Alkali Ion-Accelerated Gelation of MXene-Based Conductive Hydrogel for Flexible Sensing and Machine Learning-Assisted Recognition
"> Figure 1
<p>(<b>a</b>) Schematic diagram of preparation conductive PSBMA-LM hydrogel. (<b>b</b>,<b>c</b>) Tensile stress–strain curves and toughness and elastic modulus of PSBMA hydrogel with different PEGDA contents. (<b>d</b>,<b>e</b>) Tensile stress–strain curves and toughness and elastic modulus of PSBMA-L hydrogel with different LiCl contents. (<b>f</b>,<b>g</b>) Tensile stress–strain curves and toughness and elastic modulus of PSBMA-LM hydrogel with different MXene contents. SEM image of freeze-dried PSBMA hydrogel (<b>h</b>), PSBMA-L hydrogel (<b>i</b>), and PSBMA-LM hydrogel (<b>j</b>).</p> "> Figure 2
<p>(<b>a</b>) <sup>1</sup>H NMR spectra of PSBMA hydrogel. (<b>b</b>) <sup>1</sup>H NMR spectra of PSBMA-L hydrogel. (<b>c</b>) XPS spectra of Ti 2p spectra of MXene. (<b>d</b>) Rheological behavior test of PSBMA, PSBMA-L, and PSBMA-LM hydrogels. (<b>e</b>,<b>f</b>) FTIR spectra of freeze-dried PSBMA-M, PSBMA-LM, PSBMA-NM, and PSBMA-KM hydrogels. (<b>g</b>) Schematic of the lithium bond in PSBMA-LM hydrogel, the colored balls represent different atoms (red: oxygen atom; grey: carbon atom; blue: nitrogen atom; white: hydrogen atom).</p> "> Figure 3
<p>(<b>a</b>,<b>b</b>) The stress–strain curves of PSBMA-L and PSBMA-LM hydrogels within seven days at 25 °C. (<b>c</b>,<b>d</b>) The stress–strain curves of PSBMA-L and PSBMA-LM hydrogels within seven days at 50 °C. (<b>e</b>) Conductivity of PSBMA, PSBMA-L, and PSBMA-LM hydrogels. (<b>f</b>) Weight ratio of PSBMA, PSBMA-L, and PSBMA-LM hydrogels at the natural environment for different periods. Inset: Images of the as-prepared hydrogels. (<b>g</b>) Images of PSBMA-LM hydrogel before and after stretching at −20 °C.</p> "> Figure 4
<p>(<b>a</b>) Relative resistance changes in PSBMA-LM hydrogel-based sensor under a strain of 3%. (<b>b</b>) Real-time monitoring of pulse based on PSBMA-LM sensors. (<b>c</b>) Photographs of PSBMA-LM hydrogel sensor attached to finger for monitoring the bending motion and the relative resistance change in the sensor with different bending angles. (<b>d</b>) The schematic diagram of monitoring of electromyographic signals during arm movement by flexible sensing system. (<b>e</b>) Characteristic amplitude changes when the human body is not attached. (<b>f</b>) Characteristic amplitude changes when connected to human muscle surface. (<b>g</b>) Characteristic amplitude changes during arm muscle centrifugal movement. (<b>h</b>) Characteristic amplitude changes during knee movement.</p> "> Figure 5
<p>(<b>a</b>) The working principle behind the handwriting letter recognition system based on a PSBMA-LM hydrogel sensor. (<b>b</b>) Schematic diagram of the machine learning image recognition process based on the ResNet18 model. (<b>c</b>) Detailed framework of the ResNet18 model. (<b>d</b>) Confusion matrix of image recognition results based on ResNet18.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of Conductive Hydrogels
2.2. Mechanism of Accelerating Gelation
2.3. Mechanical and Electrical Properties
2.4. Hydrogel-Based Flexible Sensing Performance
2.5. Machine Learning
3. Conclusions
