Temperature-Responsive Hydrogel for Silver Sulfadiazine Drug Delivery: Optimized Design and In Vitro/In Vivo Evaluation
<p>Storage modulus (G′) of temperature-responsive hydrogels at temperature (<b>a</b>) 10–37 °C and (<b>b</b>) 30–60 °C. (<b>c</b>) Cumulative percentage of SSD release from temperature-responsive hydrogels.</p> "> Figure 2
<p>Photographs of inhibition zone on SSD-loaded temperature-responsive hydrogels against <span class="html-italic">S. aureus</span>.</p> "> Figure 3
<p>Three-dimensional response surface of LCST as a function of biocellulose percentage and PF127 percentage.</p> "> Figure 4
<p>Three-dimensional response surface of G′ as a function of biocellulose percentage and PF127 percentage.</p> "> Figure 5
<p>Three-dimensional response surface of t<sub>50%</sub> as a function of biocellulose percentage and PF127 percentage.</p> "> Figure 6
<p>Three-dimensional response surface of inhibition zone diameter as a function of biocellulose percentage and PF127 percentage.</p> "> Figure 7
<p>(<b>a</b>) LCST and storage modulus (G′) of optimum temperature-responsive hydrogel formulation as a function of temperature, (<b>b</b>) cumulative percentage of SSD release from optimum temperature-responsive hydrogel formulation, and (<b>c</b>) photographs of inhibition zone on optimum SSD-loaded temperature-responsive hydrogel formulation against <span class="html-italic">S. aureus</span>.</p> "> Figure 8
<p>(<b>a</b>) HaCaT cell viability after treatment with temperature-responsive hydrogel loaded at different SSD concentrations, (<b>b</b>) HaCaT cell morphology before treatment, and (<b>c</b>) after 24 h of treatment with SSD-loaded temperature-responsive hydrogel at indicated concentrations.</p> "> Figure 9
<p>Arrangement of application sites for (<b>a</b>) dermal sensitization assay, and (<b>b</b>) animal irritation test.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimisation of Temperature-Responsive Hydrogel Formulation Using Response Surface Methodology (RSM)
2.2. Statistical Model and Analysis of LCST
2.2.1. Statistical Model and Analysis of G′
2.2.2. Statistical Model and Analysis of t50%
2.2.3. Statistical Model and Analysis of Inhibition Zone Diameter against S. aureus
2.2.4. Verification of Regression Model on Diagnostic Plot
2.2.5. Optimisation and Model Validation
2.3. In Vitro Cytotoxicity Test
2.4. In Vivo (Animal) Dermal Test
2.4.1. Dermal Sensitization
2.4.2. Animal Irritation
3. Conclusions
4. Materials and Methods
4.1. Materials
4.1.1. Synthesis of Temperature-Responsive Hydrogel
4.1.2. Optimisation of Temperature-Responsive Hydrogel Formulation
4.1.3. DOE
4.1.4. Model Fitting and Statistical Analysis
4.1.5. Condition Optimisation
4.1.6. In Vitro Cytotoxicity Test
4.1.7. HaCaT Cell Culture
4.1.8. MTT Assay
4.1.9. In Vivo (Animal) Dermal Test
4.1.10. Dermal Sensitization
4.1.11. Induction Phase
4.1.12. Challenge Phase
4.1.13. Animal Irritation
