Insight into the Mechanisms and Clinical Relevance of Antifungal Heteroresistance
<p>Antifungal mode of action of azoles, AMB, 5-FC and echinocandins. Azoles inhibit ergosterol biosynthesis by targeting sterol 14α-demethylase, producing toxic 14-methyl sterols, altering fungal cell membrane permeability and metabolic state [<a href="#B74-jof-11-00143" class="html-bibr">74</a>,<a href="#B75-jof-11-00143" class="html-bibr">75</a>]. Echinocandins target β-1,3-glucan synthase, impairing fungal cell wall integrity and stress resistance [<a href="#B76-jof-11-00143" class="html-bibr">76</a>]. Amphotericin B binds to membrane ergosterol, forming pores that disrupt permeability and cause reactive oxygen species (ROS) accumulation, leading to cell death [<a href="#B77-jof-11-00143" class="html-bibr">77</a>,<a href="#B78-jof-11-00143" class="html-bibr">78</a>,<a href="#B79-jof-11-00143" class="html-bibr">79</a>]. 5-FC is converted intracellularly to 5-FU, inhibiting DNA and RNA synthesis [<a href="#B80-jof-11-00143" class="html-bibr">80</a>,<a href="#B81-jof-11-00143" class="html-bibr">81</a>].</p> "> Figure 2
<p>(By Figdraw 2.0). Explanation of resistance, susceptible, tolerance, persistence and heteroresistance from a cell population perspective. The state of cell proliferation is represented by the number of cells in the figure. Individual colors indicate different genotypes and phenotypes, which are red (genetically stable resistant), blue (susceptible), yellow (genetically unstable or phenotypically resistant), green (phenotypically tolerant).</p> ">
Abstract
:1. Introduction
2. Methodology
3. Antifungal Resistance Mechanisms
4. Heteroresistance, Tolerance and Persistence of Antifungal Drugs
5. Mechanisms of Antifungal Tolerance
6. Mechanisms of Antifungal Persistence
7. Mechanisms of Antifungal Heteroresistance
7.1. Aneuploidy and Copy Number Variations (CNVs)
7.1.1. C. albicans
7.1.2. N. glabrata
7.1.3. C. parapsilosis
7.1.4. C. auris
7.1.5. C. neoformans and C. gattii
7.2. Alterations in Gene Expression
7.3. Environmental Stress Induction
8. Clinical Relevance of Antifungal Heteroresistance
8.1. Outcomes of Antifungal Heteroresistance
8.2. Diagnosis of Antifungal Heteroresistance
8.3. Treatments of Antifungal Heteroresistance
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MIC | Minimum Inhibitory Concentration |
CNVs | Copy Number Variations |
AmB | Amphotericin B |
5-FC | 5-fluorocytosine |
5-FU | 5-fluorouracil |
ROS | Reactive Oxygen Species |
MDK99 | Minimum Duration of Killing 99% |
SOD | Superoxide Dismutases |
chr | Chromosome |
GPI | Glycosylphosphatidylinositol |
PAP | Population Analysis Profile |
scRNA-seq | Single-Cell RNA Sequencing |
SNP | Single Nucleotide Polyphorism |
ABC | ATP-Binding Cassette |
PAP | Population Analysis Profile |
References
- Spallone, A.; Schwartz, I.S. Emerging Fungal Infections. Infect. Dis. Clin. N. Am. 2021, 35, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, S.R.; Guarner, J. Emerging and reemerging fungal infections. Semin. Diagn. Pathol. 2019, 36, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Zhai, B.; Liao, C.; Jaggavarapu, S.; Tang, Y.; Rolling, T.; Ning, Y.; Sun, T.; Bergin, S.A.; Gjonbalaj, M.; Miranda, E.; et al. Antifungal heteroresistance causes prophylaxis failure and facilitates breakthrough Candida parapsilosis infections. Nat. Med. 2024, 30, 3163–3172. [Google Scholar] [CrossRef] [PubMed]
- Godoy, M.C.B.; Ferreira Dalla Pria, H.R.; Truong, M.T.; Shroff, G.S.; Marom, E.M. Invasive Fungal Pneumonia in Immunocompromised Patients. Radiol. Clin. N. Am. 2022, 60, 497–506. [Google Scholar] [CrossRef]
- Huang, S.F.; Ying-Jung Wu, A.; Shin-Jung Lee, S.; Huang, Y.S.; Lee, C.Y.; Yang, T.L.; Wang, H.W.; Chen, H.J.; Chen, Y.C.; Ho, T.S.; et al. COVID-19 associated mold infections: Review of COVID-19 associated pulmonary aspergillosis and mucormycosis. J. Microbiol. Immunol. Infect. 2023, 56, 442–454. [Google Scholar] [CrossRef]
- Piano, S.; Bunchorntavakul, C.; Marciano, S.; Rajender Reddy, K. Infections in cirrhosis. Lancet Gastroenterol. Hepatol. 2024, 9, 745–757. [Google Scholar] [CrossRef]
- Weimer, K.E.D.; Smith, P.B.; Puia-Dumitrescu, M.; Aleem, S. Invasive fungal infections in neonates: A review. Pediatr. Res. 2022, 91, 404–412. [Google Scholar] [CrossRef]
- Denning, D.W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 2024, 24, e428–e438. [Google Scholar] [CrossRef]
- Krzych, Ł.J.; Putowski, Z.; Gruca, K.; Pluta, M.P. Mortality in critically ill COVID-19 patients with fungal infections: A comprehensive systematic review and meta-analysis. Pol. Arch. Intern. Med. 2022, 132, 16221. [Google Scholar] [CrossRef]
- Garcia-Vidal, C.; Sanjuan, G.; Moreno-García, E.; Puerta-Alcalde, P.; Garcia-Pouton, N.; Chumbita, M.; Fernandez-Pittol, M.; Pitart, C.; Inciarte, A.; Bodro, M.; et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: A retrospective cohort study. Clin. Microbiol. Infect. 2021, 27, 83–88. [Google Scholar] [CrossRef]
- Kruithoff, C.; Gamal, A.; McCormick, T.S.; Ghannoum, M.A. Dermatophyte Infections Worldwide: Increase in Incidence and Associated Antifungal Resistance. Life 2023, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Rayens, E.; Norris, K.A. Prevalence and Healthcare Burden of Fungal Infections in the United States, 2018. Open Forum. Infect. Dis 2022, 9, ofab593. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Dickter, J.K. Nosocomial Infections: A History of Hospital-Acquired Infections. Gastrointest. Endosc. Clin. N. Am. 2020, 30, 637–652. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef]
- Alexander, H.E.; Leidy, G. Mode of action of streptomycin on type b Hemophilus influenzae: II. Nature of resistant variants. J. Exp. Med. 1947, 85, 607. [Google Scholar] [CrossRef]
- Zheng, C.; Li, S.; Luo, Z.; Pi, R.; Sun, H.; He, Q.; Tang, K.; Luo, M.; Li, Y.; Couvin, D.; et al. Mixed Infections and Rifampin Heteroresistance among Mycobacterium tuberculosis Clinical Isolates. J. Clin. Microbiol. 2015, 53, 2138–2147. [Google Scholar] [CrossRef]
- Liu, Q.; Via, L.E.; Luo, T.; Liang, L.; Liu, X.; Wu, S.; Shen, Q.; Wei, W.; Ruan, X.; Yuan, X.; et al. Within patient microevolution of Mycobacterium tuberculosis correlates with heterogeneous responses to treatment. Sci. Rep. 2015, 5, 17507. [Google Scholar] [CrossRef]
- Andersson, D.I.; Nicoloff, H.; Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 2019, 17, 479–496. [Google Scholar] [CrossRef]