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heng, W.; Solomon, S.; Gao, W. Flexible electronics and devices as human-machine interfaces for medical robotics. Adv. Mater. 2022, 34, e2107902. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, R.; Akinwande, D.; Chang, J.S. Flexible electronic skin: From humanoids to humans. Proc. IEEE 2019, 107, 2011. [Google Scholar] [CrossRef]
- Vosgueritchian, M.; Tok, J.B.H.; Bao, Z. Light-emitting electronic skin. Nat. Photonics 2013, 7, 769. [Google Scholar] [CrossRef]
- Serrano, I.G.; Panda, J.; Denoel, F.; Vallin, O.; Phuyal, D.; Karis, O.; Kamalakar, M.V. Two-dimensional flexible high diffusive spin circuits. Nano Lett. 2019, 19, 666. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, H.; Zhang, H.; Maruyama, S.; Lin, L. The roadmap of graphene: From fundamental research to broad applications. Adv. Funct. Mater. 2022, 32, 2208378. [Google Scholar] [CrossRef]
- Pang, C.; Lee, G.Y.; Kim, T.I.; Kim, S.M.; Kim, H.N.; Ahn, S.H.; Suh, K.Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibers. Nat. Mater. 2012, 11, 795. [Google Scholar] [CrossRef]
- Kim, S.H.; Jung, S.; Yoon, I.S.; Lee, C.; Oh, Y.; Hong, J.M. Ultrastretchable conductor fabricated on skin-like hydrogel–elastomer hybrid substrates for skin electronics. Adv. Mater. 2018, 30, e1800109. [Google Scholar] [CrossRef] [PubMed]
- Rauner, N.; Meuris, M.; Zoric, M.; Tiller, J.C. Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics. Nature 2017, 543, 407. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Yang, F.; Wang, L.; Wu, D. Highly elastic and ultratough hybrid ionic–covalent hydrogels with tunable structures and mechanics. Adv. Mater. 2018, 30, e1707071. [Google Scholar] [CrossRef]
- Xu, C.; Yang, K.; Zhu, G.; Ou, C.; Jiang, J.; Zhuravlev, E.; Zhang, Y. Anti-freezing multifunctional conductive hydrogels: From structure design to flexible electronic devices. Mater. Chem. Front. 2024, 8, 381. [Google Scholar] [CrossRef]
- Zhang, X.F.; Ma, X.; Hou, T.; Guo, K.; Yin, J.; Wang, Z.; Shu, L.; He, M.; Yao, J. Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels. Angew. Chem. Int. Ed. 2019, 58, 7366. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Pandey, J.; Jeong, J.; Cho, W.; Lee, S.; Cho, S.; Yang, H. Phase engineering of 2D materials. Chem. Rev. 2023, 123, 11230. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xia, Y.; Zeng, M.; Fu, L. Facet engineering of ultrathin two-dimensional materials. Chem. Soc. Rev. 2022, 51, 7327. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; He, L.; Zhang, Y.; Nong, H.; Li, S.; Wu, Q.; Tan, J.; Liu, B. Locally strained 2D materials: Preparation, properties, and applications. Adv. Mater. 2024, 36, 2314145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Z.; El-Demellawi, J.K.; Jiang, Q.; Ge, G.; Liang, H.; Lee, K.; Dong, X.; Alshareef, H.N. MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev. 2020, 49, 7229. [Google Scholar] [CrossRef]
- Gao, F.; Xue, C.; Zhang, T.; Zhang, L.; Zhu, G.Y.; Ou, C.; Zhang, Y.Z.; Dong, X. MXene-based functional platforms for tumor therapy. Adv. Mater. 2023, 35, e2302559. [Google Scholar] [CrossRef]
