Evaluation of the Effects of Epicoccum nigrum on the Olive Fungal Pathogens Verticillium dahliae and Colletotrichum acutatum by 1H NMR-Based Metabolic Profiling
<p>Phylogenetic trees of <span class="html-italic">Verticillium dahliae</span> (<b>A</b>) and <span class="html-italic">Epicoccum nigrum</span> (<b>B</b>) based on the internal transcribed spacer (ITS) and, for <span class="html-italic">E. nigrum</span>, also on the β-tubulin (Tub2) gene. In panel (<b>A</b>), the phylogenetic tree for <span class="html-italic">V. dahliae</span> was constructed using only ITS sequences, with <span class="html-italic">Gibellulopsis nigrescens</span> as the outgroup and a log likelihood of −1029.50. In panel (<b>B</b>), the multilocus phylogenetic tree of <span class="html-italic">E. nigrum</span> was developed using both ITS and Tub2 sequences, with <span class="html-italic">Epicoccum dendrobii</span> as the outgroup and a log likelihood of −1560.69. Maximum likelihood estimation was used to infer the trees, and the Tamura–Nei model was applied.</p> "> Figure 2
<p>(<b>A</b>) Petri dish cultures: C9D2C + RD4C, dual-culture of <span class="html-italic">C. acutatum</span> and <span class="html-italic">E nigrum</span>; RD4C, mono-culture of <span class="html-italic">E nigrum;</span> ER 1357 + RD4C, dual-culture of <span class="html-italic">V. dahliae</span> and <span class="html-italic">E nigrum;</span> ER 1357, mono-culture of <span class="html-italic">V. dahliae.</span> (<b>B</b>) Percentage of mycelial growth inhibition of <span class="html-italic">Colletotrichum acutatum</span> (C9D2C) and <span class="html-italic">Verticillium dahliae</span> (ER 1357) observed in the dual-culture test against <span class="html-italic">Epicoccum nigrum</span> (RD4C). Inhibition values were calculated after 10 days for <span class="html-italic">C. acutatum</span> and 15 days for <span class="html-italic">V. dahliae</span> following incubation.</p> "> Figure 3
<p>Typical <sup>1</sup>H-NMR ZGCPPR spectra of aqueous extracts of three pathogens: <span class="html-italic">E. nigrum</span> (<b>bottom</b>), <span class="html-italic">V. dahliae</span> (<b>middle</b>) and <span class="html-italic">C. acutatum</span> (<b>top</b>); a representative expansion of aromatic region is also shown.</p> "> Figure 4
<p>Typical <sup>1</sup>H NMR spectra of lipid extracts of three pathogens: <span class="html-italic">E. nigrum</span> (<b>bottom</b>), <span class="html-italic">V. dahliae</span> (<b>middle</b>) and <span class="html-italic">C. acutatum</span> (<b>top</b>).</p> "> Figure 5
<p>(<b>a</b>) OPLS-DA t[1]/t[2] score plot performed on aqueous extracts of <span class="html-italic">E. nigrum</span> cultivated in mono- and dual-assay; (<b>b</b>) loading plot for the model, colored according to the correlation-scaled vector (p(corr)). The variables indicate the chemical shift value (ppm) in the <sup>1</sup>H NMR spectra.</p> "> Figure 6
<p>(<b>a</b>) OPLS-DA t[1]/to [1] score plot performed on <span class="html-italic">V. dahliae</span> aqueous extracts cultivated in mono- and dual-assay; mono, mono-culture assay (<span class="html-italic">V. dahliae</span>); dual, dual-culture assay (<span class="html-italic">V. dahliae + E. nigrum</span>); (<b>b</b>) loading plot for the OPLS-DA model; (<b>c</b>) OPLS-DA t[1]/to [1] score plot performed on <span class="html-italic">C. acutatum</span> aqueous extracts cultivated in mono- and dual-assay; mono, mono-culture assay (<span class="html-italic">C. acutatum</span>); dual, dual-culture assay (<span class="html-italic">C. acutatum + E. nigrum)</span>; (<b>d</b>) loading plot for the model, colored according to the correlation-scaled vector (p(corr)). The variables indicate the chemical shift value (ppm) in the <sup>1</sup>H NMR spectra.</p> "> Figure 7