- Yamazumi, T.; Pfaller, M.A.; Messer, S.A.; Houston, A.K.; Boyken, L.; Hollis, R.J.; Furuta, I.; Jones, R.N. Characterization of heteroresistance to fluconazole among clinical isolates of Cryptococcus neoformans. J. Clin. Microbiol. 2003, 41, 267–272. [Google Scholar] [CrossRef]
- Kon, H.; Hameir, A.; Nutman, A.; Temkin, E.; Keren Paz, A.; Lellouche, J.; Schwartz, D.; Weiss, D.S.; Kaye, K.S.; Daikos, G.L.; et al. Prevalence and Clinical Consequences of Colistin Heteroresistance and Evolution into Full Resistance in Carbapenem-Resistant Acinetobacter baumannii. Microbiol. Spectr. 2023, 11, e0509322. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, X.; Zeng, W.; Chen, T.; Liao, W.; Qian, J.; Lin, J.; Zhou, C.; Tian, X.; Cao, J.; et al. Mechanisms of Heteroresistance and Resistance to Imipenem in Pseudomonas aeruginosa. Infect. Drug Resist. 2020, 13, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Li, W.R.; Zhang, Z.Q.; Liao, K.; Wang, B.B.; Liu, H.Z.; Shi, Q.S.; Huang, X.B.; Xie, X.B. Pseudomonas aeruginosa heteroresistance to levofloxacin caused by upregulated expression of essential genes for DNA replication and repair. Front. Microbiol. 2022, 13, 1105921. [Google Scholar] [CrossRef] [PubMed]
- Cherkaoui, A.; Diene, S.M.; Renzoni, A.; Emonet, S.; Renzi, G.; François, P.; Schrenzel, J. Imipenem heteroresistance in nontypeable Haemophilus influenzae is linked to a combination of altered PBP3, slow drug influx and direct efflux regulation. Clin. Microbiol. Infect. 2017, 23, 118.e9–118.e19. [Google Scholar] [CrossRef] [PubMed]
- Adams-Sapper, S.; Gayoso, A.; Riley, L.W. Stress-Adaptive Responses Associated with High-Level Carbapenem Resistance in KPC-Producing Klebsiella pneumoniae. J. Pathog. 2018, 2018, 3028290. [Google Scholar] [CrossRef]
- Fukuzawa, S.; Sato, T.; Aoki, K.; Yamamoto, S.; Ogasawara, N.; Nakajima, C.; Suzuki, Y.; Horiuchi, M.; Takahashi, S.; Yokota, S.I. High prevalence of colistin heteroresistance in specific species and lineages of Enterobacter cloacae complex derived from human clinical specimens. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 60. [Google Scholar] [CrossRef]
- Xiong, Y.; Han, Y.; Zhao, Z.; Gao, W.; Ma, Y.; Jiang, S.; Wang, M.; Zhang, Q.; Zhou, Y.; Chen, Y. Impact of Carbapenem Heteroresistance Among Multidrug-Resistant ESBL/AmpC-Producing Klebsiella pneumoniae Clinical Isolates on Antibiotic Treatment in Experimentally Infected Mice. Infect. Drug Resist. 2021, 14, 5639–5650. [Google Scholar] [CrossRef]
- Kotilea, K.; Iliadis, E.; Nguyen, J.; Salame, A.; Mahler, T.; Miendje Deyi, V.Y.; Bontems, P. Antibiotic resistance, heteroresistance, and eradication success of Helicobacter pylori infection in children. Helicobacter 2023, 28, e13006. [Google Scholar] [CrossRef]
- Zhang, F.; Ding, M.; Yan, X.; Bai, J.; Li, Q.; Zhang, B.; Liang, Q.; Liang, S.; Wang, G.; Zhou, Y. Carbapenem-resistant K. pneumoniae exhibiting clinically undetected amikacin and meropenem heteroresistance leads to treatment failure in a murine model of infection. Microb. Pathog. 2021, 160, 105162. [Google Scholar] [CrossRef]
- Kargarpour Kamakoli, M.; Sadegh, H.R.; Farmanfarmaei, G.; Masoumi, M.; Fateh, A.; Javadi, G.; Rahimi Jamnani, F.; Vaziri, F.; Siadat, S.D. Evaluation of the impact of polyclonal infection and heteroresistance on treatment of tuberculosis patients. Sci. Rep. 2017, 7, 41410. [Google Scholar] [CrossRef]
- Gautier, C.; Maciel, E.I.; Ene, I.V. Approaches for identifying and measuring heteroresistance in azole-susceptible Candida isolates. Microbiol. Spectr. 2024, 12, e0404123. [Google Scholar] [CrossRef]
- Kessel, J.; Rossaert, A.C.; Lingscheid, T.; Grothe, J.; Harrer, T.; Wyen, C.; Tominski, D.; Bollinger, T.; Kehr, A.K.; Kalbitz, S.; et al. Survival after cryptococcosis in Germany: A retrospective multicenter cohort study of patients diagnosed between 2004 and 2021. Int. J. Med. Microbiol. 2024, 314, 151614. [Google Scholar] [CrossRef] [PubMed]
- Omura, M.; Komori, A.; Tamura, T.; Han, H.S.; Kano, R.; Makimura, K. Molecular epidemiological investigation of Cryptococcus spp. isolated from cats in Japan using multi-locus sequence typing. Med. Mycol. 2024, 62, myae085. [Google Scholar] [CrossRef] [PubMed]
- Sababoglu Baytaroglu, E.; Ipek, V.; Gokce, H.I.; Ayozger, L.E.O.; Olguner, B. Natural disasters and the rise of zoonotic diseases: A case of post-earthquake disseminated cryptococcosis in a dog. J. Mycol. Med. 2024, 34, 101501. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.M.; Liu, Y.M.; Chen, T.C. Disseminated Cryptococcus neoformans infection involving multiple bones and lung in an immunocompetent patient: A case report. BMC Infect. Dis. 2024, 24, 397. [Google Scholar] [CrossRef]
- Min, J.; Zhao, Y.; Du, J.; Ning, Y.; Wu, Z. Arthritis caused by Cryptococcus neoformans infection: A case report. Biomed. Rep. 2024, 20, 6. [Google Scholar] [CrossRef]
- Morgan, J.; Vardanega, J.; Yue, M.; Gassiep, I. Haematologic and Urologic Manifestations of Cryptococcus neoformans. Case Rep. Infect. Dis. 2024, 2024, 2245391. [Google Scholar] [CrossRef]
- Qin, Y.; Zou, X.; Jin, Y.; Li, J.; Cai, Q. Cryptococcus neoformans Osteomyelitis of the Right Ankle Diagnosed by Metagenomic Next-Generation Sequencing in a HIV-Negative Patient with Tuberculous Lymphadenitis and Pulmonary Tuberculosis: A Case Report and Recent Literature Review. Infect. Drug Resist. 2024, 17, 3805–3812. [Google Scholar] [CrossRef]
- Francis, V.I.; Liddle, C.; Camacho, E.; Kulkarni, M.; Junior, S.R.S.; Harvey, J.A.; Ballou, E.R.; Thomson, D.D.; Brown, G.D.; Hardwick, J.M.; et al. Cryptococcus neoformans rapidly invades the murine brain by sequential breaching of airway and endothelial tissues barriers, followed by engulfment by microglia. mBio 2024, 15, e0307823. [Google Scholar] [CrossRef]
- Bing, J.; Du, H.; Guo, P.; Hu, T.; Xiao, M.; Lu, S.; Nobile, C.J.; Chu, H.; Huang, G. Candida auris-associated hospitalizations and outbreaks, China, 2018–2023. Emerg. Microbes Infect. 2024, 13, 2302843. [Google Scholar] [CrossRef]
- Huang, Y.; Su, Y.; Chen, X.; Xiao, M.; Xu, Y. Insight into Virulence and Mechanisms of Amphotericin B Resistance in the Candida haemulonii Complex. J. Fungi 2024, 10, 615. [Google Scholar] [CrossRef]
- Cherniak, R.; Sundstrom, J.B. Polysaccharide antigens of the capsule of Cryptococcus neoformans. Infect. Immun. 1994, 62, 1507–1512. [Google Scholar] [CrossRef] [PubMed]
- Cox, G.M.; Mukherjee, J.; Cole, G.T.; Casadevall, A.; Perfect, J.R. Urease as a virulence factor in experimental cryptococcosis. Infect. Immun. 2000, 68, 443–448. [Google Scholar] [CrossRef]
