Significant Enrichment of Potential Pathogenic Fungi in Soil Mediated by Flavonoids, Phenolic Acids, and Organic Acids
<p>Based on the OTU level, the composition of fungal community in different treatments was analyzed. (<b>a</b>) The Venn diagram of different treatments was constructed according to the OTU number. (<b>b</b>) The difference in fungal community diversity among different treatments was analyzed based on the OTU level. (<b>c</b>) PCoA analysis was conducted to analyze the composition of fungal communities in different treatments. (<b>d</b>) The main classification of fungal communities at the genus level in different treatments was analyzed. “*” means <span class="html-italic">p</span> < 0.05 and “**” means <span class="html-italic">p</span> < 0.01 by Kruskal–Wallis rank-sum test. CK: 20% sterile methanol solution, FLA: flavonoids; OA: organic acids, PA: phenolic acids.</p> "> Figure 2
<p>The genus level composition of fungal communities in different treatments was analyzed using heatmap visualization and ternary analysis. (<b>a</b>) The top 20 genera of each treatment were depicted in the heatmap. (<b>b</b>) Ternary analysis was also employed to evaluate and compare the fungal communities between different treatments at the genus level. (<b>c</b>) Significant changes in four major pathogenic fungal genera across different treatments. Different small letters represent significant differences between different treatments. CK: 20% sterile methanol solution, FLA: flavonoids; OA: organic acids, PA: phenolic acids.</p> "> Figure 3
<p>Changes in the main pathogenic fungi genera in fungal communities under different treatments and their relationship with soil factors. (<b>a</b>) Network heatmap showing the association between four major pathogenic fungal genera and soil enzyme activity. (<b>b</b>,<b>c</b>) are redundancy analysis (RDA) plots, showing the distribution of fungal genera and chemical indices on the RDA1 and RDA2 axes. Arrows represent the direction and intensity of chemical indices, dots represent different fungal genera, and the significance level is <span class="html-italic">p</span> = 0.004. “*” indicates <span class="html-italic">p</span> < 0.05, “**” indicates <span class="html-italic">p</span> < 0.01, and “***” indicates <span class="html-italic">p</span> < 0.001, for both the Pearson correlation and Mantel test.</p> "> Figure 4
<p>Functional predictions of fungal communities under different treatments were analyzed. (<b>a</b>) Clustering analysis was used to determine the functional groups in fungal communities under different treatments. (<b>b</b>) Principal Coordinate Analysis (PCoA) was used to evaluate the functional diversity and composition of fungal communities under different treatments. (<b>c</b>) The differences among the three functional groups across different treatments. Different small letters represent significant differences between different treatments. CK: 20% sterile methanol solution, FLA: flavonoids, OA: organic acids, PA: phenolic acids.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Materials
2.3. Experimental Design
2.4. Analysis of Soil Physico-Chemical Properties and Soil Enzyme Activities
2.5. Soil DNA Extraction and Sequencing
2.6. Bioinformatics Analysis
2.7. Statistical Analysis
3. Results
3.1. The Effects of Exogenous Material Addition on Soil Factors
3.2. The Influence of Exogenous Substances on the Structure of Soil Fungal Communities
