Screening Aspergillus flavus, Talaromyces purpureogenus, and Trichoderma koningiopsis for Plant-Growth-Promoting Traits: A Study on Phosphate Solubilization, IAA Production, and Siderophore Synthesis
<p>Images of the three P-solubilizing fungal isolates grown on YM agar media. The fungal strain <span class="html-italic">A. flavus</span> JKJ7 is represented by image (<b>A</b>), <span class="html-italic">T. purpureogenus</span> JKJ12 is represented by image (<b>B</b>), and <span class="html-italic">T. koningiopsis</span> JKJ18 is represented by image (<b>C</b>).</p> "> Figure 2
<p>Neighbor-joining tree deduced using the ITS sequence of the three fungal strains isolated from the soil with reference fungal strains from NCBI. Only branches with more than 50% bootstrap support are shown. <span class="html-italic">S. stipitis</span> NRRL-Y-7124 was used as the out-group.</p> "> Figure 3
<p>Solubilization of inorganic (<b>A</b>–<b>E</b>) and organic phosphate (<b>F</b>–<b>J</b>) by the fungal strains in NBRIP agar media supplemented with tricalcium phosphate (inorganic) (TCP) and phytic acid calcium salt (PCS) (organic) as an insoluble phosphate source after six days of culturing (<span class="html-italic">A. flavus</span> JKJ7 (<b>A</b>,<b>F</b>); <span class="html-italic">T. purpureogenus</span> JKJ12 (<b>B</b>,<b>G</b>); <span class="html-italic">T. koningiopsis</span> JKJ18 (<b>C</b>,<b>H</b>); uninoculated controls (<b>E</b>,<b>J</b>); no P solubilization (<b>D</b>,<b>I</b>)). Writings on plates (<b>A</b>–<b>C</b>) denotes strain numbers.</p> "> Figure 4
<p>Solubilization of inorganic (<b>A</b>) and organic phosphate (<b>B</b>) by the fungal strains in NBRIP media supplemented with tricalcium phosphate (TCP) and phytic acid calcium salt (PCS) as an insoluble phosphate source for six days of culturing (JKJ7—<span class="html-italic">A. flavus</span>; JKJ12—<span class="html-italic">T. purpureogenus</span>; JKJ18—<span class="html-italic">T. koningiopsis</span>). The results are presented as a mean of three repeats and error bars of mean +/− SD.</p> "> Figure 4 Cont.
<p>Solubilization of inorganic (<b>A</b>) and organic phosphate (<b>B</b>) by the fungal strains in NBRIP media supplemented with tricalcium phosphate (TCP) and phytic acid calcium salt (PCS) as an insoluble phosphate source for six days of culturing (JKJ7—<span class="html-italic">A. flavus</span>; JKJ12—<span class="html-italic">T. purpureogenus</span>; JKJ18—<span class="html-italic">T. koningiopsis</span>). The results are presented as a mean of three repeats and error bars of mean +/− SD.</p> "> Figure 5
<p>The production of auxin phytohormone (IAA) by the three fungal strains in YM broth supplemented with L-tryptophan (JKJ7—<span class="html-italic">A. flavus</span>; JKJ12—<span class="html-italic">T. purpureogenus</span>; JKJ18—<span class="html-italic">T. koningiopsis</span>). The results are presented as a mean of three repeats and error bars of mean +/− SD.</p> "> Figure 6
<p>The production of iron-chelating molecules, siderophores, by the three selected fungal strains (JKJ7—<span class="html-italic">A. flavus</span>; JKJ12—<span class="html-italic">T. purpureogenus</span>; JKJ18—<span class="html-italic">T. koningiopsis</span>) in a vitamin-free media. The results are presented as a mean of three repeats and error bars of mean +/− SD.</p> "> Figure 7
<p>The Principal Component Analysis (PCA). Graph (<b>A</b>) shows a score plot of the two principal components obtained from the three fungal strains (JKJ7—<span class="html-italic">A. flavus</span>; JKJ12—<span class="html-italic">T. purpureogenus</span>; JKJ18—<span class="html-italic">T. koningiopsis</span>). Graph (<b>B</b>) is a biplot of the two principal components obtained from the four variables (TCP and PCS solubilization; IAA and siderophore production).</p> "> Figure 7 Cont.