- Cox, G.M.; McDade, H.C.; Chen, S.C.; Tucker, S.C.; Gottfredsson, M.; Wright, L.C.; Sorrell, T.C.; Leidich, S.D.; Casadevall, A.; Ghannoum, M.A.; et al. Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Mol. Microbiol. 2001, 39, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Olszewski, M.A.; Noverr, M.C.; Chen, G.H.; Toews, G.B.; Cox, G.M.; Perfect, J.R.; Huffnagle, G.B. Urease expression by Cryptococcus neoformans promotes microvascular sequestration, thereby enhancing central nervous system invasion. Am. J. Pathol. 2004, 164, 1761–1771. [Google Scholar] [CrossRef] [PubMed]
- Santangelo, R.; Zoellner, H.; Sorrell, T.; Wilson, C.; Donald, C.; Djordjevic, J.; Shounan, Y.; Wright, L. Role of extracellular phospholipases and mononuclear phagocytes in dissemination of cryptococcosis in a murine model. Infect. Immun. 2004, 72, 2229–2239. [Google Scholar] [CrossRef]
- Villena, S.N.; Pinheiro, R.O.; Pinheiro, C.S.; Nunes, M.P.; Takiya, C.M.; DosReis, G.A.; Previato, J.O.; Mendonça-Previato, L.; Freire-de-Lima, C.G. Capsular polysaccharides galactoxylomannan and glucuronoxylomannan from Cryptococcus neoformans induce macrophage apoptosis mediated by Fas ligand. Cell Microbiol. 2008, 10, 1274–1285. [Google Scholar] [CrossRef]
- Chrisman, C.J.; Albuquerque, P.; Guimaraes, A.J.; Nieves, E.; Casadevall, A. Phospholipids trigger Cryptococcus neoformans capsular enlargement during interactions with amoebae and macrophages. PLoS Pathog. 2011, 7, e1002047. [Google Scholar] [CrossRef]
- Ferreira, G.F.; Santos, J.R.; Costa, M.C.; Holanda, R.A.; Denadai, Â.M.; Freitas, G.J.; Santos, Á.R.; Tavares, P.B.; Paixão, T.A.; Santos, D.A. Heteroresistance to Itraconazole Alters the Morphology and Increases the Virulence of Cryptococcus gattii. Antimicrob. Agents Chemother. 2015, 59, 4600–4609. [Google Scholar] [CrossRef]
- Dambuza, I.M.; Drake, T.; Chapuis, A.; Zhou, X.; Correia, J.; Taylor-Smith, L.; LeGrave, N.; Rasmussen, T.; Fisher, M.C.; Bicanic, T.; et al. The Cryptococcus neoformans Titan cell is an inducible and regulated morphotype underlying pathogenesis. PLoS Pathog. 2018, 14, e1006978. [Google Scholar] [CrossRef]
- Vij, R.; Cordero, R.J.B.; Casadevall, A. The Buoyancy of Cryptococcus neoformans Is Affected by Capsule Size. mSphere 2018, 3, e00534-18. [Google Scholar] [CrossRef]
- Yu, S.J.; Chang, Y.L.; Chen, Y.L. Deletion of ADA2 Increases Antifungal Drug Susceptibility and Virulence in Candida glabrata. Antimicrob. Agents Chemother. 2018, 62, e01924-17. [Google Scholar] [CrossRef] [PubMed]
- Giles, S.S.; Batinic-Haberle, I.; Perfect, J.R.; Cox, G.M. Cryptococcus neoformans mitochondrial superoxide dismutase: An essential link between antioxidant function and high-temperature growth. Eukaryot. Cell 2005, 4, 46–54. [Google Scholar] [CrossRef]
- Giles, S.S.; Perfect, J.R.; Cox, G.M. Cytochrome c peroxidase contributes to the antioxidant defense of Cryptococcus neoformans. Fungal Genet. Biol. 2005, 42, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.S.; Ju, X.; Gao, H.L.; Wang, T.; Thiele, D.J.; Li, J.Y.; Wang, Z.Y.; Ding, C. Reciprocal functions of Cryptococcus neoformans copper homeostasis machinery during pulmonary infection and meningoencephalitis. Nat. Commun. 2014, 5, 5550. [Google Scholar] [CrossRef]
- Evans, R.J.; Li, Z.; Hughes, W.S.; Djordjevic, J.T.; Nielsen, K.; May, R.C. Cryptococcal phospholipase B1 is required for intracellular proliferation and control of titan cell morphology during macrophage infection. Infect. Immun. 2015, 83, 1296–1304. [Google Scholar] [CrossRef]
- Gerstein, A.C.; Fu, M.S.; Mukaremera, L.; Li, Z.; Ormerod, K.L.; Fraser, J.A.; Berman, J.; Nielsen, K. Polyploid titan cells produce haploid and aneuploid progeny to promote stress adaptation. mBio 2015, 6, e01340-15. [Google Scholar] [CrossRef]
- Bosch, C.; Toplis, B.; Vreulink, J.M.; Volschenk, H.; Botha, A. Nitrogen concentration affects amphotericin B and fluconazole tolerance of pathogenic cryptococci. FEMS Yeast Res. 2020, 20, foaa010. [Google Scholar] [CrossRef]
- Schatzman, S.S.; Peterson, R.L.; Teka, M.; He, B.; Cabelli, D.E.; Cormack, B.P.; Culotta, V.C. Copper-only superoxide dismutase enzymes and iron starvation stress in Candida fungal pathogens. J. Biol. Chem. 2020, 295, 570–583. [Google Scholar] [CrossRef]
- Horianopoulos, L.C.; Lee, C.W.J.; Hu, G.; Caza, M.; Kronstad, J.W. Dnj1 Promotes Virulence in Cryptococcus neoformans by Maintaining Robust Endoplasmic Reticulum Homeostasis Under Temperature Stress. Front. Microbiol. 2021, 12, 727039. [Google Scholar] [CrossRef]
- Sun, T.; Li, Y.; Li, Y.; Li, H.; Gong, Y.; Wu, J.; Ning, Y.; Ding, C.; Xu, Y. Proteomic Analysis of Copper Toxicity in Human Fungal Pathogen Cryptococcus neoformans. Front. Cell Infect. Microbiol. 2021, 11, 662404. [Google Scholar] [CrossRef]
- Bosch, C.; Volschenk, H.; Botha, A. The copper transporter, Ctr4, and the microtubule-associated protein, Cgp1, are important for Cryptococcus neoformans adaptation to nitrogen availability. FEMS Microbiol. Lett. 2021, 368, fnab134. [Google Scholar] [CrossRef] [PubMed]
- Hamed, M.F.; Araújo, G.R.S.; Munzen, M.E.; Reguera-Gomez, M.; Epstein, C.; Lee, H.H.; Frases, S.; Martinez, L.R. Phospholipase B Is Critical for Cryptococcus neoformans Survival in the Central Nervous System. mBio 2023, 14, e0264022. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Sánchez-León, E.; Hu, G.; Lee, C.W.J.; Black, B.; Brisland, A.; Li, H.; Jung, W.H.; Kronstad, J.W. The interplay between electron transport chain function and iron regulatory factors influences melanin formation in Cryptococcus neoformans. mSphere 2024, 9, e0025024. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, B.J.; Ristow, L.C.; Xie, X.; Krysan, D.J.; Lin, X. Discovery of CO2 tolerance genes associated with virulence in the fungal pathogen Cryptococcus neoformans. Nat. Microbiol. 2024, 9, 2684–2695. [Google Scholar] [CrossRef] [PubMed]
- Folorunso, O.S.; Sebolai, O.M. A Limited Number of Amino Acid Permeases Are Crucial for Cryptococcus neoformans Survival and Virulence. Int. J. Microbiol. 2024, 2024, 5566438. [Google Scholar] [CrossRef]
- Lee, C.W.J.; Brisland, A.; Qu, X.; Horianopoulos, L.C.; Hu, G.; Mayer, F.L.; Kronstad, J.W. Loss of Opi3 causes a lipid imbalance that influences the virulence traits of Cryptococcus neoformans but not cryptococcosis. Front. Cell Infect. Microbiol. 2024, 14, 1448229. [Google Scholar] [CrossRef]