<p>Variation in discriminating metabolite content between mono- and dual-culture assay for aqueous extract; (<b>a</b>) <span class="html-italic">E. nigrum</span>; (<b>b</b>) <span class="html-italic">V. dahliae</span>; (<b>c</b>) <span class="html-italic">C. acutatum</span>. Signif. codes ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.</p> "> Figure 8
<p>(<b>a</b>) OPLS-DA t[1]/t[2] score plot performed on lipid extracts of <span class="html-italic">E. nigrum</span> cultivated in mono- and dual-assay; (<b>b</b>) loading plot for the model, colored according to the correlation-scaled vector (p(corr)). The variables indicated the chemical shift value (ppm) in the <sup>1</sup>H NMR spectra.</p> "> Figure 9
<p>(<b>a</b>) OPLS-DA t[1]/to [1] score plot performed on <span class="html-italic">V. dahliae</span> lipid extracts cultivated in mono- and dual-assay; mono, mono-culture assay (<span class="html-italic">V. dahliae</span>); dual, dual-culture assay (<span class="html-italic">V. dahliae + E. nigrum</span>); (<b>b</b>) loading plot for the OPLS-DA model; (<b>c</b>) OPLS-DA t[1]/to [1] score plot performed on <span class="html-italic">C. acutatum</span> lipid extracts cultivated in mono- and dual-assay; mono, mono-culture assay (<span class="html-italic">C. acutatum</span>); dual, dual-culture assay (<span class="html-italic">C. acutatum + E. nigrum)</span>; (<b>d</b>) loading plot for the model, colored according to the correlation-scaled vector (p(corr)). The variables indicate the chemical shift value (ppm) in the <sup>1</sup>H NMR spectra.</p> "> Figure 10
<p>Variation in discriminating fatty acid contents between mono- and dual-culture assay for aqueous extracts; (<b>a</b>) <span class="html-italic">E. nigrum</span>; (<b>b</b>) <span class="html-italic">V. dahliae</span>; (<b>c</b>) <span class="html-italic">C. acutatum</span>. Signif. codes ‘***’ 0.001 ‘**’ 0.01.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Isolates
2.2. Morphological Identification of Epicoccum nigrum and Verticillium dahliae
2.3. Molecular Identification of Epicoccum nigrum and Verticillium dahliae
2.4. In Vitro Antagonistic Ability
2.5. Sample Preparation for NMR Analysis
2.6. NMR Measurement
2.7. Data Processing and Multivariate Statistical Analysis
3. Results
3.1. Morphological and Molecular Identification
3.2. In Vitro Antagonistic Ability
3.3. NMR Profiles Obtained from E. nigrum, V. dahliae, C. acutatum
3.4. Multivariate Statistical Analysis
3.4.1. Aqueous Extracts
3.4.2. Lipid Extracts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newton, C.; Lorre, C.; Sauvage, C.; Ivorra, S.; Terral, J.-F. On the Origins and Spread of Olea Europaea L. (Olive) Domestication: Evidence for Shape Variation of Olive Stones at Ugarit, Late Bronze Age, Syria—A Window on the Mediterranean Basin and on the Westward Diffusion of Olive Varieties. Veg. Hist. Archaeobot. 2014, 23, 567–575. [Google Scholar] [CrossRef]
- Montes-Osuna, N.; Mercado-Blanco, J. Verticillium Wilt of Olive and Its Control: What Did We Learn during the Last Decade? Plants 2020, 9, 735. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Lobato, L.; Ruiz-Carrasco, B.; Tostado-Véliz, M.; Jurado, F.; Vera, D. Environmental Impact of the Most Representative Spanish Olive Oil Farming Systems: A Life Cycle Assessment Study. J. Clean. Prod. 2024, 442, 141169. [Google Scholar] [CrossRef]
- Klosterman, S.J.; Atallah, Z.K.; Vallad, G.E.; Subbarao, K.V. Diversity, Pathogenicity, and Management of Verticillium Species. Annu. Rev. Phytopathol. 2009, 47, 39–62. [Google Scholar] [CrossRef] [PubMed]
