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Abstract: The emerging and promising paradigm of the Internet of Vehicles (IoV) employ vehicle-to-
everything communication for facilitating vehicles to not only communicate with one another but
also with the supporting roadside infrastructure, vulnerable pedestrians, and the backbone network
in a bid to primarily address a number of safety-critical vehicular applications. Nevertheless, owing
to the inherent characteristics of IoV networks, in particular, of being (a) highly dynamic in nature
and which results in a continual change in the network topology and (b) non-deterministic owing
to the intricate nature of its entities and their interrelationships, they are susceptible to a number of
malicious attacks. Such kinds of attacks, if and when materialized, jeopardizes the entire IoV network,
thereby putting human lives at risk. Whilst the cryptographic-based mechanisms are capable of
mitigating the external attacks, the internal attacks are extremely hard to tackle. Trust, therefore, is an
indispensable tool since it facilitates in the timely identification and eradication of malicious entities
responsible for launching internal attacks in an IoV network. To date, there is no dataset pertinent
to trust management in the context of IoV networks and the same has proven to be a bottleneck
for conducting an in-depth research in this domain. The manuscript-at-hand, accordingly, presents
a first of its kind trust-based IoV dataset encompassing 96,707 interactions amongst 79 vehicles at
different time instances. The dataset involves nine salient trust parameters, i.e., packet delivery ratio,
similarity, external similarity, internal similarity, familiarity, external familiarity, internal familiarity,
reward/punishment, and context, which play a considerable role in ascertaining the trust of a vehicle
within an IoV network.

Dataset: https://github.com/wangyingxun/IoV.

Dataset License: Creative Commons Attribution 4.0 International.

Keywords: internet of vehicles; malicious behavior; trust management; trust-based IoV simulator;
trust parameters

1. Introduction and Background

Over the past decade or so, the rapid evolution and advancements in a number of
cutting-edge technologies, including but not limited to, the Internet of Things (IoT), ar-
tificial intelligence, and fifth-generation communication, has led to the transformation
of the conventional intelligent transportation systems into Internet of Vehicles (IoV) net-
works [1,2]. The IoV networks facilitate seamless connectivity for a real-time exchange
of safety-critical and non-safety information amongst vehicles, and between vehicles and
vulnerable pedestrians, supporting roadside infrastructure, and the backbone network via
vehicle-to-everything communication [3,4]. Despite the low latency advantages associated
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with the IoV networks, they are prone to a number of malicious attacks that are not only
capable of jeopardizing the entire network but also poses a considerable risk to human
lives. Hence, it is of paramount importance to ensure the resilience of IoV networks [5,6].
Figure 1 portrays an IoV landscape.

Figure 1. An IoV landscape.

A brief glimpse of the state-of-the-art reveals that a number of mechanisms have been
proposed over the years in order to strengthen the security of an IoV network. Such mecha-
nisms can be broadly classified into two categories, i.e., cryptography-based approaches
and trust-based approaches [7,8]. Whilst the cryptography-based approaches safeguard IoV
networks against a number of malicious attacks, including but not limited to data tamper-
ing, identity theft, and eavesdropping, they are prone to a number of internal attacks [9,10].
Trust-based approaches, on the contrary, can intelligently address the challenges pertinent
to internal attacks [11] since they leverage the reputation of entities within an IoV network
in order to guarantee secure communication amongst them, thereby facilitating intelligent
traffic flows [12,13].

In the context of an IoV network, vehicles are classified as either trusted or un-
trusted [14,15]. Trusted vehicles exhibit legitimate behavior by primarily disseminating
accurate information in an IoV network, whereas untrusted vehicles engage in malicious
activities by intentionally transmitting and facilitating the relay of incorrect information
and recommendations in an IoV network in an intelligent manner, thereby posing a grave
threat to vehicular passengers and vulnerable pedestrians [16,17]. Hence, an accurate and
real-time identification of malicious vehicles in such a highly dynamic network is highly in-
dispensable [18]. The state-of-the-art methodologies employed for the identification of such
vehicles in an IoV network typically involve threshold-based and decision boundary-based
mechanisms [19,20]. In the case of threshold-based mechanisms, a vehicle’s trust value is
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compared with a predetermined trust threshold, i.e., if the trust value of a vehicle exceeds
the predetermined trust threshold, it is regarded as a trusted vehicle, or else, it is classified
as a malicious vehicle. On the contrary, in case of decision boundary-based mechanisms,
the trust values derived from vehicular interactions are clustered and classified via learning
algorithms, and an optimal decision boundary is subsequently employed to segregate the
trusted vehicles from the malicious ones [21,22]. However, regardless of the methodology
employed for the identification of the malicious vehicles in an IoV network, vehicles should
have an associated precise trust value. Therefore, trust-related data hold considerable
significance for securing highly dynamic IoV networks.