- Peterson, P.P.; Choi, J.T.; Fu, C.; Cowen, L.E.; Sun, S.; Bahn, Y.S.; Heitman, J. The Cryptococcus neoformans STRIPAK complex controls genome stability, sexual development, and virulence. PLoS Pathog. 2024, 20, e1012735. [Google Scholar] [CrossRef]
- Ni, Y.; Qiao, Y.; Tian, X.; Li, H.; Meng, Y.; Li, C.; Du, W.; Sun, T.; Zhu, K.; Huang, W.; et al. Unraveling the mechanism of thermotolerance by Set302 in Cryptococcus neoformans. Microbiol. Spectr. 2024, 12, e0420223. [Google Scholar] [CrossRef]
- Hoffman, H.J.; McClelland, E.E. Measuring Urease and Phospholipase Secretion in Cryptococcus neoformans. Methods Mol. Biol. 2024, 2775, 269–275. [Google Scholar] [CrossRef]
- Baomo, L.; Guofen, Z.; Jie, D.; Liu, X.; Shuru, C.; Jing, L. Disseminated cryptococcosis in a patient with idiopathic CD4 + T lymphocytopenia presenting as prostate and adrenal nodules: Diagnosis from pathology and mNGS, a case report. BMC Infect. Dis. 2024, 24, 26. [Google Scholar] [CrossRef]
- Horton Embrey, P.; Long, A.; Alfattal, R.; Qiu, S.; Hornak, J.P. Isolated cryptococcal osteomyelitis in the setting of immune reconstitution inflammatory syndrome. Ther. Adv. Infect. Dis. 2024, 11, 20499361241230149. [Google Scholar] [CrossRef] [PubMed]
- Saito, Z.; Ito, T.; Imakita, T.; Oi, I.; Kanai, O.; Fujita, K. Organizing pneumonia secondary to pulmonary cryptococcosis in immunocompromised patient. Respir. Med. Case Rep. 2024, 47, 101975. [Google Scholar] [CrossRef]
- Mbangiwa, T.; Sturny-Leclère, A.; Lechiile, K.; Kajanga, C.; Boyer-Chammard, T.; Hoving, J.C.; Leeme, T.; Moyo, M.; Youssouf, N.; Lawrence, D.S.; et al. Development and validation of quantitative PCR assays for HIV-associated cryptococcal meningitis in sub-Saharan Africa: A diagnostic accuracy study. Lancet Microbe 2024, 5, e261–e271. [Google Scholar] [CrossRef]
- Odds, F.C.; Cheesman, S.L.; Abbott, A.B. Suppression of ATP in Candida albicans by imidazole and derivative antifungal agents. Sabouraudia 1985, 23, 415–424. [Google Scholar] [CrossRef]
- Saag, M.S.; Dismukes, W.E. Azole antifungal agents: Emphasis on new triazoles. Antimicrob. Agents Chemother. 1988, 32, 1–8. [Google Scholar] [CrossRef]
- Patil, A.; Majumdar, S. Echinocandins in antifungal pharmacotherapy. J. Pharm. Pharmacol. 2017, 69, 1635–1660. [Google Scholar] [CrossRef]
- Mesa-Arango, A.C.; Scorzoni, L.; Zaragoza, O. It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Front. Microbiol. 2012, 3, 286. [Google Scholar] [CrossRef]
- Shivarathri, R.; Jenull, S.; Chauhan, M.; Singh, A.; Mazumdar, R.; Chowdhary, A.; Kuchler, K.; Chauhan, N. Comparative Transcriptomics Reveal Possible Mechanisms of Amphotericin B Resistance in Candida auris. Antimicrob. Agents Chemother. 2022, 66, e0227621. [Google Scholar] [CrossRef]
- Perlin, D.S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017, 17, e383–e392. [Google Scholar] [CrossRef]
- Polak, A.; Scholer, H.J. Mode of action of 5-fluorocytosine and mechanisms of resistance. Chemotherapy 1975, 21, 113–130. [Google Scholar] [CrossRef]
- Gleason, M.K.; Fraenkel-Conrat, H. Biological consequences of incorporation of 5-fluorocytidine in the RNA of 5-fluorouracil-treated eukaryotic cells. Proc. Natl. Acad. Sci. USA 1976, 73, 1528–1531. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, S.E.; Jacobs, J.L.; Dennis, E.K.; Taimur, S.; Rana, M.; Patel, D.; Gitman, M.; Patel, G.; Schaefer, S.; Iyer, K.; et al. Candida auris Pan-Drug-Resistant to Four Classes of Antifungal Agents. Antimicrob. Agents Chemother. 2022, 66, e0005322. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, N.K.; Bhattacharya, S.; Gambhir, R.; Joshi, M.; Fries, B.C. Novel ABC Transporter Associated with Fluconazole Resistance in Aging of Cryptococcus neoformans. J Fungi 2022, 8, 677. [Google Scholar] [CrossRef] [PubMed]
- Rogers, T.R.; Verweij, P.E.; Castanheira, M.; Dannaoui, E.; White, P.L.; Arendrup, M.C. Molecular mechanisms of acquired antifungal drug resistance in principal fungal pathogens and EUCAST guidance for their laboratory detection and clinical implications. J. Antimicrob. Chemother. 2022, 77, 2053–2073. [Google Scholar] [CrossRef]
- Štefánek, M.; Garaiová, M.; Valček, A.; Jordao, L.; Bujdáková, H. Comparative Analysis of Two Candida parapsilosis Isolates Originating from the Same Patient Harbouring the Y132F and R398I Mutations in the ERG11 Gene. Cells 2023, 12, 1579. [Google Scholar] [CrossRef]
- Pristov, K.E.; Ghannoum, M.A. Resistance of Candida to azoles and echinocandins worldwide. Clin. Microbiol. Infect. 2019, 25, 792–798. [Google Scholar] [CrossRef]
- Fattouh, N.; Hdayed, D.; Geukgeuzian, G.; Tokajian, S.; Khalaf, R.A. Molecular mechanism of fluconazole resistance and pathogenicity attributes of Lebanese Candida albicans hospital isolates. Fungal Genet. Biol. 2021, 153, 103575. [Google Scholar] [CrossRef]
- Bosco-Borgeat, M.E.; Mazza, M.; Taverna, C.G.; Córdoba, S.; Murisengo, O.A.; Vivot, W.; Davel, G. Amino acid substitution in Cryptococcus neoformans lanosterol 14-α-demethylase involved in fluconazole resistance in clinical isolates. Rev. Argent. Microbiol. 2016, 48, 137–142. [Google Scholar] [CrossRef]
- Diaz-Guerra, T.M.; Mellado, E.; Cuenca-Estrella, M.; Rodriguez-Tudela, J.L. A point mutation in the 14alpha-sterol demethylase gene cyp51A contributes to itraconazole resistance in Aspergillus fumigatus. Antimicrob. Agents Chemother. 2003, 47, 1120–1124. [Google Scholar] [CrossRef]
- Garcia-Effron, G.; Katiyar, S.K.; Park, S.; Edlind, T.D.; Perlin, D.S. A naturally occurring proline-to-alanine amino acid change in Fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for reduced echinocandin susceptibility. Antimicrob. Agents Chemother. 2008, 52, 2305–2312. [Google Scholar] [CrossRef]
- Healey, K.R.; Perlin, D.S. Fungal Resistance to Echinocandins and the MDR Phenomenon in Candida glabrata. J. Fungi 2018, 4, 105. [Google Scholar] [CrossRef] [PubMed]
- Singh-Babak, S.D.; Babak, T.; Diezmann, S.; Hill, J.A.; Xie, J.L.; Chen, Y.L.; Poutanen, S.M.; Rennie, R.P.; Heitman, J.; Cowen, L.E. Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata. PLoS Pathog. 2012, 8, e1002718. [Google Scholar] [CrossRef]
- Delma, F.Z.; Al-Hatmi, A.M.S.; Brüggemann, R.J.M.; Melchers, W.J.G.; de Hoog, S.; Verweij, P.E.; Buil, J.B. Molecular Mechanisms of 5-Fluorocytosine Resistance in Yeasts and Filamentous Fungi. J. Fungi 2021, 7, 909. [Google Scholar] [CrossRef] [PubMed]