<p>The Principal Component Analysis (PCA). Graph (<b>A</b>) shows a score plot of the two principal components obtained from the three fungal strains (JKJ7—<span class="html-italic">A. flavus</span>; JKJ12—<span class="html-italic">T. purpureogenus</span>; JKJ18—<span class="html-italic">T. koningiopsis</span>). Graph (<b>B</b>) is a biplot of the two principal components obtained from the four variables (TCP and PCS solubilization; IAA and siderophore production).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Soil Fungi
2.1.1. Sampling Site
2.1.2. Isolation Method
2.2. Fungal Strain Identification
2.3. Qualitative Estimation of Organic (Phytic Acid Calcium Salt) and Inorganic (Tricalcium Phosphate) Phosphate Solubilization
2.4. Quantitative Estimation of Phosphate Solubilization
2.5. Quantitative Screening for Indole Acetic Acid Production (IAA)
2.6. Quantitative Screening for Siderophore Production
2.7. Statistical Analysis
3. Results
3.1. Molecular Identification of Soil Fungi
3.2. Phylogenetic Tree Inferred for Fungal Strain Identification
3.3. Tricalcium Phosphate (TCP) and Phytic Acid Calcium Salt (PCS) Solubilization
3.4. Indole Acetic Acid Production (IAA)
3.5. Siderophore Production
3.6. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beltran-Pea, A.; Rosa, L.; D’Odorico, P. Global food self-sufficiency in the 21st century under sustainable intensification of agriculture. Environ. Res. Lett. 2020, 15, 095004. [Google Scholar] [CrossRef]
- Shao, Z.; Mwakidoshi, E.R.; Muindi, E.M.; Soratto, R.P.; Ranjan, S.; Padhan, S.R.; Wamukota, A.W.; Sow, S.; Wasonga, D.O.; Nasar, J.; et al. Synthetic Fertilizer Application Coupled with Bioslurry Optimizes Potato (Solanum tuberosum) Growth and Yield. Agronomy 2023, 13, 2162. [Google Scholar] [CrossRef]
- Penuelas, J.; Coello, F.; Sardans, J. A better use of fertilizers is needed for global food security and environmental sustainability. Agric. Food Secur. 2023, 12, 5. [Google Scholar] [CrossRef]
- Andrino, A.; Guggenberger, G.; Kernchen, S.; Mikutta, R.; Sauheitl, L.; Boy, J. Production of Organic Acids by Arbuscular Mycorrhizal Fungi and Their Contribution in the Mobilization of Phosphorus Bound to Iron Oxides. Front. Plant Sci. 2021, 12, 661842. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Huo, W.; Feng, G. Maximising cotton phosphorus utilisation for zero surplus and high yields: A review of innovative P management strategies. Field Crops Res. 2024, 313, 109429. [Google Scholar] [CrossRef]
- Bedine, M.A.B.; Iacomi, B.; Tchameni, S.N.; Sameza, M.L.; Fekam, F.B. Harnessing the phosphate-solubilizing ability of Trichoderma strains to improve plant growth, phosphorus uptake and photosynthetic pigment contents in common bean (Phaseolus vulgaris). Biocatal. Agric. Biotechnol. 2022, 45, 102510. [Google Scholar] [CrossRef]
- Devi, R.; Kaur, T.; Kour, D.; Yadav, A.; Yadav, A.N.; Suman, A.; Ahluwalia, A.S.; Saxena, A.K. Minerals solubilizing and mobilizing microbiomes: A sustainable approach for managing minerals’ deficiency in agricultural soil. J. Appl. Microbiol. 2022, 133, 1245–1272. [Google Scholar] [CrossRef]