- Trapero, C.; Rallo, L.; López-Escudero, F.J.; Barranco, D.; Díez, C.M. Variability and Selection of Verticillium Wilt Resistant Genotypes in Cultivated Olive and in the Olea Genus. Plant Pathol. 2015, 64, 890–900. [Google Scholar] [CrossRef]
- Markakis, E.A.; Tjamos, S.E.; Antoniou, P.P.; Roussos, P.A.; Paplomatas, E.J.; Tjamos, E.C. Phenolic Responses of Resistant and Susceptible Olive Cultivars Induced by Defoliating and Nondefoliating Verticillium dahliae Pathotypes. Plant Dis. 2010, 94, 1156–1162. [Google Scholar] [CrossRef]
- Valverde, P.; Barranco, D.; López-Escudero, F.J.; Díez, C.M.; Trapero, C. Efficiency of Breeding Olives for Resistance to Verticillium Wilt. Front. Plant Sci. 2023, 14, 1149570. [Google Scholar] [CrossRef]
- Moral, J.; Agustí-Brisach, C.; Raya, M.C.; Jurado-Bello, J.; López-Moral, A.; Roca, L.F.; Chattaoui, M.; Rhouma, A.; Nigro, F.; Sergeeva, V.; et al. Diversity of Colletotrichum Species Associated with Olive Anthracnose Worldwide. J. Fungi 2021, 7, 741. [Google Scholar] [CrossRef]
- Riolo, M.; Pane, A.; Santilli, E.; Moricca, S.; Cacciola, S.O. Susceptibility of Italian Olive Cultivars to Various Colletotrichum Species Associated with Fruit Anthracnose. Plant Pathol. 2023, 72, 255–267. [Google Scholar] [CrossRef]
- Kolainis, S.; Koletti, A.; Lykogianni, M.; Karamanou, D.; Gkizi, D.; Tjamos, S.E.; Paraskeuopoulos, A.; Aliferis, K.A. An Integrated Approach to Improve Plant Protection against Olive Anthracnose Caused by the Colletotrichum acutatum Species Complex. PLoS ONE 2020, 15, e0233916. [Google Scholar] [CrossRef]
- Talhinhas, P.; Baroncelli, R. Colletotrichum Species and Complexes: Geographic Distribution, Host Range and Conservation Status. Fungal Divers. 2021, 110, 109–198. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Martins-Lopes, P.; Carvalho, T.; Barros, A.; Gomes, S. Impact of Colletotrichum acutatum Pathogen on Olive Phenylpropanoid Metabolism. Agriculture 2019, 9, 173. [Google Scholar] [CrossRef]
- Peres, F.; Talhinhas, P.; Afonso, H.; Alegre, H.; Oliveira, H.; Ferreira-Dias, S. Olive Oils from Fruits Infected with Different Anthracnose Pathogens Show Sensory Defects Earlier Than Chemical Degradation. Agronomy 2021, 11, 1041. [Google Scholar] [CrossRef]
- Riolo, M.; Luz, C.; Santilli, E.; Meca, G.; Cacciola, S.O. Secondary Metabolites Produced by Four Colletotrichum Species in Vitro and on Fruits of Diverse Olive Cultivars. Fungal Biol. 2023, 127, 1118–1128. [Google Scholar] [CrossRef] [PubMed]
- Graniti, A.; Frisullo, S.; Pennisi, A.M.; Di San Lio, G.M. Infections of Glomerella cingulata on Olive in Italy. EPPO Bull. 1993, 23, 457–465. [Google Scholar] [CrossRef]
- Sergeeva, V.; Spooner-Hart, R. Diseases and Disorders Associated with Environmental Stress in Sustainable Olive Orchards in Australia. Acta Hortic. 2011, 18, 145–150. [Google Scholar] [CrossRef]
- Cacciola, S.O.; Faedda, R.; Fulvia, S.; Agosteo, G.; Schena, L.; Frisullo, S.; Magnano di San Lio, G. Olive Anthracnose. J. Plant Pathol. 2012, 94, 29–44. [Google Scholar]
- Faedda, R.; Agosteo, G.E.; Schena, L.; Mosca, S.; Frisullo, S.; Di San Lio, G.M.; Cacciola, S.O. Colletotrichum clavatum Sp. Nov. Identifid as the Causal Agent of Olive Anthracnose in Italy. Phytopathol. Mediterr. 2011, 50, 283–302. [Google Scholar]
- Schena, L.; Mosca, S.; Cacciola, S.O.; Faedda, R.; Sanzani, S.M.; Agosteo, G.E.; Sergeeva, V.; Magnano di San Lio, G. Species of the Colletotrichum gloeosporioides and C. boninense Complexes Associated with Olive Anthracnose. Plant Pathol. 2014, 63, 437–446. [Google Scholar] [CrossRef]