- Kannan, A.; Asner, S.A.; Trachsel, E.; Kelly, S.; Parker, J.; Sanglard, D. Comparative Genomics for the Elucidation of Multidrug Resistance in Candida lusitaniae. mBio 2019, 10, e02512-19. [Google Scholar] [CrossRef] [PubMed]
- Billmyre, R.B.; Applen Clancey, S.; Li, L.X.; Doering, T.L.; Heitman, J. 5-fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis in Cryptococcus. Nat. Commun. 2020, 11, 127. [Google Scholar] [CrossRef]
- Silva, L.N.; Oliveira, S.S.C.; Magalhães, L.B.; Andrade Neto, V.V.; Torres-Santos, E.C.; Carvalho, M.D.C.; Pereira, M.D.; Branquinha, M.H.; Santos, A.L.S. Unmasking the Amphotericin B Resistance Mechanisms in Candida haemulonii Species Complex. ACS Infect. Dis. 2020, 6, 1273–1282. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Yang, S.; Lu, H.; Yu, H.; Wang, X.; Jia, X.; Tang, D.; Wu, L.; Huang, S.; et al. Epidemiology of cryptococcal meningitis and fluconazole heteroresistance in Cryptococcus neoformans isolates from a teaching hospital in southwestern China. Microbiol. Spectr. 2024, 12, e0072524. [Google Scholar] [CrossRef]
- Lyons, N.; Berman, J. Protocols for Measuring Tolerant and Heteroresistant Drug Responses of Pathogenic Yeasts. Methods Mol. Biol. 2023, 2658, 67–79. [Google Scholar] [CrossRef]
- Ben-Ami, R.; Zimmerman, O.; Finn, T.; Amit, S.; Novikov, A.; Wertheimer, N.; Lurie-Weinberger, M.; Berman, J. Heteroresistance to Fluconazole Is a Continuously Distributed Phenotype among Candida glabrata Clinical Strains Associated with In Vivo Persistence. mBio 2016, 7, e00655-16. [Google Scholar] [CrossRef]
- Levy, S.F.; Ziv, N.; Siegal, M.L. Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. PLoS Biol. 2012, 10, e1001325. [Google Scholar] [CrossRef]
- Claudino, A.L.; Peixoto Junior, R.F.; Melhem, M.S.; Szeszs, M.W.; Lyon, J.P.; Chavasco, J.K.; Franco, M.C. Mutants with heteroresistance to amphotericin B and fluconazole in Candida. Braz. J. Microbiol. 2009, 40, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Sionov, E.; Chang, Y.C.; Garraffo, H.M.; Kwon-Chung, K.J. Heteroresistance to fluconazole in Cryptococcus neoformans is intrinsic and associated with virulence. Antimicrob. Agents Chemother. 2009, 53, 2804–2815. [Google Scholar] [CrossRef] [PubMed]
- Balaban, N.Q.; Helaine, S.; Lewis, K.; Ackermann, M.; Aldridge, B.; Andersson, D.I.; Brynildsen, M.P.; Bumann, D.; Camilli, A.; Collins, J.J.; et al. Publisher Correction: Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 2019, 17, 460. [Google Scholar] [CrossRef] [PubMed]
- Kester, J.C.; Fortune, S.M. Persisters and beyond: Mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 91–101. [Google Scholar] [CrossRef]
- Berman, J.; Krysan, D.J. Drug resistance and tolerance in fungi. Nat. Rev. Microbiol. 2020, 18, 319–331. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, L.; Xie, Y.; Wang, Y.; Tian, X.; Fang, W.; Xue, X.; Wang, L. Confronting antifungal resistance, tolerance, and persistence: Advances in drug target discovery and delivery systems. Adv. Drug Deliv. Rev. 2023, 200, 115007. [Google Scholar] [CrossRef]
- Rasouli Koohi, S.; Shankarnarayan, S.A.; Galon, C.M.; Charlebois, D.A. Identification and Elimination of Antifungal Tolerance in Candida auris. Biomedicines 2023, 11, 898. [Google Scholar] [CrossRef]
- Rosenberg, A.; Ene, I.V.; Bibi, M.; Zakin, S.; Segal, E.S.; Ziv, N.; Dahan, A.M.; Colombo, A.L.; Bennett, R.J.; Berman, J. Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia. Nat. Commun. 2018, 9, 2470. [Google Scholar] [CrossRef]
- Moldoveanu, A.L.; Rycroft, J.A.; Helaine, S. Impact of bacterial persisters on their host. Curr. Opin. Microbiol. 2021, 59, 65–71. [Google Scholar] [CrossRef]
- Arastehfar, A.; Daneshnia, F.; Cabrera, N.; Penalva-Lopez, S.; Sarathy, J.; Zimmerman, M.; Shor, E.; Perlin, D.S. Macrophage internalization creates a multidrug-tolerant fungal persister reservoir and facilitates the emergence of drug resistance. Nat. Commun. 2023, 14, 1183. [Google Scholar] [CrossRef]
- Lewis, K. Persister cells. Annu. Rev. Microbiol. 2010, 64, 357–372. [Google Scholar] [CrossRef] [PubMed]
- Ke, W.; Xie, Y.; Chen, Y.; Ding, H.; Ye, L.; Qiu, H.; Li, H.; Zhang, L.; Chen, L.; Tian, X.; et al. Fungicide-tolerant persister formation during cryptococcal pulmonary infection. Cell Host Microbe 2024, 32, 276–289.e7. [Google Scholar] [CrossRef]
- Levinson, T.; Dahan, A.; Novikov, A.; Paran, Y.; Berman, J.; Ben-Ami, R. Impact of tolerance to fluconazole on treatment response in Candida albicans bloodstream infection. Mycoses 2021, 64, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Scopel, E.F.C.; Li, H.; Sun, L.L.; Kawar, N.; Cao, Y.B.; Jiang, Y.Y.; Berman, J. Antifungal Tolerance and Resistance Emerge at Distinct Drug Concentrations and Rely upon Different Aneuploid Chromosomes. mBio 2023, 14, e0022723. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Gritsenko, V.; Slor Futterman, Y.; Gao, L.; Zhen, C.; Lu, H.; Jiang, Y.Y.; Berman, J. Tunicamycin Potentiates Antifungal Drug Tolerance via Aneuploidy in Candida albicans. mBio 2021, 12, e0227221. [Google Scholar] [CrossRef]
- Chen, L.; Tian, X.; Zhang, L.; Wang, W.; Hu, P.; Ma, Z.; Li, Y.; Li, S.; Shen, Z.; Fan, X.; et al. Brain glucose induces tolerance of Cryptococcus neoformans to amphotericin B during meningitis. Nat. Microbiol. 2024, 9, 346–358. [Google Scholar] [CrossRef]
- Yoo, K.; Bhattacharya, S.; Oliveira, N.K.; Pereira de Sa, N.; Matos, G.S.; Del Poeta, M.; Fries, B.C. With age comes resilience: How mitochondrial modulation drives age-associated fluconazole tolerance in Cryptococcus neoformans. mBio 2024, 15, e0184724. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, L.; Wakabayashi, H.; Myers, J.; Jiang, Y.; Cao, Y.; Jimenez-Ortigosa, C.; Perlin, D.S.; Rustchenko, E. Tolerance to Caspofungin in Candida albicans Is Associated with at Least Three Distinctive Mechanisms That Govern Expression of FKS Genes and Cell Wall Remodeling. Antimicrob. Agents Chemother. 2017, 61, e00071-17. [Google Scholar] [CrossRef]
- Prasetyoputri, A.; Jarrad, A.M.; Cooper, M.A.; Blaskovich, M.A.T. The Eagle Effect and Antibiotic-Induced Persistence: Two Sides of the Same Coin? Trends Microbiol. 2019, 27, 339–354. [Google Scholar] [CrossRef]
- Singh, S.D.; Robbins, N.; Zaas, A.K.; Schell, W.A.; Perfect, J.R.; Cowen, L.E. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog. 2009, 5, e1000532. [Google Scholar] [CrossRef]
- Iyer, K.R.; Robbins, N.; Cowen, L.E. The role of Candida albicans stress response pathways in antifungal tolerance and resistance. iScience 2022, 25, 103953. [Google Scholar] [CrossRef] [PubMed]