3.3. Effects of Foreign Substances on Potential Fungal Pathogens
3.4. Relationship Between Soil Properties and Fungal Communities and Potential Pathogenic Fungi
3.5. The Addition of Exogenous Substances Resulted in Changes in the Structure of Functional Groups
4. Discussion
4.1. Additives Reduce the Diversity of Soil Fungal Communities
4.2. The Structural Composition of Soil Fungi Genera and Functional Communities Was Changed by the Addition
4.3. The Enrichment Mechanisms of Major Pathogenic Fungus Genera
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kamoun, S.; Furzer, O.; Jones, J.D.G.; Judelson, H.S.; Ali, G.S.; Dalio, R.J.D.; Roy, S.G.; Schena, L.; Zambounis, A.; Panabières, F.; et al. The Top 10 oomycete pathogens in molecular plant pathology. Mol. Plant Pathol. 2015, 16, 413–434. [Google Scholar] [CrossRef] [PubMed]
- Kanashiro, A.M.; Akiyama, D.Y.; Kupper, K.C.; Fill, T.P. Penicillium italicum: An Underexplored Postharvest Pathogen. Front. Microbiol. 2020, 11, 606852. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Ye, W.; Wu, J.; Xuan, M.; Li, Y.; Gao, J.; Wang, Y.; Wang, Y.; Dong, S.; Wang, Y. The MADS-box Transcription Factor PsMAD1 Is Involved in Zoosporogenesis and Pathogenesis of Phytophthora sojae. Front. Microbiol. 2018, 9, 2259. [Google Scholar] [CrossRef] [PubMed]
- Fahima, T.H.U.I.; Henis, Y. Quantitative assessment of the interaction between the antagonistic fungus Talaromyces flavus and the wilt pathogen Verticillium dahliae on eggplant roots. Plant Soil 1995, 176, 129–137. [Google Scholar] [CrossRef]
- Yu, S.; Wang, T.; Meng, Y.; Yao, S.; Wang, L.; Zheng, H.; Zhou, Y.; Song, Z.; Zhang, B. Leguminous cover crops and soya increased soil fungal diversity and suppressed pathotrophs caused by continuous cereal cropping. Front. Microbiol. 2022, 13, 993214. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, C.; Su, Y.; Peng, W.; Lu, R.; Liu, Y.; Huang, H.; He, X.; Yang, M.; Zhu, S. Soil Acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: Evidence from literature review and field trials. Agric. Ecosyst. Environ. 2022, 340, 108176. [Google Scholar] [CrossRef]
- Hu, L.; Robert, C.A.M.; Cadot, S.; Zhang, X.; Ye, M.; Li, B.; Manzo, D.; Chervet, N.; Steinger, T.; van der Heijden, M.G.A.; et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 2018, 9, 2738. [Google Scholar] [CrossRef] [PubMed]
- Sasse, J.; Martinoia, E.; Northen, T. Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? Trends Plant Sci. 2018, 23, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.; de Vries, F.T. Plant root exudation under drought: Implications for ecosystem functioning. New Phytol. 2020, 225, 1899–1905. [Google Scholar] [CrossRef]
- Li, M.; Song, Z.; Li, Z.; Qiao, R.; Zhang, P.; Ding, C.; Xie, J.; Chen, Y.; Guo, H. Populus root exudates are associated with rhizosphere microbial communities and symbiotic patterns. Front. Microbiol. 2022, 13, 1042944. [Google Scholar] [CrossRef] [PubMed]
- Siczek, A.; Frąc, M.; Wielbo, J.; Kidaj, D. Benefits of flavonoids and straw mulch application on soil microbial activity in pea rhizosphere. Int. J. Environ. Sci. Technol. 2018, 15, 755–764. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Zhang, J.; Yao, T.; Wei, D.; Wang, Y.; Wang, J. Effect of root exudates on beneficial microorganisms—Evidence from a continuous soybean monoculture. Plant Ecol. 2012, 213, 1883–1892. [Google Scholar] [CrossRef]