4.2. Characterisation of Temperature-Responsive Hydrogel
Rheological Property
4.3. Performance Assessment of Temperature-Responsive Hydrogel
4.3.1. In Vitro Drug Delivery Study
4.3.2. Antimicrobial Activity
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ilochonwu, B.C.; Urtti, A.; Hennink, W.E.; Vermonden, T. Intravitreal Hydrogels for Sustained Release of Therapeutic Proteins. J. Control. Release 2020, 326, 419–441. [Google Scholar] [CrossRef] [PubMed]
- Zubik, K.; Singhsa, P.; Wang, Y.; Manuspiya, H.; Narain, R. Thermo-Responsive Poly(n-Isopropylacrylamide)- Cellulose Nanocrystals Hybrid Hydrogels for Wound Dressing. Polymers 2017, 9, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahram, M.; Mohseni, N.; Moghtader, M. An Introduction to Hydrogels and Some Recent Applications. In Emerging Concepts in Analysis and Applications of Hydrogels; InTech: Vienna, Austria, 2016. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Matsunaga, Y.T. Thermo-Responsive Polymers and Their Application as Smart Biomaterials. J. Mater. Chem. B 2017, 5, 4307–4321. [Google Scholar] [CrossRef] [PubMed]
- Sponchioni, M.; Capasso, U.; Moscatelli, D. Thermo-Responsive Polymers: Applications of Smart Materials in Drug Delivery and Tissue Engineering. Mater. Sci. Eng. C 2019, 102, 589–605. [Google Scholar] [CrossRef]
- Dang, L.H.; Nguyen, T.H.; Tran, H.L.B.; Doan, V.N.; Tran, N.Q. Injectable Nanocurcumin-Formulated Chitosan-g-Pluronic Hydrogel Exhibiting a Great Potential for Burn Treatment. J. Healthc. Eng. 2018, 2018, 5754890. [Google Scholar] [CrossRef]
- Dang, L.H.; Huynh, N.T.; Pham, N.O.; Nguyen, C.T.; Vu, M.T.; Dinh, V.T.; Le, V.T.; Tran, N.Q. Injectable Nanocurcumin-Dispersed Gelatin-Pluronic Nanocomposite Hydrogel Platform for Burn Wound Treatment. Bull. Mater. Sci. 2019, 42, 71. [Google Scholar] [CrossRef] [Green Version]
- Popovici, C.; Popa, M.; Sunel, V.; Atanase, L.I.; Ichim, D.L. Drug Delivery Systems Based on Pluronic Micelles with Antimicrobial Activity. Polymers 2022, 14, 3007. [Google Scholar] [CrossRef]
- Moreno, E.; Schwartz, J.; Larrañeta, E.; Nguewa, P.A.; Sanmartín, C.; Agüeros, M.; Irache, J.M.; Espuelas, S. Thermosensitive Hydrogels of Poly(Methyl Vinyl Ether-Co-Maleic Anhydride)—Pluronic® F127 Copolymers for Controlled Protein Release. Int. J. Pharm. 2014, 459, 1–9. [Google Scholar] [CrossRef]
- Tuyet Phan, M.T.; Pham, L.N.; Nguyen, L.H.; To, L.P. Investigation on Synthesis of Hydrogel Starting from Vietnamese Pineapple Leaf Waste-Derived Carboxymethylcellulose. J. Anal. Methods Chem. 2021, 2021, 6639964. [Google Scholar] [CrossRef]
- AL-Rajabi, M.M.; Teow, Y.H. Effect of Sodium Hydroxide/Urea/Deionised Water Solution Ratio on the Solubility of Oil Palm Empty Fruit Bunches Extracted Biocellulose. ASM Sci. J. 2021, 16, 1–6. [Google Scholar] [CrossRef]
- Teow, Y.; Ming, K.; Mohammad, A. Synthesis of Cellulose Hydrogel for Copper (II) Ions Adsorption. J. Environ. Chem. Eng. 2018, 6, 4588–4597. [Google Scholar] [CrossRef]