- Dumeaux, V.; Massahi, S.; Bettauer, V.; Mottola, A.; Dukovny, A.; Khurdia, S.S.; Costa, A.; Omran, R.P.; Simpson, S.; Xie, J.L.; et al. Candida albicans exhibits heterogeneous and adaptive cytoprotective responses to antifungal compounds. eLife 2023, 12, e81406. [Google Scholar] [CrossRef] [PubMed]
- Defraine, V.; Fauvart, M.; Michiels, J. Fighting bacterial persistence: Current and emerging anti-persister strategies and therapeutics. Drug Resist. Updat. 2018, 38, 12–26. [Google Scholar] [CrossRef]
- Lewis, K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 2007, 5, 48–56. [Google Scholar] [CrossRef]
- da Silva, M.A.; Baronetti, J.L.; Páez, P.L.; Paraje, M.G. Oxidative Imbalance in Candida tropicalis Biofilms and Its Relation with Persister Cells. Front. Microbiol. 2020, 11, 598834. [Google Scholar] [CrossRef]
- Dasilva, M.A.; Andrada, K.F.C.; Torales, M.M.; Hughes, I.M.; Pez, P.; García-Martínez, J.C.; Paraje, M.G. Synergistic activity of gold nanoparticles with amphotericin B on persister cells of Candida tropicalis biofilms. J. Nanobiotechnol. 2024, 22, 254. [Google Scholar] [CrossRef]
- El Meouche, I.; Jain, P.; Jolly, M.K.; Capp, J.P. Drug tolerance and persistence in bacteria, fungi and cancer cells: Role of non-genetic heterogeneity. Transl. Oncol. 2024, 49, 102069. [Google Scholar] [CrossRef]
- Zou, P.; Liu, J.; Li, P.; Luan, Q. Antifungal Activity, Synergism with Fluconazole or Amphotericin B and Potential Mechanism of Direct Current against Candida albicans Biofilms and Persisters. Antibiotics 2024, 13, 521. [Google Scholar] [CrossRef]
- Selmecki, A.; Forche, A.; Berman, J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 2006, 313, 367–370. [Google Scholar] [CrossRef]
- Sah, S.K.; Hayes, J.J.; Rustchenko, E. The role of aneuploidy in the emergence of echinocandin resistance in human fungal pathogen Candida albicans. PLoS Pathog. 2021, 17, e1009564. [Google Scholar] [CrossRef]
- Harrison, B.D.; Hashemi, J.; Bibi, M.; Pulver, R.; Bavli, D.; Nahmias, Y.; Wellington, M.; Sapiro, G.; Berman, J. A tetraploid intermediate precedes aneuploid formation in yeasts exposed to fluconazole. PLoS Biol. 2014, 12, e1001815. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Teoh, F.; Tan, A.S.M.; Cao, Y.; Pavelka, N.; Berman, J. Aneuploidy Enables Cross-Adaptation to Unrelated Drugs. Mol. Biol. Evol. 2019, 36, 1768–1782. [Google Scholar] [CrossRef] [PubMed]
- Husain, F.; Yadav, A.; Sah, S.K.; Hayes, J.J.; Rustchenko, E. Candida albicans Strains Adapted to Caspofungin Due to Aneuploidy Become Highly Tolerant under Continued Drug Pressure. Microorganisms 2022, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Ksiezopolska, E.; Schikora-Tamarit, M.; Carlos Nunez-Rodriguez, J.; Gabaldón, T. Long-term stability of acquired drug resistance and resistance associated mutations in the fungal pathogen Nakaseomyces glabratus (Candida glabrata). Front. Cell Infect. Microbiol. 2024, 14, 1416509. [Google Scholar] [CrossRef]
- Todd, R.T.; Selmecki, A. Expandable and reversible copy number amplification drives rapid adaptation to antifungal drugs. Elife 2020, 9, e58349. [Google Scholar] [CrossRef]
- Burrack, L.S.; Todd, R.T.; Soisangwan, N.; Wiederhold, N.P.; Selmecki, A. Genomic Diversity across Candida auris Clinical Isolates Shapes Rapid Development of Antifungal Resistance In Vitro and In Vivo. mBio 2022, 13, e0084222. [Google Scholar] [CrossRef]
- Anderson, J.B.; Sirjusingh, C.; Ricker, N. Haploidy, diploidy and evolution of antifungal drug resistance in Saccharomyces cerevisiae. Genetics 2004, 168, 1915–1923. [Google Scholar] [CrossRef]
- D’Souza, C.A.; Kronstad, J.W.; Taylor, G.; Warren, R.; Yuen, M.; Hu, G.; Jung, W.H.; Sham, A.; Kidd, S.E.; Tangen, K.; et al. Genome variation in Cryptococcus gattii, an emerging pathogen of immunocompetent hosts. mBio 2011, 2, e00342-10. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Sun, L.L.; Fu, B.Q.; Deng, J.; Jia, C.L.; Miao, M.X.; Yang, F.; Cao, Y.B.; Yan, T.H. Aneuploidy underlies brefeldin A-induced antifungal drug resistance in Cryptococcus neoformans. Front. Cell Infect. Microbiol. 2024, 14, 1397724. [Google Scholar] [CrossRef]
- Cao, C.; Wang, K.; Wang, Y.; Liu, T.B.; Rivera, A.; Xue, C. Ubiquitin proteolysis of a CDK-related kinase regulates titan cell formation and virulence in the fungal pathogen Cryptococcus neoformans. Nat. Commun. 2022, 13, 6397. [Google Scholar] [CrossRef]
- García-Barbazán, I.; Torres-Cano, A.; García-Rodas, R.; Sachse, M.; Luque, D.; Megías, D.; Zaragoza, O. Accumulation of endogenous free radicals is required to induce titan-like cell formation in Cryptococcus neoformans. mBio 2024, 15, e0254923. [Google Scholar] [CrossRef] [PubMed]
- Stone, N.R.; Rhodes, J.; Fisher, M.C.; Mfinanga, S.; Kivuyo, S.; Rugemalila, J.; Segal, E.S.; Needleman, L.; Molloy, S.F.; Kwon-Chung, J.; et al. Dynamic ploidy changes drive fluconazole resistance in human cryptococcal meningitis. J. Clin. Investig. 2019, 129, 999–1014. [Google Scholar] [CrossRef]
- Ngamskulrungroj, P.; Chang, Y.; Hansen, B.; Bugge, C.; Fischer, E.; Kwon-Chung, K.J. Characterization of the chromosome 4 genes that affect fluconazole-induced disomy formation in Cryptococcus neoformans. PLoS ONE 2012, 7, e33022. [Google Scholar] [CrossRef] [PubMed]
- Sionov, E.; Lee, H.; Chang, Y.C.; Kwon-Chung, K.J. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog. 2010, 6, e1000848. [Google Scholar] [CrossRef] [PubMed]
- Marr, K.A.; Lyons, C.N.; Rustad, T.R.; Bowden, R.A.; White, T.C. Rapid, transient fluconazole resistance in Candida albicans is associated with increased mRNA levels of CDR. Antimicrob. Agents Chemother. 1998, 42, 2584–2589. [Google Scholar] [CrossRef]
- Sykes, J.E.; Hodge, G.; Singapuri, A.; Yang, M.L.; Gelli, A.; Thompson, G.R., 3rd. In vivo development of fluconazole resistance in serial Cryptococcus gattii isolates from a cat. Med. Mycol. 2017, 55, 396–401. [Google Scholar] [CrossRef]
- Altamirano, S.; Simmons, C.; Kozubowski, L. Colony and Single Cell Level Analysis of the Heterogeneous Response of Cryptococcus neoformans to Fluconazole. Front. Cell Infect. Microbiol. 2018, 8, 203. [Google Scholar] [CrossRef]
- Ning, Y.; Dai, R.; Zhang, L.; Xu, Y.; Xiao, M. Copy number variants of ERG11: Mechanism of azole resistance in Candida parapsilosis. Lancet Microbe 2024, 5, e10. [Google Scholar] [CrossRef]