- Talhinhas, P.; Gonçalves, E.; Sreenivasaprasad, S.; Oliveira, H. Virulence Diversity of Anthracnose Pathogens (Colletotrichum acutatum and C. gloeosporioides Species Complexes) Eight Olive Cultiv. Commonly Grown Portugal. Eur. J. Plant Pathol. 2015, 142, 73–83. [Google Scholar] [CrossRef]
- Nawaz, H.H.; Manzoor, A.; Iqbal, M.Z.; Ansar, M.R.; Ali, M.; Muhammad Kakar, K.; Ali Awan, A.; Weiguo, M. Colletotrichum acutatum: Causal Agent of Olive Anthracnose Isolation, Characterization, and Fungicide Susceptibility Screening in Punjab, Pakistan. Plant Dis. 2023, 107, 1329–1342. [Google Scholar] [CrossRef] [PubMed]
- La Spada, F.; Stracquadanio, C.; Riolo, M.; Pane, A.; Cacciola, S.O. Trichoderma Counteracts the Challenge of Phytophthora Nicotianae Infections on Tomato by Modulating Plant Defense Mechanisms and the Expression of Crinkler, Necrosis-Inducing Phytophthora Protein 1, and Cellulose-Binding Elicitor Lectin Pathogenic Effectors. Front. Plant Sci. 2020, 11, 583539. [Google Scholar] [CrossRef]
- López-Moral, A.; Agustí-Brisach, C.; Trapero, A. Plant Biostimulants: New Insights Into the Biological Control of Verticillium Wilt of Olive. Front. Plant Sci. 2021, 12, 662178. [Google Scholar] [CrossRef] [PubMed]
- Mulero-Aparicio, A.; Varo, A.; Agustí-Brisach, C.; López-Escudero, F.J.; Trapero, A. Biological Control of Verticillium Wilt of Olive in the Field. Crop Prot. 2020, 128, 104993. [Google Scholar] [CrossRef]
- Pangallo, S.; Li Destri Nicosia, M.G.; Agosteo, G.E.; Schena, L. Control of Olive Anthracnose and Leaf Spot Disease by Bloom Treatments with a Pomegranate Peel Extract. J. Saudi Soc. Agric. Sci. 2022, 21, 248–254. [Google Scholar] [CrossRef]
- Riolo, M.; Villena, A.M.; Calpe, J.; Luz, C.; Meca, G.; Tuccitto, N.; Cacciola, S.O. A Circular Economy Approach: A New Formulation Based on a Lemon Peel Medium Activated with Lactobacilli for Sustainable Control of Post-Harvest Fungal Rots in Fresh Citrus Fruit. Biol. Control 2024, 189, 105443. [Google Scholar] [CrossRef]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef]
- Rovetto, E.I.; La Spada, F.; El boumlasy, S.; Conti Taguali, S.; Riolo, M.; Pane, A.; Cacciola, S.O. Biological Control of Green Mold in Simulated Post-Harvest Chain of Citrus Fruit: Efficacy of Candida oleophila Strain O and Molecular Insight into Elicitation of Host Immune System. Biol. Control 2024, 193, 105531. [Google Scholar] [CrossRef]
- Spadaro, D.; Droby, S. Development of Biocontrol Products for Postharvest Diseases of Fruit: The Importance of Elucidating the Mechanisms of Action of Yeast Antagonists. Trends Food Sci. Technol. 2016, 47, 39–49. [Google Scholar] [CrossRef]
- Stracquadanio, C.; Quiles, J.M.; Meca, G.; Cacciola, S.O. Antifungal Activity of Bioactive Metabolites Produced by Trichoderma asperellum and Trichoderma atroviride in Liquid Medium. J. Fungi 2020, 6, 263. [Google Scholar] [CrossRef]
- Ogórek, R.; Plaskowska, E. Epicoccum nigrum for Biocontrol Agents in Vitro of Plant Fungal Pathogens. Commun. Agric. Appl. Biol. Sci. 2011, 76, 691–697. [Google Scholar] [PubMed]
- Beasley, D.R.; Joyce, D.C.; Coates, L.M.; Wearing, A.H. Saprophytic Microorganisms with Potential for Biological Control of Botrytis Cinerea on Geraldton Waxflower Flowers. Aust. J. Exp. Agric. 2001, 41, 697–703. [Google Scholar] [CrossRef]
- Braga, R.M.; Padilla, G.; Araújo, W.L. The Biotechnological Potential of Epicoccum Spp.: Diversity of Secondary Metabolites. Crit. Rev. Microbiol. 2018, 44, 759–778. [Google Scholar] [CrossRef] [PubMed]
- Hashem, M.; Ali, E. Epicoccum nigrum as Biocontrol Agent of Pythium Damping-off and Root-Rot of Cotton Seedlings. Arch. Phytopathol. Plant Prot. 2004, 37, 283–297. [Google Scholar] [CrossRef]