Trust, in essence, implies a degree of belief or disbelief that a trustor has on a trustee
in carrying out a particular task or a set of tasks in an anticipated manner [23]. It mandates
quantification, and to realize the same, it relies on several trust-based parameters which
are not only context-dependent but are also highly dynamic in nature since they transpire
as a result of the frequent interactions amongst the vehicles in an IoV network [24–26].
Whilst a number of IoV-based trust parameters have already been delineated in the research
literature, as of date, there is no dedicated publicly available trust-based IoV dataset that
researchers from both academia and industry can predominantly employ in order to carry
out an in-depth research and subsequently expand upon within this particular domain. In
order to address this particular challenge, the manuscript-at-hand presents a pioneering
trust-based IoV dataset, which is discussed in detail in Section 2 (Data Description) and
Section 3 (Methods).

2. Data Description

The manuscript-at-hand introduces a trust-based IoV dataset, which has been made
available for the readers at https://github.com/wangyingxun/IoV, accessed on 1 August
2024. This particular dataset has been employed for not only ascertaining the trust values
of vehicles in an IoV network but also for segregating the trustworthy vehicles from the
untrustworthy ones by means of an optimal decision boundary. Accordingly, a detailed
description of the key features of this particular dataset is indispensable so as to enable
researchers in both academia and the industry to employ and extend the same in a bid to
investigate open research directions of this emerging and promising domain.

It is pertinent to mention here that, to date, there is no public dataset pertinent to trust
management in IoV networks. Therefore, the dataset proposed in the manuscript-at-hand
represents a pioneering contribution within this particular domain. In order to realize the
same, Java has been employed for designing an IoV-based simulator, whereas Python was
employed for analyzing the simulation results. Figure 2 herein depicts a realistic urban
mobility scenario for Jinan, i.e., a city in the Shandong province of the People’s Republic of
China. The IoV simulator, accordingly, takes into account the said urban mobility scenario
since it encompasses several interconnected road segments with vehicles traversing on the
same along diverse paths at random speeds in disparate directions. Moreover, the speed
of a vehicle remains constant throughout its travelling trajectory along a single path and
only changes once the respective vehicle opts for a new path. Vehicles, therefore, interact
with one another, i.e., the time of interaction amongst them depends on their respective
speeds, and frequently exchange indispensable information to realize a number of both
safety-critical and non-safety applications. Moreover, the proposed IoV-based simulator
incorporates not only honest vehicles but also intelligent malicious ones that dynamically
alternate between honest and dishonest behaviors in a bid to execute malicious acts so as
to evade detection by the IoV-based trust models [27,28].

For the readers’ reference, the trust-based IoV dataset proposed in the manuscript-
at-hand encompasses 79 vehicles, i.e., trustors and trustees, that engage in a total of
96,707 interactions over different time instances. In total, we ascertained nine key trust
parameters, i.e., packet delivery ratio, similarity, external similarity, internal similarity,
familiarity, external familiarity, internal familiarity, reward/punishment, and context. A
trust authority [29] here plays an indispensable role as it facilitates in ascertaining the trust
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parameters, which (a) cannot transpire as a result of the interactions between a trustor and
a trustee or (b) requires the opinion of a global entity with an overarching view of the entire
IoV network in a bid to determine the credibility of the information exchanged between a
trustor and a trustee and their respective recommendations. These parameters thus not
only depict the dynamic interactions amongst the trustors and trustees in an IoV network
but further offer valuable insights pertinent to the behavior of the same.

Figure 2. Depicting a realistic urban mobility scenario for Jinan (a city in the Shandong province of
the People’s Republic of China).