- Fan, X.; Dai, R.C.; Zhang, S.; Geng, Y.Y.; Kang, M.; Guo, D.W.; Mei, Y.N.; Pan, Y.H.; Sun, Z.Y.; Xu, Y.C.; et al. Tandem gene duplications contributed to high-level azole resistance in a rapidly expanding Candida tropicalis population. Nat. Commun. 2023, 14, 8369. [Google Scholar] [CrossRef]
- Yang, F.; Berman, J. Beyond resistance: Antifungal heteroresistance and antifungal tolerance in fungal pathogens. Curr. Opin. Microbiol. 2024, 78, 102439. [Google Scholar] [CrossRef]
- Tsai, H.J.; Nelliat, A. A Double-Edged Sword: Aneuploidy is a Prevalent Strategy in Fungal Adaptation. Genes 2019, 10, 787. [Google Scholar] [CrossRef] [PubMed]
- Vande Zande, P.; Zhou, X.; Selmecki, A. The Dynamic Fungal Genome: Polyploidy, Aneuploidy and Copy Number Variation in Response to Stress. Annu. Rev. Microbiol. 2023, 77, 341–361. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Gritsenko, V.; Lu, H.; Zhen, C.; Gao, L.; Berman, J.; Jiang, Y.Y. Adaptation to Fluconazole via Aneuploidy Enables Cross-Adaptation to Amphotericin B and Flucytosine in Cryptococcus neoformans. Microbiol. Spectr. 2021, 9, e0072321. [Google Scholar] [CrossRef] [PubMed]
- Gohar, A.A.; Badali, H.; Shokohi, T.; Nabili, M.; Amirrajab, N.; Moazeni, M. Expression Patterns of ABC Transporter Genes in Fluconazole-Resistant Candida glabrata. Mycopathologia 2017, 182, 273–284. [Google Scholar] [CrossRef]
- Beach, R.R.; Ricci-Tam, C.; Brennan, C.M.; Moomau, C.A.; Hsu, P.H.; Hua, B.; Silberman, R.E.; Springer, M.; Amon, A. Aneuploidy Causes Non-genetic Individuality. Cell 2017, 169, 229–242.e21. [Google Scholar] [CrossRef]
- Coste, A.T.; Karababa, M.; Ischer, F.; Bille, J.; Sanglard, D. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot. Cell 2004, 3, 1639–1652. [Google Scholar] [CrossRef]
- Zheng, Q.; Liu, J.; Qin, J.; Wang, B.; Bing, J.; Du, H.; Li, M.; Yu, F.; Huang, G. Ploidy Variation and Spontaneous Haploid-Diploid Switching of Candida glabrata Clinical Isolates. mSphere 2022, 7, e0026022. [Google Scholar] [CrossRef]
- Moreira, I.M.B.; Cortez, A.C.A.; de Souza, É.S.; Pinheiro, S.B.; de Souza Oliveira, J.G.; Sadahiro, A.; Cruz, K.S.; Matsuura, A.B.J.; Melhem, M.S.C.; Frickmann, H.; et al. Investigation of fluconazole heteroresistance in clinical and environmental isolates of Cryptococcus neoformans complex and Cryptococcus gattii complex in the state of Amazonas, Brazil. Med. Mycol. 2022, 60, myac005. [Google Scholar] [CrossRef]
- Varma, A.; Kwon-Chung, K.J. Heteroresistance of Cryptococcus gattii to fluconazole. Antimicrob. Agents Chemother. 2010, 54, 2303–2311. [Google Scholar] [CrossRef]
- Sionov, E.; Chang, Y.C.; Kwon-Chung, K.J. Azole heteroresistance in Cryptococcus neoformans: Emergence of resistant clones with chromosomal disomy in the mouse brain during fluconazole treatment. Antimicrob. Agents Chemother. 2013, 57, 5127–5130. [Google Scholar] [CrossRef]
- Altamirano, S.; Fang, D.; Simmons, C.; Sridhar, S.; Wu, P.; Sanyal, K.; Kozubowski, L. Fluconazole-Induced Ploidy Change in Cryptococcus neoformans Results from the Uncoupling of Cell Growth and Nuclear Division. mSphere 2017, 2, e00205-17. [Google Scholar] [CrossRef] [PubMed]
- Escribano, P.; Recio, S.; Peláez, T.; González-Rivera, M.; Bouza, E.; Guinea, J. In vitro acquisition of secondary azole resistance in Aspergillus fumigatus isolates after prolonged exposure to itraconazole: Presence of heteroresistant populations. Antimicrob. Agents Chemother. 2012, 56, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Nurjadi, D.; Chanthalangsy, Q.; Zizmann, E.; Stuermer, V.; Moll, M.; Klein, S.; Boutin, S.; Heeg, K.; Zanger, P. Phenotypic Detection of Hemin-Inducible Trimethoprim-Sulfamethoxazole Heteroresistance in Staphylococcus aureus. Microbiol. Spectr. 2021, 9, e0151021. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, L.; Liu, Q.; Li, J.; Hong, C.; Jiang, Q.; Gan, M.; Takiff, H.E.; Yu, W.; Tan, W.; et al. Lesion Heterogeneity and Long-Term Heteroresistance in Multidrug-Resistant Tuberculosis. J. Infect. Dis. 2021, 224, 889–893. [Google Scholar] [CrossRef]
- Hope, W.; Stone, N.R.H.; Johnson, A.; McEntee, L.; Farrington, N.; Santoro-Castelazo, A.; Liu, X.; Lucaci, A.; Hughes, M.; Oliver, J.D.; et al. Fluconazole Monotherapy Is a Suboptimal Option for Initial Treatment of Cryptococcal Meningitis Because of Emergence of Resistance. mBio 2019, 10, e02575-19. [Google Scholar] [CrossRef]
- Banerjee, T.; Adwityama, A.; Sharma, S.; Mishra, K.; Prusti, P.; Maitra, U. Comparative evaluation of colistin broth disc elution (CBDE) and broth microdilution (BMD) in clinical isolates of Pseudomonas aeruginosa with special reference to heteroresistance. Indian. J. Med. Microbiol. 2024, 47, 100494. [Google Scholar] [CrossRef]
- Chang, Y.C.; Khanal Lamichhane, A.; Kwon-Chung, K.J. Cryptococcus neoformans, Unlike Candida albicans, Forms Aneuploid Clones Directly from Uninucleated Cells under Fluconazole Stress. mBio 2018, 9, e01290-18. [Google Scholar] [CrossRef]
- Winski, C.J.; Qian, Y.; Mobashery, S.; Santiago-Tirado, F.H. An Atypical ABC Transporter Is Involved in Antifungal Resistance and Host Interactions in the Pathogenic Fungus Cryptococcus neoformans. mBio 2022, 13, e0153922. [Google Scholar] [CrossRef]
- El-Halfawy, O.M.; Valvano, M.A. Antimicrobial heteroresistance: An emerging field in need of clarity. Clin. Microbiol. Rev. 2015, 28, 191–207. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, J.; Lin, X.; Huang, X.; Hoffmann, M.R. Single-Cell Phenotypic Analysis and Digital Molecular Detection Linkable by a Hydrogel Bead-Based Platform. ACS Appl. Bio Mater. 2021, 4, 2664–2674. [Google Scholar] [CrossRef]
- Dai, Y.; Li, C.; Yi, J.; Qin, Q.; Liu, B.; Qiao, L. Plasmonic Colloidosome-Coupled MALDI-TOF MS for Bacterial Heteroresistance Study at Single-Cell Level. Anal. Chem. 2020, 92, 8051–8057. [Google Scholar] [CrossRef] [PubMed]
- Mezcord, V.; Escalante, J.; Nishimura, B.; Traglia, G.M.; Sharma, R.; Vallé, Q.; Tuttobene, M.R.; Subils, T.; Marin, I.; Pasteran, F.; et al. Induced Heteroresistance in Carbapenem-Resistant Acinetobacter baumannii (CRAB) via Exposure to Human Pleural Fluid (HPF) and Its Impact on Cefiderocol Susceptibility. Int. J. Mol. Sci. 2023, 24, 11752. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, X.; Zhao, L.; He, Y.; Yu, W.; Fu, S.; Ni, W.; Gao, Z. Heteroresistance Is Associated With in vitro Regrowth During Colistin Treatment in Carbapenem-Resistant Klebsiella pneumoniae. Front. Microbiol. 2022, 13, 868991. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhang, Q.; Wen, L.; Chen, J. Combined effect of Polymyxin B and Tigecycline to overcome Heteroresistance in Carbapenem-Resistant Klebsiella pneumoniae. Microbiol. Spectr. 2021, 9, e0015221. [Google Scholar] [CrossRef]