- Jensen, B.D.; Knorr, K.; Nicolaisen, M. In Vitro Competition between Fusarium Graminearum and Epicoccum nigrum on Media and Wheat Grains. Eur. J. Plant Pathol. 2016, 146, 657–670. [Google Scholar] [CrossRef]
- Cueva, C.; García-Ruiz, A.; González-Rompinelli, E.; Bartolome, B.; Martín-Álvarez, P.J.; Salazar, O.; Vicente, M.F.; Bills, G.F.; Moreno-Arribas, M.V. Degradation of Biogenic Amines by Vineyard Ecosystem Fungi. Potential Use in Winemaking. J. Appl. Microbiol. 2012, 112, 672–682. [Google Scholar] [CrossRef]
- Koutb, M.; Morsy, F.M. A Potent Lipid Producing Isolate of Epicoccum purpurascens AUMC5615 and Its Promising Use for Biodiesel Production. Biomass Bioenergy 2011, 35, 3182–3187. [Google Scholar] [CrossRef]
- Sheikhloo, Z.; Salouti, M.; Katiraee, F. Biological Synthesis of Gold Nanoparticles by Fungus Epicoccum nigrum. J. Clust. Sci. 2011, 22, 661–665. [Google Scholar] [CrossRef]
- Riolo, M.; Luz, C.; Santilli, E.; Meca, G.; Cacciola, S.O. Antifungal Activity of Selected Lactic Acid Bacteria from Olive Drupes. Food Biosci. 2023, 52, 102422. [Google Scholar] [CrossRef]
- Li, G.; Jian, T.; Liu, X.; Lv, Q.; Zhang, G.; Ling, J. Application of Metabolomics in Fungal Research. Molecules 2022, 27, 7365. [Google Scholar] [CrossRef]
- Chen, F.; Ma, R.; Chen, X.-L. Advances of Metabolomics in Fungal Pathogen–Plant Interactions. Metabolites 2019, 9, 169. [Google Scholar] [CrossRef] [PubMed]
- Kluger, B.; Lehner, S.; Schuhmacher, R. Metabolomics and Secondary Metabolite Profiling of Filamentous Fungi. In Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites; Zeilinger, S., Martín, J.-F., García-Estrada, C., Eds.; Springer: New York, NY, USA, 2015; Volume 2, pp. 81–101. ISBN 978-1-4939-2531-5. [Google Scholar]
- Alves, V.; Zamith-Miranda, D.; Frases, S.; Nosanchuk, J.D. Fungal Metabolomics: A Comprehensive Approach to Understanding Pathogenesis in Humans and Identifying Potential Therapeutics. J. Fungi 2025, 11, 93. [Google Scholar] [CrossRef]
- Oyedeji, A.B.; Green, E.; Adebiyi, J.A.; Ogundele, O.M.; Gbashi, S.; Adefisoye, M.A.; Oyeyinka, S.A.; Adebo, O.A. Metabolomic Approaches for the Determination of Metabolites from Pathogenic Microorganisms: A Review. Food Res. Int. 2021, 140, 110042. [Google Scholar] [CrossRef] [PubMed]
- Corsaro, C.; Vasi, S.; Neri, F.; Mezzasalma, A.M.; Neri, G.; Fazio, E. NMR in Metabolomics: From Conventional Statistics to Machine Learning and Neural Network Approaches. Appl. Sci. 2022, 12, 2824. [Google Scholar] [CrossRef]
- Brandt, P.; Garbe, E.; Vylkova, S. Catch the Wave: Metabolomic Analyses in Human Pathogenic Fungi. In Advances in Clinical Immunology, Medical Microbiology, COVID-19, and Big Data; Jenny Stanford Publishing: Singarore, 2021; ISBN 978-1-00-318043-2. [Google Scholar]
- Han, W.; Wu, Z.; Zhong, Z.; Williams, J.; Jacobsen, S.E.; Sun, Z.; Tang, Y. Assessing the Biosynthetic Inventory of the Biocontrol Fungus Trichoderma afroharzianum T22. J. Agric. Food Chem. 2023, 71, 11502–11519. [Google Scholar] [CrossRef]
- Yu, J.M.; Cafarov, I.H.; Babadoost, M. Morphology, Molecular Identity, and Pathogenicity of Verticillium dahliae and V. longisporum Associated with Internally Discolored Horseradish Roots. Plant Dis. 2016, 100, 749–757. [Google Scholar] [CrossRef]
- White, T.; Bruns, T.; Lee, S.; Taylor, J.; Innis, M.; Gelfand, D.; Sninsky, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In Pcr Protocols: A Guide to Methods and Applications; Academic Press: Cambridge, MA, USA, 1990; Volume 31, pp. 315–322. [Google Scholar]
- Woudenberg, J.H.C.; Aveskamp, M.M.; de Gruyter, J.; Spiers, A.G.; Crous, P.W. Multiple Didymella Teleomorphs Are Linked to the Phoma Clematidina Morphotype. Persoonia 2009, 22, 56–62. [Google Scholar] [CrossRef]