- Lopez, G.; Ahmadi, S.H.; Amelung, W.; Athmann, M.; Ewert, F.; Gaiser, T.; Gocke, M.I.; Kautz, T.; Postma, J.; Rachmilevitch, S.; et al. Nutrient deficiency effects on root architecture and root-to-shoot ratio in arable crops. Front. Plant Sci. 2023, 13, 1067498. [Google Scholar] [CrossRef]
- Vassilev, N.; Mendes, G.d.O. Soil Fungi in Sustainable Agriculture. Microorganisms 2024, 12, 163. [Google Scholar] [CrossRef]
- Shukla, A.C. Entrepreneurship with Microorganisms; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Jiang, F.; Zhang, L.; Zhou, J.; George, T.S.; Feng, G. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol. 2021, 230, 304–315. [Google Scholar] [CrossRef]
- Saranya, K.; Sundaramanickam, A.; Manupoori, S.; Kanth, S.V. Screening of multi-faceted phosphate-solubilising bacterium from seagrass meadow and their plant growth promotion under saline stress condition. Microbiol. Res. 2022, 261, 127080. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Prasher, I.B. Phosphate solubilization and indole-3-acetic acid (IAA) produced by Colletotrichum gloeosporioides and Aspergillus fumigatus strains isolated from the rhizosphere of Dillenia indica L. Folia Microbiol. 2023, 68, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Nagrale, D.T.; Chaurasia, A.; Kumar, S.; Gawande, S.P.; Hiremani, N.S.; Shankar, R.; Gokte-Narkhedkar, N.; Renu, Y.G.; Prasad, Y.G. PGPR: The treasure of multifarious beneficial microorganisms for nutrient mobilization, pest biocontrol and plant growth promotion in field crops. World J. Microbiol. Biotechnol. 2023, 39, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Dev, M.; Kumar, P.; Singh, S.; Singh, R. Role of Mutant Phosphate Solubilizing Microorganism on Growth of Brassica juncea (L.) cv RH 30. Indian J. Microbiol. 2023, 63, 461–466. [Google Scholar] [CrossRef]
- Yang, T.; Li, L.; Wang, B.; Tian, J.; Shi, F.; Zhang, S.; Wu, Z. Isolation, Mutagenesis, and Organic Acid Secretion of a Highly Efficient Phosphate-Solubilizing Fungus. Front. Microbiol. 2022, 13, 793122. [Google Scholar] [CrossRef]
- Brazhnikova, Y.V.; Shaposhnikov, A.I.; Sazanova, A.L.; Belimov, A.A.; Mukasheva, T.D.; Ignatova, L.V. Phosphate Mobilization by Culturable Fungi and Their Capacity to Increase Soil P Availability and Promote Barley Growth. Curr. Microbiol. 2022, 79, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Parvez, M.; Hussain, F.; Khan, M.; Sajid, H. Characterization of phosphate solubilizing fungal endophyte associated with roots of Coriandrum sativum L growing in water stressed soil. Symbiosis 2023, 89, 83–94. [Google Scholar] [CrossRef]
- Dhariwal, A.G.; Tarafdar, J.C. A comparison of phytase efficiency originated from plant and fungal sources. GSC Biol. Pharm. Sci. 2023, 23, 117–126. [Google Scholar] [CrossRef]
- Rico-Jiménez, M.; Muñoz-Mira, S.; Lomas-Martínez, C.; Krell, T.; Matilla, M.A. Regulation of indole-3-acetic acid biosynthesis and consequences of auxin production deficiency in Serratia plymuthica. Microb. Biotechnol. 2023, 16, 1671–1689. [Google Scholar] [CrossRef]