- Khozemy, E.E.; Nasef, S.M.; Mahmoud, G.A. Synthesis and Characterization of Antimicrobial Nanocomposite Hydrogel Based on Wheat Flour and Poly (Vinyl Alcohol) Using γ-Irradiation. Adv. Polym. Technol. 2018, 37, 3252–3261. [Google Scholar] [CrossRef]
- Church, D.; Elsayed, S.; Reid, O.; Winston, B.; Lindsay, R. Burn Wound Infections. Clin. Microbiol. Rev. 2006, 19, 403–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soedjana, H.; Nadia, J.; Sundoro, A.; Hasibuan, L.; Rubianti, I.W.; Putri, A.C.; Septrina, R.; Riestiano, B.E.; Prasetyo, A.T.; Harianti, S. The Profile Of Severe Burn Injury Patients With Sepsis In Hasan Sadikin Bandung General HospitaL. Ann. Burns Fire Disasters 2020, 33, 312. [Google Scholar]
- Liu, X.; Gan, H.; Hu, C.; Sun, W.; Zhu, X.; Meng, Z.; Gu, R.; Wu, Z.; Dou, G. Silver Sulfadiazine Nanosuspension-Loaded Thermosensitive Hydrogel as a Topical Antibacterial Agent. Int. J. Nanomed. 2019, 14, 289–300. [Google Scholar] [CrossRef] [Green Version]
- Khattak, S.; Qin, X.T.; Wahid, F.; Huang, L.H.; Xie, Y.Y.; Jia, S.R.; Zhong, C. Permeation of Silver Sulfadiazine into TEMPO-Oxidized Bacterial Cellulose as an Antibacterial Agent. Front. Bioeng. Biotechnol. 2021, 8, 616467. [Google Scholar] [CrossRef]
- AL-Rajabi, M.M.; Teow, Y.H. Synthesis of Thermoresponsive Composite Hydrogel from Pluronic F127 Reinforced by Oil Palm Empty Fruit Bunches-Extracted Cellulose for Silver Sulfadiazine Drug Delivery. Sustain. Chem. Pharm. 2023, 31, 100939. [Google Scholar] [CrossRef]
- Jung, Y.-S.; Park, W.; Park, H.; Lee, D.K.; Na, K. Thermo-Sensitive Injectable Hydrogel Based on the Physical Mixing of Hyaluronic Acid and Pluronic f-127 for Sustained NSAID Delivery. Carbohydr. Polym. 2017, 156, 403–408. [Google Scholar] [CrossRef]
- Al-Rajabi, M.M.; Teow, Y.H. Green Synthesis of Thermo-Responsive Hydrogel from Oil Palm Empty Fruit Bunches Cellulose for Sustained Drug Delivery. Polymers 2021, 13, 2153. [Google Scholar] [CrossRef]
- Huang, K.; Lee, B.P.; Ingram, D.R.; Messersmith, P.B. Synthesis and Characterization of Self-Assembling Block Copolymers Containing Adhesive Moieties. Biomacromolecules 2002, 3, 397–406. [Google Scholar] [CrossRef]
- Katas, H.; Thian Sian, T.; Abdul Ghaf, M. Topical Temperature-Sensitive Gel Containing DsiRNA-Chitosan Nanoparticles for Potential Treatment of Skin Cancer. Trends Med. Res. 2017, 12, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Garala, K.; Joshi, P.; Patel, J.; Ramkishan, A.; Shah, M. Formulation and Evaluation of Periodontal in Situ Gel. Int. J. Pharm. Investig. 2013, 3, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abudula, T.; Gauthaman, K.; Mostafavi, A.; Alshahrie, A.; Salah, N.; Morganti, P.; Chianese, A.; Tamayol, A.; Memic, A. Sustainable Drug Release from Polycaprolactone Coated Chitin-Lignin Gel Fibrous Scaffolds. Sci. Rep. 2020, 10, 20428. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, A.P.S.; Venkatasubbu, G.D. Sustained Release of Amoxicillin from Hydroxyapatite Nanocomposite for Bone Infections. Prog. Biomater. 2018, 7, 289–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, K.C.; Teow, Y.H.; Mohammad, A.W. Optimization of Nanocomposite Conductive Membrane Formulation and Operating Parameters for Electrically-Enhanced Palm Oil Mill Effluent Filtration Using Response Surface Methodology. Process Saf. Environ. Prot. 2019, 126, 297–308. [Google Scholar] [CrossRef]
- Desai, K.M.; Survase, S.A.; Saudagar, P.S.; Lele, S.S.; Singhal, R.S. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in Fermentation Media Optimization: Case Study of Fermentative Production of Scleroglucan. Biochem. Eng. J. 2008, 41, 266–273. [Google Scholar] [CrossRef]
- Bahadir, K.K.; Rauf, M.A. Response Surface Methodology (RSM) Analysis of Photoinduced Decoloration of Toludine Blue. Chem. Eng. J. 2008, 136, 25–30. [Google Scholar] [CrossRef]
- Kraisit, P.; Limmatvapirat, S.; Nunthanid, J.; Sriamornsak, P.; Luangtana-Anan, M. Preparation and Characterization of Hydroxypropyl Methylcellulose/Polycarbophil Mucoadhesive Blend Films Using a Mixture Design Approach. Chem. Pharm. Bull. 2017, 65, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Yeom, D.W.; Song, Y.S.; Kim, S.R.; Lee, S.G.; Kang, M.H.; Lee, S.; Choi, Y.W. Development and Optimization of a Self-Microemulsifying Drug Delivery System for Atorvastatin Calcium by Using D-Optimal Mixture Design. Int. J. Nanomed. 2015, 10, 3865–3878. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.-R.C.; Moon, H.K. Effect of Silver Sulfadiazine on the Skin Cell Proliferation and Wound Healing Process in Hairless Mouse 2nd Degree Burn Model. J. Korean Pharm. Sci. 2002, 32, 113–117. [Google Scholar] [CrossRef]
- Lee, A.R.C.; Leem, H.; Lee, J.; Park, K.C. Reversal of Silver Sulfadiazine-Impaired Wound Healing by Epidermal Growth Factor. Biomaterials 2005, 26, 4670–4676. [Google Scholar] [CrossRef]
- King Pharmaceuticals. Silvadene® Cream 1% (Silver Sulfadiazine); King Pharmaceuticals, Inc.: Bristol, VA, USA, 2012. [Google Scholar]
- Kulick, M.I.; Wong, R.; Okarma, T.B.; Falces, E.; Berkowitz, R.L. Prospective Study of Side Effects Associated with the Use of Silver Sulfadiazine in Severely Burned Patients. Ann Plast Surg. 1985, 14, 407–419. [Google Scholar] [CrossRef] [PubMed]
- 10993-10; Biological Evaluation of Medical Devices-Tests for Irritation and Skin Sensitization. Iternational Organization for Standardization: Geneva, Switzerland, 2010.
- Al-Rajabi, M.M.; Haan, T.Y. Green Extraction Method of Cellulose Fibers from Oil Palm Empty Fruit Bunches. J. Kejuruter. 2022, 34, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Bodratti, A.M.; Alexandridis, P. Formulation of Poloxamers for Drug Delivery. J. Funct. Biomater 2018, 9, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fakhari, A.; Corcoran, M.; Schwarz, A. Thermogelling Properties of Purified Poloxamer 407. Heliyon 2017, 3, e00390. [Google Scholar] [CrossRef] [PubMed]