- Jin, M.; Yang, C.; Wang, Y.; Wei, L.; Osei, R. Isolation and Identification of Epicoccum nigrum as the Causal Agent of Brown Spot Disease in Solanum Tuberosum in China. Plant Pathol. 2023, 72, 829–838. [Google Scholar] [CrossRef]
- Inderbitzin, P.; Bostock, R.M.; Davis, R.M.; Usami, T.; Platt, H.W.; Subbarao, K.V. Phylogenetics and Taxonomy of the Fungal Vascular Wilt Pathogen Verticillium, with the Descriptions of Five New Species. PLoS ONE 2011, 6, e28341. [Google Scholar] [CrossRef]
- Lievens, B.; Brouwer, M.; Vanachter, A.C.R.C.; Cammue, B.P.A.; Thomma, B.P.H.J. Real-Time PCR for Detection and Quantification of Fungal and Oomycete Tomato Pathogens in Plant and Soil Samples. Plant Sci. 2006, 171, 155–165. [Google Scholar] [CrossRef]
- Angilè, F.; Del Coco, L.; Girelli, C.R.; Basso, L.; Rizzo, L.; Piraino, S.; Stabili, L.; Fanizzi, F.P. 1H NMR Metabolic Profile of Scyphomedusa Rhizostoma pulmo (Scyphozoa, Cnidaria) in Female Gonads and Somatic Tissues: Preliminary Results. Molecules 2020, 25, 806. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhong, X.; Li, S.; Zhang, G.; Liu, X. Metabolic Characterization of Natural and Cultured Ophicordyceps sinensis from Different Origins by 1H NMR Spectroscopy. J. Pharm. Biomed. Anal. 2015, 115, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Sevastos, A.; Kalampokis, I.F.; Panagiotopoulou, A.; Pelecanou, M.; Aliferis, K.A. Implication of Fusarium graminearum Primary Metabolism in Its Resistance to Benzimidazole Fungicides as Revealed by 1 H NMR Metabolomics. Pestic. Biochem. Physiol. 2018, 148, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Ząbek, A.; Klimek-Ochab, M.; Jawień, E.; Młynarz, P. Biodiversity in Targeted Metabolomics Analysis of Filamentous Fungal Pathogens by 1H NMR-Based Studies. World J. Microbiol. Biotechnol. 2017, 33, 132. [Google Scholar] [CrossRef]
- Angilè, F.; Coco, L.D.; Girelli, C.R.; Calò, F.; Mazzi, L.; Fanizzi, F.P.; Vivaldi, G.A.; Camposeo, S. Proton Nuclear Magnetic Resonance (1H NMR) Metabolic Profiles Discriminate Two Monovarietal Extra Virgin Olive Oils, Cultivars Arbequina and Koroneiki, with Different Geographical Origin. Horticulturae 2023, 9, 66. [Google Scholar] [CrossRef]
- Eriksson, L.; Byrne, T.; Johansson, E.; Trygg, J.; Vikström, C. Multi-and Megavariate Data Analysis Basic Principles and Applications; Umetrics Academy: Malmö, Sweden, 2013; Volume 1. [Google Scholar]
- Eastment, H.T.; Krzanowski, W.J. Cross-Validatory Choice of the Number of Components from a Principal Component Analysis. Technometrics 1982, 24, 73–77. [Google Scholar] [CrossRef]
- Fávaro, L.C.L.; de Melo, F.L.; Aguilar-Vildoso, C.I.; Araújo, W.L. Polyphasic Analysis of Intraspecific Diversity in Epicoccum nigrum Warrants Reclassification into Separate Species. PLoS ONE 2011, 6, e14828. [Google Scholar] [CrossRef]
- Ogórek, R.; Przywara, K.; Piecuch, A.; Cal, M.; Lejman, A.; Matkowski, K. Plant–Fungal Interactions: A Case Study of Epicoccum nigrum Link. Plants 2020, 9, 1691. [Google Scholar] [CrossRef]
- Piecuch, A.; Ogórek, R.; Dyląg, M.; Cal, M.; Przywara, K. Epicoccum nigrum Link as a Potential Biocontrol Agent Against Selected Dermatophytes. Acta Mycol. 2020, 55, 5516. [Google Scholar] [CrossRef]
- El-Sharkawy, H.H.A.; Rashad, Y.M.; Elazab, N.T. Biocontrol Potential of the Endophytic Epicoccum nigrum HE20 against Stripe Rust of Wheat. Pestic. Biochem. Physiol. 2023, 194, 105517. [Google Scholar] [CrossRef]