- Xiang, W.; Chen, J.; Zhang, F.; Huang, R.; Li, L. Autotoxicity in Panax notoginseng of root exudatesand their allelochemicals. Front. Plant Sci. 2022, 13, 1020626. [Google Scholar] [CrossRef]
- Guo, Y.; Lv, J.; Zhao, Q.; Dong, Y.; Dong, K. Cinnamic Acid Increased the Incidence of Fusarium Wilt by Increasing the Pathogenicity of Fusarium oxysporum and Reducing the Physiological and Biochemical Resistance of Faba Bean, Which Was Alleviated by Intercropping With Wheat. Front. Plant Sci. 2020, 11, 608389. [Google Scholar] [CrossRef] [PubMed]
- Jalali, B.L.; Suryanarayana, D. Organic acid spectrum of root exudates of wheat in relation to its root rot disease. Plant Soil 1974, 41, 425–427. [Google Scholar] [CrossRef]
- Meng, H.; Yan, Z.; Li, X. Effects of exogenous organic acids and flooding on root exudates, rhizosphere bacterial community structure, and iron plaque formation in Kandelia obovata seedlings. Sci. Total Environ. 2022, 830, 154695. [Google Scholar] [CrossRef] [PubMed]
- Macias-Benitez, S.; Garcia-Martinez, A.M.; Caballero Jimenez, P.; Gonzalez, J.M.; Tejada Moral, M.; Parrado Rubio, J. Rhizospheric Organic Acids as Biostimulants: Monitoring Feedbacks on Soil Microorganisms and Biochemical Properties. Front. Plant Sci. 2020, 11, 633. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, L.; Wang, L.; Wu, Q.; Li, K.; Guo, X. Autotoxin affects the rhizosphere microbial community structure by influencing the secretory characteristics of grapevine roots. Front. Microbiol. 2022, 13, 953424. [Google Scholar] [CrossRef] [PubMed]
- Dean, R.; VAN Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; DI Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef]
- Di, X.; Takken, F.L.W.; Tintor, N. How Phytohormones Shape Interactions between Plants and the Soil-Borne Fungus Fusarium oxysporum. Front. Plant Sci. 2016, 7, 170. [Google Scholar] [CrossRef] [PubMed]
- Pfliegler, W.P.; Pócsi, I.; Győri, Z.; Pusztahelyi, T. The Aspergilli and Their Mycotoxins: Metabolic Interactions With Plants and the Soil Biota. Front. Microbiol. 2020, 10, 2921. [Google Scholar] [CrossRef] [PubMed]
- Mawarda, P.C.; Mallon, C.A.; Le Roux, X.; van Elsas, J.D.; Salles, J.F. Interactions between Bacterial Inoculants and Native Soil Bacterial Community: The Case of Spore-forming Bacillus spp. FEMS Microbiol. Ecol. 2022, 98, 127. [Google Scholar] [CrossRef]
- Mallon, C.A.; Poly, F.; Le Roux, X.; Marring, I.; van Elsas, J.D.; Salles, J.F. Resource pulses can alleviate the biodiversity–invasion relationship in soil microbial communities. Ecology 2015, 96, 915–926. [Google Scholar] [CrossRef] [PubMed]
- Iijima, M.; Griffiths, B.; Bengough, A.G. Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand. New Phytol. 2010, 145, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Trofymow, J.A.; Coleman, D.C.; Cambardella, C. Rates of rhizodeposition and ammonium depletion in the rhizosphere of axenic oat roots. Plant Soil 1987, 97, 333–344. [Google Scholar] [CrossRef]
- Baudoin, E.; Benizri, E.; Guckert, A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol. Biochem. 2003, 35, 1183–1192. [Google Scholar] [CrossRef]