- Chen, X.; Smith, S.M.; Shabala, S.; Yu, M. Phytohormones in plant responses to boron deficiency and toxicity. J. Exp. Bot. 2022, 74, 743–754. [Google Scholar] [CrossRef]
- AKabir, H.; Bennetzen, J.L. Molecular insights into the mutualism that induces iron deficiency tolerance in sorghum inoculated with Trichoderma harzianum. Microbiol. Res. 2024, 281, 127630. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Alam, S.; Karim, M.M. Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation. J. Agric. Food Res. 2021, 4, 100150. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, J.; Shang, X.; Xue, L.; Ji, G.; Chang, S.; Niu, J.; Emaneghemi, B. Screening of Siderophore-Producing Bacteria and Their Effects on Promoting the Growth of Plants. Curr. Microbiol. 2022, 79, 1–12. [Google Scholar] [CrossRef]
- El-Maraghy, S.S.; Tohamy, A.T.; Hussein, K.A. Plant protection properties of the Plant Growth-Promoting Fungi (PGPF): Mechanisms and potentiality. Curr. Res. Environ. Appl. Mycol. 2021, 11, 391–415. [Google Scholar] [CrossRef]
- Legodi, L.M.; La Grange, D.; Van Rensburg, E.L.J.; Ncube, I. Isolation of Cellulose Degrading Fungi from Decaying Banana Pseudostem and Strelitzia alba. Enzym. Res. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Makulana, L.; La Grange, D.C.; Moganedi, K.L.M.; Mert, M.J.; Phasha, N.N.; van Rensburg, E.L.J. Screening and Isolation of Xylanolytic Filamentous Fungi from the Gut of Scarabaeidae Dung Beetles and Dung Beetle Larvae. Microorganisms 2024, 12, 445. [Google Scholar] [CrossRef]
- Sun, X.; Liu, F.; Jiang, W.; Zhang, P.; Zhao, Z.; Liu, X.; Shi, Y.; Sun, Q. Talaromyces purpurogenus Isolated from Rhizosphere Soil of Maize Has Efficient Organic Phosphate-Mineralizing and Plant Growth-Promoting Abilities. Sustainability 2023, 15, 5961. [Google Scholar] [CrossRef]
- Kiprotich, K.; Muoma, J.; Omayio, D.O.; Ndombi, T.S.; Wekesa, C. Molecular Characterization and Mineralizing Potential of Phosphorus Solubilizing Bacteria Colonizing Common Bean (Phaseolus vulgaris L.) Rhizosphere in Western Kenya. Int. J. Microbiol. 2023, 2023, 1–10. [Google Scholar] [CrossRef]
- Jaya, G.I.; Utami, S.N.H.; Widada, J.; Yusuf, W.A. Characterization of phosphate-solubilizing bacteria isolated from acidic Ultisol soil, South Borneo. IOP Conf. Ser. Earth Environ. Sci. 2020, 449, 012005. [Google Scholar] [CrossRef]
- Zhang, X.; Rajendran, A.; Grimm, S.; Sun, X.; Lin, H.; He, R.; Hu, B. Screening of calcium- and iron-targeted phosphorus solubilizing fungi for agriculture production. Rhizosphere 2023, 26, 100689. [Google Scholar] [CrossRef]
- Patel, S.; Prajapati, V.; Patel, P. Isolation and Screening of Mineral Phosphate Solubilizing Microorganisms; Springer: Berlin/Heidelberg, Germany, 2022; pp. 187–192. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Li, P.; Zhang, B.; Meng, J.; Gao, Y.; He, X.; Hu, X. Identification of Phosphate-solubilizing Microorganisms and Determination of Their Phosphate-solubilizing Activity and Growth-promoting Capability. BioResources 2020, 15, 2560. [Google Scholar] [CrossRef]
- Tang, Q.; Cotton, A.; Wei, Z.; Xia, Y.; Daniell, T.; Yan, X. How does partial substitution of chemical fertiliser with organic forms increase sustainability of agricultural production? Sci. Total Environ. 2022, 803, 149933. [Google Scholar] [CrossRef]