- Wan, C.; Li, P.; Chen, C.; Peng, X.; Li, M.; Chen, M.; Wang, J.; Chen, J. Antifungal Activity of Ramulus cinnamomi Explored by 1H-NMR Based Metabolomics Approach. Molecules 2017, 22, 2237. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Yao, C.; Zhang, X.; Jia, Z.; Shan, C.; Luo, X.; Lin, L. Involvement of UDP-Glucose Pyrophosphorylase from Verticillium dahliae in Cell Morphogenesis, Stress Responses, and Host Infection. Fungal Biol. 2020, 124, 648–660. [Google Scholar] [CrossRef] [PubMed]
- Tournu, H.; Fiori, A.; Dijck, P.V. Relevance of Trehalose in Pathogenicity: Some General Rules, Yet Many Exceptions. PLoS Pathog. 2013, 9, e1003447. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.S.; Meena, M.; Prasad, V.; Zehra, A.; Gupta, V.K. Mannitol Metabolism during Pathogenic Fungal–Host Interactions under Stressed Conditions. Front. Microbiol. 2015, 6, 1019. [Google Scholar] [CrossRef]
- Wang, H.; Chen, H.; Hao, G.; Yang, B.; Feng, Y.; Wang, Y.; Feng, L.; Zhao, J.; Song, Y.; Zhang, H.; et al. Role of the Phenylalanine-Hydroxylating System in Aromatic Substance Degradation and Lipid Metabolism in the Oleaginous Fungus Mortierella Alpina. Appl. Environ. Microbiol. 2013, 79, 3225–3233. [Google Scholar] [CrossRef]
- Chamoun, R.; Aliferis, K.A.; Jabaji, S. Identification of Signatory Secondary Metabolites during Mycoparasitism of Rhizoctonia solani by Stachybotrys elegans. Front. Microbiol. 2015, 6, 353. [Google Scholar] [CrossRef]
- Hafidi, Z.; Pérez, L.; El Achouri, M.; Pons, R. Phenylalanine and Tryptophan-Based Surfactants as New Antibacterial Agents: Characterization, Self-Aggregation Properties, and DPPC/Surfactants Vesicles Formulation. Pharmaceutics 2023, 15, 1856. [Google Scholar] [CrossRef]
- Mead, O.; Thynne, E.; Winterberg, B.; Solomon, P.S. Characterising the Role of GABA and Its Metabolism in the Wheat Pathogen Stagonospora nodorum. PLoS ONE 2013, 8, e78368. [Google Scholar] [CrossRef]
- Kumar, S.; Punekar, N.S. The Metabolism of 4-Aminobutyrate (GABA) in Fungi. Mycol. Res. 1997, 101, 403–409. [Google Scholar] [CrossRef]
- Yu, S.; Zhen, C.; Zhao, P.; Li, J.; Qin, Z.; Gao, H. Antifungal Mechanisms of γ-Aminobutyric Acid against the Postharvest Pathogen Alternaria alternata. LWT 2023, 173, 114314. [Google Scholar] [CrossRef]
- Beccaccioli, M.; Reverberi, M.; Scala, V. Fungal Lipids: Biosynthesis and Signalling during Plant-Pathogen Interaction. Front. Biosci. 2019, 24, 168–181. [Google Scholar] [CrossRef]
- Akpinar-Bayizit, A. Fungal Lipids: The Biochemistry of Lipid Accumulation. Int. J. Chem. Eng. Appl. 2014, 5, 409–414. [Google Scholar] [CrossRef]
- Agoramoorthy, G.; Chandrasekaran, M.; Venkatesalu, V.; Hsu, M.J. Antibacterial and Antifungal Activities of Fatty Acid Methyl Esters of the Blind-Your-Eye Mangrove from India. Braz. J. Microbiol. 2007, 38, 739–742. [Google Scholar] [CrossRef]
- Wołczańska, A.; Christie, W.W.; Fuchs, B.; Galuska, C.E.; Kowalczyk, B.; Palusińska-Szysz, M. Fatty Acid Composition and Lipid Profiles as Chemotaxonomic Markers of Phytopathogenic Fungi Puccinia malvacearum and P. glechomatis. Fungal Biol. 2021, 125, 869–878. [Google Scholar] [CrossRef] [PubMed]
Species | Strain Identification | GenBank Accession Number | References | |
---|---|---|---|---|
ITS | Tub2 | |||
Epicoccum nigrum | CBS 140523 | MN972952 | MN983966 | [51] |
E. nigrum | CBS 125.82 | FJ426995 | FJ427106 | [51] |
E. poae | LC:8160 | KY742113 | KY742355 | [51] |
E. poae | LC:8162 | KY742115 | KY742357 | [51] |
E. layuense | E22 | MH643920 | MH643930 | [51] |
E. layuense | E23 | MH643921 | MH643931 | [51] |
E. mackenziei | MFLUCC16-0335 | KX698039 | MW186824 | [51] |
E. dendrobii | SMEL1 | MT020087 | MT024597 | [51] |
Gibellulopsis nigrescens | PD595 | JN187976 | - | [48] |
Verticillium albo-atrum | PD670 | JN187990 | - | [48] |