- Schmolka, I.R. Artificial Skin I. Preparation and Properties of Pluronic F-127 Gels for Treatment of Burns. J. Biomed. Mater. Res. 1972, 6, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Alshaibani, A.M.; Yaakob, Z.; Alsobaai, A.M.; Sahri, M. Optimization of Pd-b/γ-Al2O3 Catalyst Preparation for Palm Oil Hydrogenation by Response Surface Methodology (RSM). Braz. J. Chem. Eng. 2014, 31, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Branski, L.K.; Al-Mousawi, A.; Rivero, H.; Jeschke, M.G.; Sanford, A.P.; Herndon, D.N. Emerging Infections in Burns. Surg. Infect. (Larchmt) 2009, 10, 389–397. [Google Scholar] [CrossRef] [Green Version]
- White, M.D.; Bosio, C.M.; Duplantis, B.N.; Nano, F. Human Body Temperature and New Approaches to Constructing Temperature-Sensitive Bacterial Vaccines. Cell. Mol. Life Sci. 2011, 68, 3019–3031. [Google Scholar] [CrossRef] [Green Version]
- Ceresa, C.; Fracchia, L.; Marchetti, A.; Rinaldi, M.; Bosetti, M. Injectable Scaffolds Enriched with Silver to Inhibit Bacterial Invasion in Tissue Regeneration. Materials 2019, 12, 1931. [Google Scholar] [CrossRef] [Green Version]
- 10993-5; Biological Evaluation of Medical Devices—Tests for in Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Dewan, M.; Sarkar, G.; Bhowmik, M.; Das, B.; Chattoapadhyay, A.K.; Rana, D.; Chattopadhyay, D. Effect of Gellan Gum on the Thermogelation Property and Drug Release Profile of Poloxamer 407 Based Ophthalmic Formulation. Int. J. Biol. Macromol. 2017, 102, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Al-Rajabi, M.M.; Haan, T.Y. Influence of Vertical Diffusion Cell Set-Up on In Vitro Silver Sulfadiazine Drug Release from Thermo-Responsive Cellulose Hydrogel. Mater. Sci. Forum 2021, 1030, 19–26. [Google Scholar]
- Mustafa, F.M.; Hodali, H.A. Use of Mesoporous Silicate Nanoparticles as Drug Carrier for Mefenamic Acid. IOP Conf. Ser. Mater. Sci. Eng. 2015, 92, 012018. [Google Scholar] [CrossRef]
Experimental Run | Independent Process Variables | Responses | ||||
---|---|---|---|---|---|---|
Biocellulose, A (w/v%) | PF127, B (w/v%) | LCST, Y1 (°C) | G′, Y2 (kPa) | t50%, Y3 (h) | Inhibition Zone Diameter, Y4 (mm) | |
1 | 1.50 | 25.00 | 19.00 | 55.00 | 16.00 | 21.00 |
2 | 0.00 | 15.00 | 45.30 | 2.70 | 1.75 | 18.10 |
3 | 1.50 | 25.00 | 19.00 | 59.00 | 16.50 | 22.00 |
4 | 3.00 | 15.00 | 38.40 | 17.70 | 9.22 | 21.80 |
5 | 1.50 | 25.00 | 18.00 | 50.00 | 15.00 | 20.00 |
6 | 3.00 | 35.00 | 15.00 | 61.40 | 26.43 | 23.00 |
7 | 0.00 | 35.00 | 15.80 | 16.80 | 12.24 | 22.10 |
8 | 1.50 | 10.86 | 51.30 | 3.00 | 1.98 | 16.00 |
9 | 3.62 | 25.00 | 17.50 | 73.90 | 25.56 | 25.00 |
10 | 1.50 | 25.00 | 19.50 | 54.00 | 18.28 | 19.00 |
11 | 1.50 | 25.00 | 18.00 | 71.00 | 14.00 | 20.70 |
12 | 0.00 | 25.00 | 21.30 | 13.90 | 9.32 | 19.60 |
13 | 1.50 | 39.14 | 11.70 | 68.50 | 24.12 | 21.10 |
14 | 1.50 | 25.00 | 20.00 | 59.00 | 19.80 | 21.00 |