- Jo, J.; Kwon, K.T.; Ko, K.S. Multiple heteroresistance to tigecycline and colistin in Acinetobacter baumannii isolates and its implications for combined antibiotic treatment. J. Biomed. Sci. 2023, 30, 37. [Google Scholar] [CrossRef]
- Rajakani, S.G.; Xavier, B.B.; Sey, A.; Mariem, E.B.; Lammens, C.; Goossens, H.; Glupczynski, Y.; Malhotra-Kumar, S. Insight into Antibiotic Synergy Combinations for Eliminating Colistin Heteroresistant Klebsiella pneumoniae. Genes 2023, 14, 1426. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Maesaki, S.; Kakeya, H.; Yanagihara, K.; Ohno, H.; Ogawa, K.; Hirakata, Y.; Tomono, K.; Tashiro, T.; Kohno, S. Combination therapy with fluconazole and flucytosine for pulmonary cryptococcosis. Chemotherapy 1997, 43, 436–441. [Google Scholar] [CrossRef]
- Jackson, A.T.; Nussbaum, J.C.; Phulusa, J.; Namarika, D.; Chikasema, M.; Kanyemba, C.; Jarvis, J.N.; Jaffar, S.; Hosseinipour, M.C.; van der Horst, C.; et al. A phase II randomized controlled trial adding oral flucytosine to high-dose fluconazole, with short-course amphotericin B, for cryptococcal meningitis. Aids 2012, 26, 1363–1370. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Su, X.; Yang, L.; Wang, Y.; Wang, A.; Xu, X.; Li, M.; Jiang, Y.; Peng, F. Amphotericin B plus fluorocytosine combined with voriconazole for the treatment of non-HIV and non-transplant-associated cryptococcal meningitis: A retrospective study. BMC Neurol. 2022, 22, 274. [Google Scholar] [CrossRef]
Concept | Description | Mechanisms | Clinical Features | Referrence |
---|---|---|---|---|
Resistance | The ability to withstand the effects of an antifungal drug whose concentration is typically effective. | Heritable mutations are associated with drug targets or efflux pumps expression, etc. | Treatment failure and increased risk of infection spread. | [82,83,84] |
Tolerance | The whole population survives antifungal exposure at concentrations that would otherwise be lethal. | Altered cell growth or metabolism, etc. | High mortality rates, persistent infection and treatment failure. | [98,103,104,105,106,107,108,113] |
Persistence | A subpopulation of genetically susceptible fungal cells survives fungicidal concentrations of drugs. | Altered cell growth and metabolism, etc. | Treatment failure and recurrence. | [109,110,111,112] |
Heteroresistance | A minority of phenotypically resistant cells with elevated MICs coexist with the most susceptible cells. | Altered expression levels, aneuploidy and copy number variation, etc. | High mortality rates, treatment failure, potential to evolve into full resistance. | [15,18,48,57,99,100,101,102] |
Types | Species | Antifungals | Mechanisms | Related Components | References |
---|---|---|---|---|---|
Aneuploidy and CNVs | C. albicans | Fluconazole | Chr5 disomy | ERG11 and TAC1 | [129,130] |
C. albicans | 5-Flucytosine | Loss of chr5, due to the location of negative regulator (s) of anti 5-FC resistance | Unknown. | [130] | |
C. albicans | Fluconazole | “Trimeras”, three connected cells composed of a mother, daughter, and granddaughter bud | Unknown. | [131] | |
C. albicans | Echinocandins | Chr2 trisomy | RNR1, RNR21 | [132] | |
C. albicans | Echinocandins (caspofungin, micafungin and anidulafungin) | Chr5 aneuploidy after caspofungin exposure can produce cross-resistance | Three negative regulators CHT2, PGA4 and CSU51, and two positive regulators, CNB1 and MID1. | [118,133] | |
N. glabrata | Echinocandins (anidulafungin) | ChrE aneuploidy contributes to heteroresistance after exposing clinical isolates to anidulafungin. | Unknown. | [134] | |
N. glabrata | Azoles | Incremental effects of multiple binary genetic switches | CDR1, PDH1, PDR1 and SNQ1 | [99] | |
N. glabrata | Azoles | Formation of “trimeras” | Unknown. | [131] | |
C. parapsilosis | Azoles | Formation of “trimeras” | Unknown. | [131] | |
C. auris | Azoles (fluconazole) | Genome changes mainly involving SNP, with aneuploidy a minority. But due to its haploid genome, SNPs may have immediate phenotypic impact. | SNPs | [135,136,137] | |
C. gattii | Azoles (fluconazole) | Copy number increase in chr10, chr9 and chr11 in VGI genotype and copy number increase in chr3 in VGII genotype | Unknown. | [138] | |
C. neoformans | Cross-resistance to 5-FC and Fluconazole | Chr1 disomy | ERG11, AFR1 | [139] | |
C. neoformans | Fluconazole | Overexpression of AFR1 on chr1 and GEA2 on chr3 | AFR1, GEA2 | [139] | |
C. neoformans | Azoles (fluconazole) | Titan cells that produce multiple types of aneuploid daughter cells | Unknown. | [56,140,141] | |
C. neoformans | Azoles (fluconazole) | Chr1 disomy | ERG11, AFR1 | [142] | |
C. neoformans | Azoles (fluconazole) | Chr4 disomy | SEY1, GCS2, GLO3 | [143] | |
C. neoformans | Azoles (fluconazole) | Chr3 disomy caused by gene relocation | ERG11, SEY1, GCS2, GLO3 | [143,144] | |
Alterations in Gene Expression | C. albicans | Azoles | Elevation of mRNA | ATP Binding Cassette superfamily CDR genes | [145] |
C. gattii | Azoles (fluconazole) | Up-regulated activity of efflux pumps | PDR11 | [146] | |
C. neoformans | Azoles (fluconazole) | Up-regulated activity of efflux pumps | AFR1 | [142] | |
Environmental Stress | C. neoformans | Polyene (AMB) and Azoles (fluconazole) | Nitrogen limitation | Unknown. | [57] |
C. neoformans | Azoles (fluconazole) | Environmental temperature | Unknown. | [19] | |
C. neoformans | Azoles | Temperature, media type, growth phase, and the age of cells | Unknown. | [147] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Li, Y.; Yi, Q.; Xu, Y.; Sun, T.; Li, Y. Insight into the Mechanisms and Clinical Relevance of Antifungal Heteroresistance. J. Fungi 2025, 11, 143. https://doi.org/10.3390/jof11020143
Su Y, Li Y, Yi Q, Xu Y, Sun T, Li Y. Insight into the Mechanisms and Clinical Relevance of Antifungal Heteroresistance. Journal of Fungi. 2025; 11(2):143. https://doi.org/10.3390/jof11020143
Chicago/Turabian StyleSu, Yanyu, Yi Li, Qiaolian Yi, Yingchun Xu, Tianshu Sun, and Yingxing Li. 2025. "Insight into the Mechanisms and Clinical Relevance of Antifungal Heteroresistance" Journal of Fungi 11, no. 2: 143. https://doi.org/10.3390/jof11020143
APA StyleSu, Y., Li, Y., Yi, Q., Xu, Y., Sun, T., & Li, Y. (2025). Insight into the Mechanisms and Clinical Relevance of Antifungal Heteroresistance. Journal of Fungi, 11(2), 143. https://doi.org/10.3390/jof11020143