- Song, Y.; Li, X.; Yao, S.; Yang, X.; Jiang, X. Correlations between soil metabolomics and bacterial community structures in the pepper rhizosphere under plastic greenhouse cultivation. Sci. Total Environ. 2020, 728, 138439. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Geng, B.; Li, M.; Li, Z.; Liu, X.; Guo, H. Comprehensive analysis of environmental factors mediated microbial community succession in nitrogen conversion and utilization of ex situ fermentation system. Sci. Total Environ. 2021, 769, 145219. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Mcdonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; Desantis, T.Z.; Probst, A.; Andersen, G.L.; Knight, R.; Hugenholtz, P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012, 6, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.A.; Hamady, M.; Kelley, S.T.; Knight, R. Quantitative and Qualitative β Diversity Measures Lead to Different Insights into Factors That Structure Microbial Communities. Appl. Environ. Microb. 2007, 73, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.; Knight, R. UniFrac: A New Phylogenetic Method for Comparing Microbial Communities. Appl. Environ. Microb. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Baquerizo, M.; Eldridge, D.J.; Hamonts, K.; Singh, B.K. Ant colonies promote the diversity of soil microbial communities. ISME J. 2019, 13, 1114–1118. [Google Scholar] [CrossRef] [PubMed]
- Bollmann-Giolai, A.; Malone, J.G.; Arora, S. Diversity, detection and exploitation: Linking soil fungi and plant disease. Curr. Opin. Microbiol. 2022, 70, 102199. [Google Scholar] [CrossRef]
- Liu, R.; Yao, Y.; Guo, Z.; Li, Q.; Zhang, S. Plantation rhizosphere soil microbes promote soil-plant phosphorus feedback on the Tibetan Plateau. Plant Soil 2023, 501, 191–209. [Google Scholar] [CrossRef]
- Landi, L.; Valori, F.; Ascher, J.; Renella, G.; Falchini, L.; Nannipieri, P. Root exudate effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils. Soil Biol. Biochem. 2006, 38, 509–516. [Google Scholar] [CrossRef]
- Qu, X.H.; Wang, J.G. Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity. Appl. Soil Ecol. 2008, 39, 172–179. [Google Scholar] [CrossRef]
- Eilers, K.G.; Lauber, C.L.; Knight, R.; Fierer, N. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol. Biochem. 2010, 42, 896–903. [Google Scholar] [CrossRef]
- Yan, S.; Yin, L.; Dijkstra, F.A.; Wang, P.; Cheng, W. Priming effect on soil carbon decomposition by root exudate surrogates: A meta-analysis. Soil Biol. Biochem. 2023, 178, 108955. [Google Scholar] [CrossRef]
- Bag, S.; Mondal, A.; Majumder, A.; Mondal, S.K.; Banik, A. Flavonoid mediated selective cross-talk between plants and beneficial soil microbiome. Phytochem. Rev. 2022, 21, 1739–1760. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.D.; Futrell, S.L.; Bergmeyer, E.; Hao, J.; Schachtman, D.P. Root exudate concentrations of indole-3-acetic acid (IAA) and abscisic acid (ABA) affect maize rhizobacterial communities at specific developmental stages. FEMS Microbiol. Ecol. 2023, 99, d19. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, A.M.; Bauer, W.D.; Bird, D.M.; Cullimore, J.; Tyler, B.; Yoder, J.I. Molecular signals and receptors: Controlling rhizosphere interactions between plants and other organisms. Ecology 2003, 84, 858–868. [Google Scholar] [CrossRef]
- Bagga, S.; Straney, D. Modulation of cAMP and phosphodiesterase activity by flavonoids which induce spore germination of Nectria haematococca MPVI (Fusarium solani). Physiol. Mol. Plant Pathol. 2000, 56, 51–61. [Google Scholar] [CrossRef]
- Hao, Y.; Wei, Z.; Wang, Z.; Li, G.; Yao, Y.; Dun, B. Biotransformation of Flavonoids Improves Antimicrobial and Anti-Breast Cancer Activities In Vitro. Foods 2021, 10, 2367. [Google Scholar] [CrossRef]