Response | Model Terms | Sum of Squares (SS) | Degree of Freedom (DF) | Mean Square (MS) | F-Value | Prob > F | |
---|---|---|---|---|---|---|---|
Quadratic model | 1889.65 | 5 | 377.93 | 215.08 | <0.0001 | Significant | |
A | 35.61 | 1 | 35.61 | 20.26 | 0.0028 | ||
B | 1347.42 | 1 | 1347.42 | 766.81 | <0.0001 | ||
AB | 9.30 | 1 | 9.30 | 5.29 | 0.0549 | ||
A2 | 12.54 | 1 | 12.54 | 7.14 | 0.0319 | ||
B2 | 357.26 | 1 | 357.26 | 203.31 | <0.0001 | ||
Residual | 12.30 | 7 | 1.76 | ||||
Lack of Fit | 9.47 | 3 | 3.16 | 4.46 | 0.0915 | Not significant | |
Pure Error | 2.83 | 4 | 0.71 | ||||
Cor Total | 1910.91 | 13 | |||||
R2 = 0.9935, R2adj = 0.9889, Predicted R2 = 0.9611, Adequate precision = 41.0773 | |||||||
A—biocellulose percentage, B—PF127 percentage |
Response | Model Terms | SS | DF | MS | F-Value | Prob > F | |
---|---|---|---|---|---|---|---|
Quadratic model | 16.41 | 5 | 3.28 | 74.58 | <0.0001 | Significant | |
A | 3.08 | 1 | 3.08 | 70.03 | <0.0001 | ||
B | 9.65 | 1 | 9.65 | 219.23 | <0.0001 | ||
AB | 0.0853 | 1 | 0.08 | 1.94 | 0.2063 | ||
A2 | 1.46 | 1 | 1.46 | 33.11 | 0.0007 | ||
B2 | 3.96 | 1 | 3.96 | 89.93 | <0.0001 | ||
Residual | 0.3080 | 7 | 0.04 | ||||
Lack of Fit | 0.2552 | 3 | 0.08 | 6.44 | 0.0519 | Not significant | |
Pure Error | 0.0528 | 4 | 0.01 | ||||
Cor Total | 16.94 | 13 | |||||
R2 = 0.9816, R2adj = 0.9684, Predicted R2 = 0.7992, Adequate precision = 24.0200 |
Response | Model Terms | SS | DF | MS | F-value | Prob > F | |
---|---|---|---|---|---|---|---|
Quadratic model | 737.95 | 5 | 147.59 | 40.21 | <0.0001 | Significant | |
A | 78.89 | 1 | 78.89 | 21.49 | 0.0024 | ||
B | 271.13 | 1 | 271.13 | 73.86 | <0.0001 | ||
AB | 11.29 | 1 | 11.29 | 3.08 | 0.1229 | ||
A2 | 2.64 | 1 | 2.64 | 0.72 | 0.4243 | ||
B2 | 38.10 | 1 | 38.10 | 10.38 | 0.0146 | ||
Residual | 25.69 | 7 | 3.67 | ||||
Lack of Fit | 6.44 | 3 | 2.15 | 0.44 | 0.7336 | Not significant | |
Pure Error | 19.26 | 4 | 4.81 | ||||
Cor Total | 781.75 | 13 | |||||
R2 = 0.9664, R2adj = 0.9423, Predicted R2 = 0.8660, Adequate precision = 19.8750 |
Response | Model Terms | SS | DF | MS | F-Value | Prob > F | |
---|---|---|---|---|---|---|---|
Quadratic model | 54.72 | 5 | 10.94 | 14.11 | 0.0015 | Significant | |
A | 12.40 | 1 | 12.40 | 15.98 | 0.0052 | ||
B | 18.92 | 1 | 18.92 | 24.39 | 0.0017 | ||
AB | 1.96 | 1 | 1.96 | 2.53 | 0.1560 | ||
A2 | 7.69 | 1 | 7.69 | 9.91 | 0.0162 | ||
B2 | 5.53 | 1 | 5.53 | 7.13 | 0.0320 | ||
Residual | 5.43 | 7 | 0.78 | ||||
Lack of Fit | 1.10 | 3 | 0.37 | 0.34 | 0.7989 | Not significant | |
Pure Error | 4.33 | 4 | 1.08 | ||||
Cor Total | 62.39 | 13 | |||||
R2 = 0.9097, R2adj = 0.8452, Predicted R2 = 0.6665, Adequate precision = 13.4169 |
Parameter | Unit | Value | |
---|---|---|---|
Optimised process variables | Biocellulose percentage | w/v% | 3.00 |
PF127 percentage | w/v% | 19.05 | |
Predicted responses | LCST | °C | 28.00 |
G′ | kPa | 37.45 | |
t50% | hr | 15.66 | |
