |
75PNVF25PHEA | 85.80 | 7.4:1 |
50PNVF50PHEA | 83.55 | 5.3:1 |
75PNVF25PCEA | 80.78 | 3.9:1 |
50PNVF50PCEA | 71.71 | 2.1:1 |
Name | Dye Type | MW | pKa | Log p * |
---|---|---|---|---|
Orange II sodium salt | Anionic azo dye | 350.32 | 8.26, 11.4 | −0.95 |
Crystal violet | Cationic dye | 407.99 | 9.4 | 1.17 |
Congo red | neutral-ionic azo dye | 696.68 | 4.1 | 2.63 |
Composition | Linear Correlation (R2) | ||
---|---|---|---|
Zero-Order | First-Order | Higuchi | |
O2S released | |||
100PNVF | 0.8316 | 0.5845 | 0.9790 |
100PHEA | 0.8015 | 0.6420 | 0.9731 |
100PCEA | 0.9612 | 0.8070 | 0.9755 |
75PNVF25PHEA | 0.8706 | 0.6406 | 0.9844 |
50PNVF50PHEA | 0.7598 | 0.5858 | 0.9500 |
75PNVF25PCEA | 0.6560 | 0.5465 | 0.8962 |
50PNVF50PCEA | 0.8781 | 0.7097 | 0.9963 |
CV released | |||
100PNVF | 0.7525 | 0.4671 | 0.9491 |
100PHEA | 0.7649 | 0.5662 | 0.9538 |
100PCEA | 0.7830 | N/A | 0.8550 |
75PNVF25PHEA | 0.7209 | 0.5162 | 0.9354 |
50PNVF50PHEA | 0.9430 | 0.7167 | 0.9954 |
75PNVF25PCEA | 0.5175 | N/A | 0.7613 |
50PNVF50PCEA | 0.4982 | N/A | 0.6590 |
CR released | |||
100PNVF | 0.9063 | 0.8192 | 0.9835 |
100PHEA | 0.9316 | 0.9014 | 0.9869 |
100PCEA | 0.9639 | 0.7331 | 0.9394 |
75PNVF25PHEA | 0.9876 | 0.9112 | 0.9103 |
50PNVF50PHEA | 0.9184 | 0.8591 | 0.9976 |
75PNVF25PCEA | 0.9482 | 0.8732 | 0.9762 |
50PNVF50PCEA | 0.9448 | 0.9812 | 0.9866 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yooyod, M.; Ross, S.; Phewchan, P.; Daengmankhong, J.; Pinthong, T.; Tuancharoensri, N.; Mahasaranon, S.; Viyoch, J.; Ross, G.M. Homo- and Copolymer Hydrogels Based on N-Vinylformamide: An Investigation of the Impact of Water Structure on Controlled Release. Gels 2023, 9, 333. https://doi.org/10.3390/gels9040333
Yooyod M, Ross S, Phewchan P, Daengmankhong J, Pinthong T, Tuancharoensri N, Mahasaranon S, Viyoch J, Ross GM. Homo- and Copolymer Hydrogels Based on N-Vinylformamide: An Investigation of the Impact of Water Structure on Controlled Release. Gels. 2023; 9(4):333. https://doi.org/10.3390/gels9040333
Chicago/Turabian StyleYooyod, Maytinee, Sukunya Ross, Premchirakorn Phewchan, Jinjutha Daengmankhong, Thanyaporn Pinthong, Nantaprapa Tuancharoensri, Sararat Mahasaranon, Jarupa Viyoch, and Gareth M. Ross. 2023. "Homo- and Copolymer Hydrogels Based on N-Vinylformamide: An Investigation of the Impact of Water Structure on Controlled Release" Gels 9, no. 4: 333. https://doi.org/10.3390/gels9040333
APA StyleYooyod, M., Ross, S., Phewchan, P., Daengmankhong, J., Pinthong, T., Tuancharoensri, N., Mahasaranon, S., Viyoch, J., & Ross, G. M. (2023). Homo- and Copolymer Hydrogels Based on N-Vinylformamide: An Investigation of the Impact of Water Structure on Controlled Release. Gels, 9(4), 333. https://doi.org/10.3390/gels9040333