- Lan, W.; Zhao, J.; Sun, Y.; Liu, J.; Xie, J. Chitosan-grafted-phenolic acid copolymers against Shewanella putrefaciens by disrupting the permeability of cell membrane. World J. Microbiol. Biotechnol. 2022, 38, 73. [Google Scholar] [CrossRef] [PubMed]
- Behiry, S.I.; Okla, M.K.; Alamri, S.A.; El-Hefny, M.; Salem, M.Z.M.; Alaraidh, I.A.; Ali, H.M.; Al-Ghtani, S.M.; Monroy, J.C.; Salem, A.Z.M. Antifungal and Antibacterial Activities of Musa paradisiaca L. Peel Extract: HPLC Analysis of Phenolic and Flavonoid Contents. Processes 2019, 7, 215. [Google Scholar] [CrossRef]
- Al-Huqail, A.A.; Behiry, S.I.; Salem, M.Z.M.; Ali, H.M.; Siddiqui, M.H.; Salem, A.Z.M. Antifungal, Antibacterial, and Antioxidant Activities of Acacia Saligna (Labill.) H. L. Wendl. Flower Extract: HPLC Analysis of Phenolic and Flavonoid Compounds. Molecules 2019, 24, 700. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, J.; Pan, D.; Ge, X.; Jin, X.; Chen, S.; Wu, F. p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions. Biol. Fert. Soils 2018, 54, 363–372. [Google Scholar] [CrossRef]
- Xiao, Z.; Le, C.; Xu, Z.; Gu, Z.; Lv, J.; Shamsi, I.H. Vertical Leaching of Allelochemicals Affecting Their Bioactivity and the Microbial Community of Soil. J. Agr. Food Chem. 2017, 65, 7847–7853. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Hou, Y.; Zed, R.; Mauchline, T.H.; Shen, J.; Zhang, F.; Jin, K. Root exudation of organic acid anions and recruitment of beneficial actinobacteria facilitate phosphorus uptake by maize in compacted silt loam soil. Soil Biol. Biochem. 2023, 184, 109074. [Google Scholar] [CrossRef]
- De Corato, U. Disease-suppressive compost enhances natural soil suppressiveness against soil-borne plant pathogens: A critical review. Rhizosphere 2020, 13, 100192. [Google Scholar] [CrossRef]
- Louw, J.P.; Korsten, L. Impact of Postharvest Storage on the Infection and Colonization of Penicillium digitatum and Penicillium expansum on Nectarine. Plant Dis. 2019, 103, 1584–1594. [Google Scholar] [CrossRef] [PubMed]
- Stošić, S.; Ristić, D.; Gašić, K.; Starović, M.; Ljaljević Grbić, M.; Vukojević, J.; Živković, S. Talaromyces Minioluteus: New Postharvest Fungal Pathogen in Serbia. Plant Dis. 2020, 104, 656–667. [Google Scholar] [CrossRef]
- Hua, C.; Kai, K.; Wang, X.; Shi, W.; Zhang, D.; Liu, Y. Curcumin inhibits gray mold development in kiwifruit by targeting mitogen-activated protein kinase (MAPK) cascades in Botrytis cinerea. Postharvest Biol. Technol. 2019, 151, 152–159. [Google Scholar] [CrossRef]
- Zhao, M.; Zhao, J.; Yuan, J.; Hale, L.; Wen, T.; Huang, Q.; Vivanco, J.M.; Zhou, J.; Kowalchuk, G.A.; Shen, Q. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant Cell Environ. 2020, 44, 613–628. [Google Scholar] [CrossRef] [PubMed]
- Sardans, J.; Lambers, H.; Preece, C.; Alrefaei, A.F.; Penuelas, J. Role of mycorrhizas and root exudates in plant uptake of soil nutrients (calcium, iron, magnesium, and potassium): Has the puzzle been completely solved? Plant J. 2023, 114, 1227–1242. [Google Scholar] [CrossRef]
- López-Aizpún, M.; Arango-Mora, C.; Santamaría, C.; Lasheras, E.; Santamaría, J.M.; Ciganda, V.S.; Cárdenas, L.M.; Elustondo, D. Atmospheric ammonia concentration modulates soil enzyme and microbial activity in an oak forest affecting soil microbial biomass. Soil Biol. Biochem. 2018, 116, 378–387. [Google Scholar] [CrossRef]