Inhibition zone diameter | mm | 22.39 | |
Desirability | --- | --- | 0.68 |
Response | Predicted Value | Experimental Value | Percentage of Error (%) |
---|---|---|---|
LCST (°C) | 28.00 | 26.00 | −7.69 |
G′ (kPa) | 37.45 | 38.80 | 3.48 |
t50% (h) | 15.66 | 17.26 | 9.33 |
Inhibition zone diameter (mm) | 22.39 | 23.36 | 4.18 |
Number of Animals Showed Response Index | ||||
---|---|---|---|---|
Response Index | Erythema | Oedema | Erythema | Oedema |
Duration after patch removal | 24 h | 48 h | ||
Test animals (total number 10) | 0 animals | 0 animals | 0 animals | 0 animals |
Negative control test animals (total number 5) | 0 animals | 0 animals | 0 animals | 0 animals |
Positive control test animals (total number 10) | 10 animals | 10 animals | 10 animals | 10 animals |
Animal Number | Animal Sex | PIS | |
---|---|---|---|
SSD-Temperature-Responsive Hydrogel | Negative Control | ||
r010L | Male | 0 | 0 |
r012L | Male | 0 | 0 |
r013L | Male | 0 | 0 |
PII | 0 | 0 |
Animal Number | Animal Sex | PIS |
---|---|---|
r003L | Female | 8 |
r004L | Male | 8 |
r006L | Male | 8 |
PII | 8 |
Independent Process Variables | Coded Levels | |||
---|---|---|---|---|
−1 | 0 | +1 | ||
A | w/v% | 0.0 | 1.5 | 3.0 |
B | w/v% | 15 | 25 | 35 |
Experimental Run | Independent Process Variables | |
---|---|---|
Biocellulose, A (w/v%) | PF127, B (w/v%) | |
1 | 1.50 | 25.00 |
2 | 0.00 | 15.00 |
3 | 1.50 | 25.00 |
4 | 3.00 | 15.00 |
5 | 1.50 | 25.00 |
6 | 3.00 | 35.00 |
7 | 0.00 | 35.00 |
8 | 1.50 | 10.86 |
9 | 3.62 | 25.00 |
10 | 1.50 | 25.00 |
11 | 1.50 | 25.00 |
12 | 0.00 | 25.00 |
13 | 1.50 | 39.14 |
14 | 1.50 | 25.00 |
Reaction | Irritation Score |
---|---|
Erythema and eschar formation | |
No erythema | 0 |
Very slight erythema | 1 |
Well-defined erythema | 2 |
Moderate erythema | 3 |
Severe erythema (beet-redness) to eschar formation preventing | 4 |
Oedema formation | |
No oedema | 0 |
Very slight oedema | 1 |
Well-defined oedema | 2 |
Moderate oedema | 3 |
Severe oedema | 4 |
Maximal possible score for irritation | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AL-Rajabi, M.M.; Teow, Y.H. Temperature-Responsive Hydrogel for Silver Sulfadiazine Drug Delivery: Optimized Design and In Vitro/In Vivo Evaluation. Gels 2023, 9, 329. https://doi.org/10.3390/gels9040329
AL-Rajabi MM, Teow YH. Temperature-Responsive Hydrogel for Silver Sulfadiazine Drug Delivery: Optimized Design and In Vitro/In Vivo Evaluation. Gels. 2023; 9(4):329. https://doi.org/10.3390/gels9040329
Chicago/Turabian StyleAL-Rajabi, Maha Mohammad, and Yeit Haan Teow. 2023. "Temperature-Responsive Hydrogel for Silver Sulfadiazine Drug Delivery: Optimized Design and In Vitro/In Vivo Evaluation" Gels 9, no. 4: 329. https://doi.org/10.3390/gels9040329
APA StyleAL-Rajabi, M. M., & Teow, Y. H. (2023). Temperature-Responsive Hydrogel for Silver Sulfadiazine Drug Delivery: Optimized Design and In Vitro/In Vivo Evaluation. Gels, 9(4), 329. https://doi.org/10.3390/gels9040329