3. Methods

As discussed above, the trust-based IoV dataset proposed in this particular manuscript
encompasses trustors, trustees, and 9 salient trust parameters. The same are delineated
as follows:

3.1. Trustor

Trust in an IoV network involves multiple attributes (parameters), which can be
quantified by considering it as a relational construct involving two entities, i.e., a trustor
i and a trustee j. The trustor i assumes the role of an evaluator within an IoV network to
assess and ascertain the trustworthiness of a trustee j. In our proposed dataset, there are
79 trustors listed in column 1 of the dataset.

3.2. Trustee

The trustee, also referred to as a target node, is an entity that is evaluated by a trustor
as either trustworthy or untrustworthy. In our proposed dataset, there are 79 trustees (listed
in column 2 of the dataset) that have encountered 96,707 interactions with the trustors.

3.3. Packet Delivery Ratio (PDR)

The packet delivery ratio (0 ≤ PDR ≤ 1) measures the degree of interaction between
a trustor i and a trustee j at a time instance t within an IoV network, thereby providing
a key understanding of their relationship. In order to ascertain PDR, we collect the total
number of messages sent by a trustor i and successfully received by a trustee j at a time
instance t in an IoV network. The PDR is, therefore, determined by taking into account
the ratio between the aforementioned sent and successfully received messages between a
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trustor i and a trustee j. The same is listed in column 3 of the dataset, wherein 0 implies an
unsuccessful interaction, whereas 1 suggests a successful interaction.

3.4. Similarity (Sim)

The similarity (0 ≤ Sim ≤ 1) between a trustor i and a trustee j at a time instance t
encompasses both external similarity (ES) and internal similarity (IS), and is a weighted
amalgamation of the two. The same is listed in column 4 of the dataset.

3.4.1. External Similarity (ES)

The external similarity (0 ≤ ES ≤ 1) suggests the extent to which a trustor i and a
trustee j access similar content at a time instance t, and is listed in column 5 of the dataset.
ES is deemed to be 1 if the trustor i and a trustee j access similar content. Otherwise, it is
regarded as 0.

3.4.2. Internal Similarity (IS)

The internal similarity (0 ≤ IS ≤ 1) manifests the degree of similarity in the positions
(geographical locations), directions (travelling trajectories), speeds, and accelerations of a
trustor i and trustee j. The same is depicted in column 6 of the dataset.

3.5. Familiarity (Fam)

The familiarity (0 ≤ Fam ≤ 1) between a trustor i and a trustee j at a time instance t
is also segregated into external familiarity (EF) and internal familiarity (IF). The same is
delineated in column 7 of the dataset.

3.5.1. External Familiarity (EF)

The external familiarity (0 ≤ EF ≤ 1) quantifies the level of the familiarity a trustor
possesses towards a trustee, and is listed in column 8 of the dataset. The value of EF is
obtained by calculating the ratio between the number of common vehicles that interact
with both a trustor i and a trustee j, and the total number of vehicles that interact with a
trustor over a given timestamp in an IoV network [30]. In other words, a higher number of
shared interacting vehicles (i.e., EF = 1) indicates a stronger level of familiarity between a
trustor and a trustee.

3.5.2. Internal Familiarity (IF)

The internal familiarity (0 ≤ IF ≤ 1) manifests the extent of interaction frequency
between a trustor i and a trustee j, and is recorded in column 9 of the dataset. The value
of IF is determined by quantifying the frequency of interactions between a trustor and a
trustee over a given timestamp in an IoV network. In other words, a higher interaction
frequency (i.e., IF = 1) indicates a stronger familiarity between the two parties (trustor
and trustee).

3.6. Reward/Punishment (RP)

The reward/punishment (0 ≤ RP ≤ 1) is employed in order to ascertain the degree
of a reward or a penalty allocated to a trustee j based on its conduct in an IoV network.
Specifically, a trustee j is rewarded by a trustor i for exhibiting cooperation, honesty, and
reporting critical events, whereas it is penalized for any sort of a misconduct [31]. The RP
is determined by taking into consideration the PDR, and a metric that accounts for both
positive and negative interactions between a trustor and a trustee. It is thus represented in
column 10 of the dataset.