- Zainuddin, N.; Keni, M.F.; Ibrahim, S.A.S.; Masri, M.M.M. Effect of integrated biofertilizers with chemical fertilizers on the oil palm growth and soil microbial diversity. Biocatal. Agric. Biotechnol. 2022, 39, 102237. [Google Scholar] [CrossRef]
- Sun, B.; Luo, Y.; Yang, D.; Yang, J.; Zhao, Y.; Zhang, J. Coordinative Management of Soil Resources and Agricultural Farmland Environment for Food Security and Sustainable Development in China. Int. J. Environ. Res. Public Health 2023, 20, 3233. [Google Scholar] [CrossRef] [PubMed]
- Balogun, D.A.; Oke, M.A.; Rocha-Meneses, L.; Fawole, O.B.; Omojasola, P.F. Phosphate solubilization potential of indigenous rhizosphere fungi and their biofertilizer formulations. Agron. Res. 2022, 20, 40–55. [Google Scholar] [CrossRef]
- Bessai, S.A.; Cruz, J.; Carril, P.; Melo, J.; Santana, M.M.; Mouazen, A.M.; Cruz, C.; Yadav, A.N.; Dias, T.; Nabti, E.-H. The Plant Growth-Promoting Potential of Halotolerant Bacteria Is Not Phylogenetically Determined: Evidence from Two Bacillus megaterium Strains Isolated from Saline Soils Used to Grow Wheat. Microorganisms 2023, 11, 1687. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Chen, Y.; Sun, L.; Yu, M.; Li, R.; Li, S.; Su, J.; Zhu, B. Linking rhizosphere soil microbial activity and plant resource acquisition strategy. J. Ecol. 2023, 111, 875–888. [Google Scholar] [CrossRef]
- Kong, F.; Ling, X.; Iqbal, B.; Zhou, Z.; Meng, Y. Soil phosphorus availability and cotton growth affected by biochar addition under two phosphorus fertilizer levels. Arch. Agron. Soil Sci. 2023, 69, 18–31. [Google Scholar] [CrossRef]
- Alam, K.; Barman, M.; Datta, S.P.; Annapurna, K.; Shukla, L. Modification of Inorganic Fractions of Phosphorus by Phosphate-Solubilising Microorganisms in Conjunction with Phosphorus Fertilisation in a Tropical Inceptisol. J. Soil Sci. Plant Nutr. 2023, 23, 2488–2497. [Google Scholar] [CrossRef]
- Alikhani, H.A.; Beheshti, M.; Pourbabaee, A.A.; Etesami, H.; Rahmani, H.A.; Noroozi, M. Phosphorus Use Management in Paddy Fields by Enriching Periphyton with Its Phosphate-Solubilizing Bacteria and Fungi at the Late Stage of Rice Growth. J. Soil Sci. Plant Nutr. 2023, 23, 1896–1912. [Google Scholar] [CrossRef]
- Bononi, L.; Chiaramonte, J.B.; Pansa, C.C.; Moitinho, M.A.; Melo, I.S. Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Prasad, A.; Dixit, M.; Meena, S.K.; Suman; Kumar, A. Qualitative and quantitative estimation for phosphate solubilizing ability of Trichoderma isolates: A natural soil health enhancer. Mater. Today Proc. 2021, 81, 360–366. [Google Scholar] [CrossRef]
- Tandon, A.; Fatima, T.; Anshu; Shukla, D.; Tripathi, P.; Srivastava, S.; Singh, P.C. Phosphate solubilization by Trichoderma koningiopsis (NBRI-PR5) under abiotic stress conditions. J. King Saud. Univ. Sci. 2020, 32, 791–798. [Google Scholar] [CrossRef]
- Ahmad, A.; Moin, S.F.; Liaqat, I.; Saleem, S.; Muhammad, F.; Mujahid, T.; Zafar, U. Isolation, Solubilization of Inorganic Phosphate, and Production of Organic Acids by Individual and Co-inoculated Microorganisms. Geomicrobiol. J. 2023, 40, 111–121. [Google Scholar] [CrossRef]