- Wei, B.; Fu, Z.; Legut, D.; Germann, T.C.; Du, S.; Zhang, H.; Francisco, J.S.; Zhang, R. Rational design of highly stable and active MXene-based bifunctional ORR/OER double-atom catalysts. Adv. Mater. 2021, 33, e2102595. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.B.; Sun, R.; Liu, Y.; Liu, Z.; Zhou, A.; Yu, Z.Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367. [Google Scholar] [CrossRef]
- Yun, T.; Kim, H.; Iqbal, A.; Cho, Y.S.; Lee, G.S.; Kim, M.K.; Kim, S.J.; Kim, D.; Gogotsi, Y.; Kim, S.O.; et al. Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 2020, 32, 2070064. [Google Scholar] [CrossRef]
- Yang, Z.; Lv, S.; Zhang, Y.; Wang, J.; Jiang, L.; Jia, X.; Wang, C.; Yan, X.; Sun, P.; Duan, Y.; et al. Self-assembly 3D porous cumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano-Macro Lett. 2022, 14, 56. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Lee, K.H.; Anjum, D.H.; Sougrat, R.; Jiang, Q.; Kim, H.; Alshareef, H.N. MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 2018, 4, eaat0098. [Google Scholar] [CrossRef] [PubMed]
- Ge, G.; Zhang, Y.Z.; Zhang, W.; Yuan, W.; El-Demellawi, J.K.; Zhang, P.; Di Fabrizio, E.; Dong, X.; Alshareef, H.N. Ti3C2Tx MXene-activated fast gelation of stretchable and self-healing hydrogels: A molecular approach. ACS Nano 2021, 15, 2698. [Google Scholar] [CrossRef]
- Ge, H.; Zhao, Y.; Yang, H.; Wang, M. Raman spectroscopy study for the systems (LiCl-H2O and LiCl-MgCl2-H2O): Excess spectra and hydration shell spectra. Spectrochim. Acta A 2022, 267, 120543. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-F.; Li, H.-X.; Zhu, Y.-C.; Zuo, G.-F. Theoretical prediction and the characters of a new type of weak interaction: A single-electron sodium bond system with H–Be as an electron donor and Na–Y (Y = H, OH, F, CCH, CN and NC) as electron acceptors. Chem. Phys. Lett. 2009, 482, 160. [Google Scholar] [CrossRef]
- Yiming, B.; Han, Y.; Han, Z.; Zhang, X.; Li, Y.; Lian, W.; Zhang, M.; Yin, J.; Sun, T.; Wu, Z.; et al. A mechanically robust and versatile liquid-free ionic conductive elastomer. Adv. Mater. 2021, 33, e2006111. [Google Scholar] [CrossRef]
- Tian, Z.; Hou, L.; Feng, D.; Jiao, Y.; Wu, P. Modulating the coordination environment of lithium bonds for high performance polymer electrolyte batteries. ACS Nano 2023, 17, 3786. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Liu, F.; Abdiryim, T.; Liu, X. Self-healing hydrogels: From synthesis to multiple applications. ACS Mater. Lett. 2023, 5, 1787. [Google Scholar] [CrossRef]
- Gao, C.; Wang, H.; Zhu, Z.; Zhang, L.; Yang, Y.; Cao, G.; Yan, X. A high-performance memristor device and its filter circuit application. Phys. Status Solidi—Rapid Res. Lett. 2020, 14, 2000389. [Google Scholar] [CrossRef]
- Rakhmatulin, I. The electronic board to replace the reference voltage on the earlobe for EEG measurement. Measurement 2021, 173, 108673. [Google Scholar] [CrossRef]
- Zhang, C. Machine-learning design. Nat. Energy 2018, 3, 535. [Google Scholar] [CrossRef]
- Sonwane, S.; Chiddarwar, S. Automatic weld joint type recognition in intelligent welding using image features and machine learning algorithms. AI EDAM 2024, 37, e26. [Google Scholar] [CrossRef]