3.7. Context

Context plays an indispensable role for ascertaining the trust of a trustee in an IoV
network since most of the other trust parameters are directly impacted owing to the
same [32]. It provides specific information regarding the settings, wherein interactions
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take place between a trustor i and a trustee j in an IoV network, i.e., network stability,
and temporal and spatial aspects. In the context of this particular dataset, the context
(0 ≤ Context ≤ 1) implies the network communication quality segregated into four classes
implying poor, medium, good, and excellent. The corresponding values pertinent to these
four classes are depicted in column 11 of the dataset.

Figures 3–7 depict the packet delivery ratio, similarity, familiarity, reward/punishment,
and context-related scores of each of the 79 vehicles in an IoV network at their most recent
respective time instance. Additionally, Table 1 delineates the values of all of the 9 trust
parameters introduced in this particular dataset so as to enable the readers to have a
comprehensive understanding of the same.

Figure 3. Packet delivery ratios of 79 vehicles in an IoV network.

Figure 4. Similarity-related values of 79 vehicles in an IoV network.

Figure 5. Familiarity-related values of 79 vehicles in an IoV network.
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Figure 6. Reward/punishment-related values of 79 vehicles in an IoV network.

Figure 7. Context-related values of 79 vehicles in an IoV network.

Table 1. A snapshot of values pertinent to the trust parameters, i.e., packet delivery ratio (PDR),
similarity (Sim), external similarity (ES), internal similarity (IS), familiarity (Fam), external familiarity
(EF), nternal familiarity (IF), reward/punishment (RP), and context, in the trust-based IoV dataset.

Trustor Trustee PDR Sim ES IS Fam EF IF RP Context

0 1 0.7113 0.6833 1 0.3666 0.6801 1.0000 0.3602 0.5329 0.6
0 10 0.9625 0.9047 1 0.8094 0.6083 1.0000 0.2166 0.9271 0.8
0 78 0.7849 0.2117 0 0.4235 0.6138 1.0000 0.2276 0.6330 0.4
. . . . . . . . . . .
5 9 0.7617 0.7646 1 0.5292 0.7765 1.0000 0.5529 0.6002 0.6
5 25 0.1275 0.7946 1 0.5892 0.6257 1.0000 0.2513 0.0533 0.4
5 65 0.9199 0.7658 1 0.5315 0.5569 1.0000 0.1138 0.8491 0.6
. . . . . . . . . . .
9 10 0.7832 0.4056 0 0.8112 1.0000 1.0000 1.0000 0.6305 0.6
9 37 0.1610 0.9599 1 0.9199 0.5500 1.0000 0.1000 0.0696 0.4
9 70 0.4428 0.8090 1 0.6581 0.6116 1.0000 0.2232 0.2536 0.4
. . . . . . . . . . .

17 21 0.2089 0.4289 0 0.8578 0.9807 1.0000 0.9614 0.0947 0.4
17 53 0.8233 0.7468 1 0.4935 0.6421 1.0000 0.2841 0.6900 0.6
17 59 0.6767 0.6915 1 0.3830 0.6421 1.0000 0.2841 0.4898 0.6
. . . . . . . . . . .

23 24 0.9312 0.8760 1 0.7519 1.0000 1.0000 1.0000 0.8693 0.8
23 67 0.3746 0.2880 0 0.5760 0.7328 1.0000 0.4656 0.2004 0.0
23 70 0.8733 0.7228 1 0.4456 0.6758 1.0000 0.3516 0.7694 0.6
. . . . . . . . . . .

27 40 0.9835 0.8466 1 0.6933 0.8098 1.0000 0.6196 0.9674 0.8
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Table 1. Cont.

Trustor Trustee PDR Sim ES IS Fam EF IF RP Context

27 53 0.3995 0.1174 0 0.2348 0.7963 1.0000 0.5926 0.2191 0.0
27 74 0.7684 0.7259 1 0.4519 0.7694 1.0000 0.5388 0.6095 0.6
. . . . . . . . . . .

35 36 0.7692 0.1149 0 0.2298 0.6487 1.0000 0.2973 0.6107 0.4
35 37 0.5302 0.8996 1 0.7993 0.8904 1.0000 0.7807 0.3314 0.6
35 54 0.1979 0.7465 1 0.4929 0.6607 1.0000 0.3213 0.0887 0.4
. . . . . . . . . . .