- Behera, B.C.; Yadav, H.; Singh, S.; Mishra, R.; Sethi, B.; Dutta, S.; Thatoi, H. Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India. J. Genet. Eng. Biotechnol. 2017, 15, 169–178. [Google Scholar] [CrossRef]
- Iqbal, Z.; Ahmad, M.; Raza, M.A.; Hilger, T.; Rasche, F. Phosphate-Solubilizing Bacillus sp. Modulate Soil Exoenzyme Activities and Improve Wheat Growth. Microb. Ecol. 2024, 87, 31. [Google Scholar] [CrossRef]
- Zhou, G.; Fan, K.; Li, G.; Gao, S.; Chang, D.; Liang, T.; Li, S.; Liang, H.; Zhang, J.; Che, Z.; et al. Synergistic effects of diazotrophs and arbuscular mycorrhizal fungi on soil biological nitrogen fixation after three decades of fertilization. iMeta 2023, 2, e81. [Google Scholar] [CrossRef]
- Eshboev, F. The Use of Three Fungal Strains in Producing of Indole-3-Acetic Acid and Gibberelllic Acid. 2020. Available online: https://www.researchgate.net/publication/343892528 (accessed on 6 August 2024).
- Mohamed, A.H.; El-Megeed, F.H.A.; Hassanein, N.M.; Youseif, S.H.; Farag, P.F.; Saleh, S.A.; Abdel-Wahab, B.A.; Alsuhaibani, A.M.; Helmy, Y.A.; Abdel-Azeem, A.M. Native Rhizospheric and Endophytic Fungi as Sustainable Sources of Plant Growth Promoting Traits to Improve Wheat Growth under Low Nitrogen Input. J. Fungi 2022, 8, 94. [Google Scholar] [CrossRef]
Sample Name | JKJ7 | JKJ12 | JKJ18 |
---|---|---|---|
Predicated organism | Aspergillus flavus | Talaromyces purpureogenus | Trichoderma koningiopsis |
Genbank Accession | MT645322.1 | LT558947.1 | MT102395.1 |
% Identity | 100 | 100 | 99.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moropana, T.J.; Jansen Van Rensburg, E.L.; Makulana, L.; Phasha, N.N. Screening Aspergillus flavus, Talaromyces purpureogenus, and Trichoderma koningiopsis for Plant-Growth-Promoting Traits: A Study on Phosphate Solubilization, IAA Production, and Siderophore Synthesis. J. Fungi 2024, 10, 811. https://doi.org/10.3390/jof10120811
Moropana TJ, Jansen Van Rensburg EL, Makulana L, Phasha NN. Screening Aspergillus flavus, Talaromyces purpureogenus, and Trichoderma koningiopsis for Plant-Growth-Promoting Traits: A Study on Phosphate Solubilization, IAA Production, and Siderophore Synthesis. Journal of Fungi. 2024; 10(12):811. https://doi.org/10.3390/jof10120811
Chicago/Turabian StyleMoropana, Thabo J., Elbert Lukas Jansen Van Rensburg, Livhuwani Makulana, and Nkateko N. Phasha. 2024. "Screening Aspergillus flavus, Talaromyces purpureogenus, and Trichoderma koningiopsis for Plant-Growth-Promoting Traits: A Study on Phosphate Solubilization, IAA Production, and Siderophore Synthesis" Journal of Fungi 10, no. 12: 811. https://doi.org/10.3390/jof10120811
APA StyleMoropana, T. J., Jansen Van Rensburg, E. L., Makulana, L., & Phasha, N. N. (2024). Screening Aspergillus flavus, Talaromyces purpureogenus, and Trichoderma koningiopsis for Plant-Growth-Promoting Traits: A Study on Phosphate Solubilization, IAA Production, and Siderophore Synthesis. Journal of Fungi, 10(12), 811. https://doi.org/10.3390/jof10120811