- Chen, K.; Lai, W.; Xiao, W.; Li, L.; Huang, S.; Xiao, X. Low-Temperature Adaptive Dual-Network MXene Nanocomposite Hydrogel as Flexible Wearable Strain Sensors. Micromachines 2023, 14, 1563. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, H.; Zhu, W.; Guan, L.; Yang, X.; Zvyagin, A.V.; Zhao, Y.; Shen, C.; Yang, B.; Lin, Q. Muscle-inspired MXene conductive hydrogels with anisotropy and low-temperature tolerance for wearable flexible sensors and arrays. Adv. Funct. Mater. 2021, 31, 2105264. [Google Scholar] [CrossRef]
- Li, S.-N.; Yu, Z.-R.; Guo, B.-F.; Guo, K.-Y.; Li, Y.; Gong, L.-X.; Zhao, L.; Bae, J.; Tang, L.-C. Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2TX MXene hydrogels for wide-temperature strain sensing. Nano Energy 2021, 90, 106502. [Google Scholar] [CrossRef]
- Li, Y.; Yan, J.; Liu, Y.; Xie, X.M. Super Tough and Intelligent Multibond Network Physical Hydrogels Facilitated by Ti3C2Tx MXene Nanosheets. ACS Nano 2022, 16, 1567. [Google Scholar] [CrossRef]
- Yin, H.; Liu, F.; Abdiryim, T.; Chen, J.; Liu, X. Sodium carboxymethyl cellulose and MXene reinforced multifunctional conductive hydrogels for multimodal sensors and flexible supercapacitors. Carbohydr. Polym. 2024, 327, 121677. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Yu, D.; Lu, P.; Song, Z.; Chen, W.; Zhang, F.; Li, B.; Wang, H.; Liu, W. TEMPO bacterial cellulose and MXene nanosheets synergistically promote tough hydrogels for intelligent wearable human-machine interaction. Carbohydr. Polym. 2024, 326, 121621. [Google Scholar] [CrossRef]
- Nie, Z.; Peng, K.; Lin, L.; Yang, J.; Cheng, Z.; Gan, Q.; Chen, Y.; Feng, C. A conductive hydrogel based on nature polymer agar with self-healing ability and stretchability for flexible sensors. Chem. Eng. J. 2023, 454, 139843. [Google Scholar] [CrossRef]
- Yuan, S.; Bai, J.; Li, S.; Ma, N.; Deng, S.; Zhu, H.; Li, T.; Zhang, T. A multifunctional and selective ionic flexible sensor with high environmental suitability for tactile perception. Adv. Funct. Mater. 2023, 34, 2309626. [Google Scholar] [CrossRef]
- Xue, P.; Valenzuela, C.; Ma, S.; Zhang, X.; Ma, J.; Chen, Y.; Xu, X.; Wang, L. Highly conductive MXene/PEDOT: PSS-integrated poly (N-Isopropylacrylamide) hydrogels for bioinspired somatosensory soft actuators. Adv. Funct. Mater. 2023, 33, 2214867. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, W.; Xu, C.; An, L.; Ou, C.; Gao, F.; Zhu, G.; Zhang, Y. Alkali Ion-Accelerated Gelation of MXene-Based Conductive Hydrogel for Flexible Sensing and Machine Learning-Assisted Recognition. Gels 2024, 10, 720. https://doi.org/10.3390/gels10110720
Na W, Xu C, An L, Ou C, Gao F, Zhu G, Zhang Y. Alkali Ion-Accelerated Gelation of MXene-Based Conductive Hydrogel for Flexible Sensing and Machine Learning-Assisted Recognition. Gels. 2024; 10(11):720. https://doi.org/10.3390/gels10110720
Chicago/Turabian StyleNa, Weidan, Chao Xu, Lei An, Changjin Ou, Fan Gao, Guoyin Zhu, and Yizhou Zhang. 2024. "Alkali Ion-Accelerated Gelation of MXene-Based Conductive Hydrogel for Flexible Sensing and Machine Learning-Assisted Recognition" Gels 10, no. 11: 720. https://doi.org/10.3390/gels10110720
APA StyleNa, W., Xu, C., An, L., Ou, C., Gao, F., Zhu, G., & Zhang, Y. (2024). Alkali Ion-Accelerated Gelation of MXene-Based Conductive Hydrogel for Flexible Sensing and Machine Learning-Assisted Recognition. Gels, 10(11), 720. https://doi.org/10.3390/gels10110720