V. albo-atrum | PD748 | JN188017 | - | [48] |
V. dahliae | PD332 | HQ206718 | - | [52] |
V. dahliae | SDV1025 | KC834733 | - | [48] |
V. dahliae | CBS 381.66 | KT362918 | - | [53] |
V. longisporum | PD687 | HQ206893 | - | [48] |
V. longisporum | PD730 | HQ206920 | - | [48] |
V. nubilum | IMI278734 | AY935948 | - | [48] |
Fungal Species | Colony | Conidia |
---|---|---|
Verticillium dahliae (ER 1357) | Initially creamy white, it becomes dark, compact and appressed with age | Hyaline, cylindrical to oval, average length 4.4 ± 1.23 µm (max 6.0 µm) |
Epicoccum nigrum (RD4C) | Initially white with cottony mycelium, it turns reddish-orange after 14 days; the reverse of the colony produces orange pigments | Globose to subglobose or pyriform, some multicellular; size: 14.5–26.4 µm in length and 15.9–28.4 µm in width |
Compound | Assignment | 1H (ppm, Multiplicity) |
---|---|---|
Leucine | CH3, CH | 0.96 (d), 1.70 (m) |
Isoleucine | CH3, CH | 0.90 (t), 1.01 (d) |
Valine | CH3,CH | 0.98 (d), 1.05 (d) |
Lactate | CH3,CH | 1.33 (d), 4.16 (q) |
Threonine | γ CH3, αCH | 1.33 (d), 4.25 |
Alanine | CH3,CH | 1.48 (d), 3.79 (m) |
Acetate | CH3 | 1.92 (s) |
4 amino-butyrate | 1.9, 2.29 (t), 3.01 | |
Glutamate | γ CH2, βCH2 | 2.07 (m), 2.36 (m) |
Glutamine | γ CH2, βCH2 | 2.14 (m), 2.46 (m) |
Succinate | CH2/CH2 | 2.41 (s) |
Malonate | CH2 | 3.12 (s) |
Ethanolamine | 3.14 | |
Choline | N(CH3)3 | 3.20 (s) |
Phosphocholine | N(CH3)3 | 3.22 (s) |
Mannitol | CH-1 | 3.68, 3.76, 3.80, 3.86 |
Trehalose | CH | 5.20 (d) |
β-Glucose | CH | 4.66 (d) |
α-glucose | CH-2/CH-6; CH-3/CH5 | 5.24 (d) |
Tyrosine | CH-2/CH-6; CH-4; CH-3/CH5 | 6.9 (m), 7.20 (m) |
Phenylalanine | 7.3 (m), 7.38 (m), 7.42 (m) | |
Adenosine | CH-7; CH-4 | 8.2, 8.3 |
Tryptophan | 7.53 (d), 7.72 (d) | |
UDP glucose | 7.9, 5.95 | |
Fumarate | CH | 6.54 (s) |
Formate | CH | 8.46 (s) |
Nicotinate | 8.9, 8.6, 8.25, 7.5 | |
Trigonelline | 9.10, 8.84, 8.08 |
Compound | Assignment | 1H ppm |
---|---|---|
Sterol | 0.63 | |
Short chain length FA | CH3 | 0.82–0.86 |
FA except ω-3 | CH3 | 0.88 |
All FA | -CH2- =CH-CH COOCH2CH2 COOCH2 | 1.26 1.31 1.55–1.66 2.32–2.37 |
UFA | CH2CH=CH -CH=CH- | 1.99–2.10 5.30–5.42 |
DUFA ω-6 | CH=CH-CH2-CH=CH | 2.78 |
PUFA | CH=CH-CH2-CH=CH | 2.81 |
Phosphatidylcholine (PC) | -N(CH3)3 | 3.22 |
TAG | -CH2- | 4.17 4.31 5.26 |
DAG (sn1,2) DAG (sn1,2; sn2,3) | -CH2- HO–CH2–CH– | 4.18 4.35 3.68 5.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angilè, F.; Riolo, M.; Cacciola, S.O.; Fanizzi, F.P.; Santilli, E. Evaluation of the Effects of Epicoccum nigrum on the Olive Fungal Pathogens Verticillium dahliae and Colletotrichum acutatum by 1H NMR-Based Metabolic Profiling. J. Fungi 2025, 11, 129. https://doi.org/10.3390/jof11020129
Angilè F, Riolo M, Cacciola SO, Fanizzi FP, Santilli E. Evaluation of the Effects of Epicoccum nigrum on the Olive Fungal Pathogens Verticillium dahliae and Colletotrichum acutatum by 1H NMR-Based Metabolic Profiling. Journal of Fungi. 2025; 11(2):129. https://doi.org/10.3390/jof11020129
Chicago/Turabian StyleAngilè, Federica, Mario Riolo, Santa Olga Cacciola, Francesco Paolo Fanizzi, and Elena Santilli. 2025. "Evaluation of the Effects of Epicoccum nigrum on the Olive Fungal Pathogens Verticillium dahliae and Colletotrichum acutatum by 1H NMR-Based Metabolic Profiling" Journal of Fungi 11, no. 2: 129. https://doi.org/10.3390/jof11020129
APA StyleAngilè, F., Riolo, M., Cacciola, S. O., Fanizzi, F. P., & Santilli, E. (2025). Evaluation of the Effects of Epicoccum nigrum on the Olive Fungal Pathogens Verticillium dahliae and Colletotrichum acutatum by 1H NMR-Based Metabolic Profiling. Journal of Fungi, 11(2), 129. https://doi.org/10.3390/jof11020129