40 41 0.5738 0.7033 1 0.4067 0.5661 1.0000 0.1321 0.3747 0.6
40 45 0.3765 0.6316 1 0.2632 0.6867 1.0000 0.3733 0.2018 0.4
40 59 0.7693 0.2638 0 0.5276 1.0000 1.0000 1.0000 0.6108 0.6
. . . . . . . . . . .

43 45 0.4167 0.8005 1 0.6009 0.5899 1.0000 0.1797 0.2325 0.4
43 52 0.2337 0.7170 1 0.4339 0.6113 1.0000 0.2225 0.1086 0.4
43 58 0.9459 0.6806 1 0.3611 0.8295 1.0000 0.6590 0.8961 0.8
. . . . . . . . . . .

50 52 0.4822 0.7346 1 0.4692 1.0000 1.0000 1.0000 0.2873 0.6
50 55 0.5339 0.8764 1 0.7527 1.0000 1.0000 1.0000 0.3350 0.6
50 62 0.7857 0.8393 1 0.6785 0.6659 1.0000 0.3317 0.6341 0.6
. . . . . . . . . . .

54 57 0.6790 0.8617 1 0.7234 1.0000 1.0000 1.0000 0.4926 0.6
54 61 0.5491 0.8709 1 0.7417 0.7000 1.0000 0.4000 0.3498 0.6
54 75 0.3732 0.6680 1 0.3360 0.6025 1.0000 0.2049 0.1944 0.4
. . . . . . . . . . .

60 61 0.6867 0.9094 1 0.8187 1.0000 1.0000 1.0000 0.5020 0.6
60 63 0.4465 0.8510 1 0.7020 0.6292 1.0000 0.2583 0.2567 0.4
60 75 0.3603 0.9066 1 0.8131 0.6722 1.0000 0.3444 0.1900 0.4
. . . . . . . . . . .

63 65 0.8792 0.7572 1 0.5145 1.0000 1.0000 1.0000 0.7792 0.8
63 67 0.6562 0.7231 1 0.4462 1.0000 1.0000 1.0000 0.4653 0.6
63 74 0.4972 0.9154 1 0.8307 0.6249 1.0000 0.2497 0.3007 0.4
. . . . . . . . . . .

70 71 0.5665 0.7666 1 0.5332 0.5753 1.0000 0.1505 0.3672 0.4
70 73 0.5879 0.7530 1 0.5059 0.6969 1.0000 0.3937 0.3893 0.6
70 76 0.9644 0.1530 0 0.3060 0.9343 1.0000 0.8685 0.9307 0.6
. . . . . . . . . . .

74 75 0.1220 0.7480 1 0.4960 0.5500 1.0000 0.1000 0.0507 0.0
74 77 0.5229 0.7413 1 0.4826 0.9888 1.0000 0.9775 0.3245 0.6
74 78 0.2091 0.7263 1 0.4526 1.0000 1.0000 1.0000 0.0948 0.4

4. Conclusions and Future Directions

The manuscript-at-hand employs Java to design a trust-based IoV simulator which
ascertains the trust values of vehicles in an IoV network and further facilitates in seg-
regating the trustworthy vehicles from the untrustworthy ones via an optimal decision
boundary. The trust-based IoV dataset obtained via this simulator is the first of its kind
and encompasses nine salient trust parameters, i.e., packet delivery ratio, similarity, ex-
ternal similarity, internal similarity, familiarity, external familiarity, internal familiarity,
reward/punishment, and context. The underlying rationale of the said trust parameters
lies in their effectiveness to investigate dynamic interactions between trustors and trustees
in an IoV network, thereby offering valuable insights into the behavior of the same and a
foundation for researchers from both academia and industry to utilize and expand upon.
In the near future, the authors intend to employ a trust-based IoV testbed to (a) ascer-
tain the parameters introduced in this dataset via realistic interactions and (b) simulate
various intricate IoV-based trust attacks, i.e., self-promoting attacks, on–off attacks, op-
portunistic service attacks, selective behavior attacks, bad mouthing attacks, and good
mouthing attacks.
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