- Wang, X.; Shi, W.; Wang, J.; Gao, Z.; Li, S.; Wang, N.; Shi, Q. Control of Southern Root-knot Nematodes on Tomato and Regulation of Soil Bacterial Community by Biofumigation with Zanthoxylum bungeanum Seed. Hortic. Plant J. 2021, 7, 49–58. [Google Scholar] [CrossRef]
- Zhu, H.; Li, X.; Khalid, M.; Xi, D.; Zhang, Z.; Zhu, Y. Growth and physiological responses of selected pakchoi varieties to Plasmodiophora brassicae infection. J. Plant Pathol. 2020, 102, 459–467. [Google Scholar] [CrossRef]
- Salo, K.; Domisch, T.; Kouki, J. Forest wildfire and 12 years of post-disturbance succession of saprotrophic macrofungi (Basidiomycota, Ascomycota). Forest Ecol. Manag. 2019, 451, 117454. [Google Scholar] [CrossRef]
- Mcgregor, N.G.S.; de Boer, C.; Santos, M.; Haon, M.; Navarro, D.; Schroder, S.; Berrin, J.; Overkleeft, H.S.; Davies, G.J. Activity-based protein profiling reveals dynamic substrate-specific cellulase secretion by saprotrophic basidiomycetes. Biotechnol. Biofuels Bioprod. 2022, 15, 6. [Google Scholar] [CrossRef] [PubMed]
Treatments | SOM (g/kg) | pH | AK (mg/kg) | AP (mg/kg) | AHN (mg/kg) |
---|---|---|---|---|---|
CK | 169.2 ± 8.6 d | 4.7 ± 0.1 d | 75.4 ± 0.8 b | 300.8 ± 35.3 a | 92.0 ±1.4 d |
FLA | 231.0 ± 1.9 b | 5.6 ± 0.1 c | 97.8 ± 5.3 a | 179.6 ± 38.1 b | 100.6 ± 0.9 b |
OA | 241.6 ± 12.2 a | 7.8 ± 0.1 a | 99.9 ± 2.0 a | 187.3 ± 19.7 b | 96.8 ± 3.2 c |
PA | 201.8 ± 1.3 c | 6.8 ± 0.1 b | 101.5 ± 4.2 a | 126.4 ± 3.6 c | 108.5 ± 1.7 a |
Treatments | S-PPO nmol/h | S-CL μg/d/g | S-UE μg/d/g | S-CAT μmol/h/g | S-POD nmol/h/g | S-DHA μg/d/g | S-ACP nmol/h/g | S-ALP nmol/h/g |
---|---|---|---|---|---|---|---|---|
CK | 212.6 ± 9.2 c | 210.8 ± 47.7 b | 647.0 ± 40.3 b | 273.0 ± 13.1 d | 1808.9 ± 92.8 b | 1216.0 ± 79.9 c | 1514.2 ± 205.1 a | 811.6 ± 59.0 b |
FLA | 228.8 ± 40.0 c | 162.4 ± 49.4 b | 670.4 ± 19.3 b | 314.9 ± 27.2 c | 2171.1 ± 49.2 b | 1299.5 ± 317.6 c | 1451.6 ± 178.2 a | 1525.7 ± 144.0 a |
OA | 518.9 ± 50.9 a | 623.8 ± 28.9 a | 775.8 ± 22.6 a | 426.2 ± 0.8 a | 2599.8 ± 631.3 a | 2398.7 ± 210.2 a | 1245.8 ± 329.7 a | 1397.6 ± 652.7 a |
PA | 279.23 ± 20.9 b | 174.5 ± 9.1 b | 636.9 ± 2.2 b | 376 ± 6.2 b | 2797.6 ± 61.3 a | 1959.3 ± 20.9 b | 1581.3 ± 279.4 a | 586.1 ± 127.5 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Sun, Y.; Su, L.; Yan, L.; Lin, X.; Long, Y.; Zhang, A.; Zhao, Q. Significant Enrichment of Potential Pathogenic Fungi in Soil Mediated by Flavonoids, Phenolic Acids, and Organic Acids. J. Fungi 2025, 11, 154. https://doi.org/10.3390/jof11020154
Zhao S, Sun Y, Su L, Yan L, Lin X, Long Y, Zhang A, Zhao Q. Significant Enrichment of Potential Pathogenic Fungi in Soil Mediated by Flavonoids, Phenolic Acids, and Organic Acids. Journal of Fungi. 2025; 11(2):154. https://doi.org/10.3390/jof11020154
Chicago/Turabian StyleZhao, Shaoguan, Yan Sun, Lanxi Su, Lin Yan, Xingjun Lin, Yuzhou Long, Ang Zhang, and Qingyun Zhao. 2025. "Significant Enrichment of Potential Pathogenic Fungi in Soil Mediated by Flavonoids, Phenolic Acids, and Organic Acids" Journal of Fungi 11, no. 2: 154. https://doi.org/10.3390/jof11020154
APA StyleZhao, S., Sun, Y., Su, L., Yan, L., Lin, X., Long, Y., Zhang, A., & Zhao, Q. (2025). Significant Enrichment of Potential Pathogenic Fungi in Soil Mediated by Flavonoids, Phenolic Acids, and Organic Acids. Journal of Fungi, 11(2), 154. https://doi.org/10.3390/jof11020154