Whole-Slide Images and Patches of Clear Cell Renal Cell Carcinoma Tissue Sections Counterstained with Hoechst 33342, CD3, and CD8 Using Multiple Immunofluorescence
<p>Thumbnail image of one of the WSIs in the dataset, displaying the Hoechst channel in blue, CD3 in yellow, and CD8 in red. Note that the individual cells are too small to be identified at the low resolution of this image.</p> "> Figure 2
<p>Intensity histograms of all 10 WSIs in the dataset (each WSI corresponds to a differently coloured line).</p> "> Figure 3
<p>Intensity histograms (left axes) and fit normal distributions (right axes) of a sample WSI’s Hoechst and CD3 channels. The CD8 histograms behave similarly.</p> "> Figure 4
<p>A <math display="inline"><semantics> <mrow> <mn>256</mn> <mo>×</mo> <mn>256</mn> </mrow> </semantics></math> pixel patch extracted from the WSI in <a href="#data-08-00040-f001" class="html-fig">Figure 1</a>, showing raw and normalised intensities for Hoechst, CD3, and CD8, as well as masks for different cell types. CD8<sup>+</sup> cells are a subset of CD3<sup>+</sup> cells because CD3 highlights all T cells, whereas CD8 binds only to cytotoxic T cells. (<b>a</b>) Hoechst. (<b>b</b>) CD3. (<b>c</b>) CD8. (<b>d</b>) normalised Hoechst. (<b>e</b>) normalised CD3. (<b>f</b>) normalised CD8. (<b>g</b>) StarDist [<a href="#B27-data-08-00040" class="html-bibr">27</a>] cell mask. (<b>h</b>) CD3<sup>+</sup> cells. (<b>i</b>) CD8<sup>+</sup> cells.</p> ">
Abstract
:1. Summary
2. Data Description
2.1. Raw Whole-Slide Images
2.2. Preprocessed Image Patches
Listing 1. Structure of the JSON file accompanying each patch. |
{ "original_file": "ICAIRD1007_MCM2FITC_CD3CY3_CD8CY5_MCK750.czi", "x": 51712, "y": 51968, "w": 256, "h": 256, "images": [ { "file": "ICAIRD1007_MCM2FITC_CD3CY3_CD8CY5_MCK750 […].png", "mode": "mask", "channel": "CD3" }, // … ] }
2.3. Clinical Data
3. Methods
3.1. Multiplex Immunofluorescence Protocol
3.2. Whole-Slide Image Acquisition
3.3. Patch Processing
3.3.1. Intensity Normalisation
3.3.2. Nucleus Segmentation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ccRCC | clear cell renal cell carcinoma |
TME | tumour microenvironment |
mIF | multiplex immunofluorescence |
IHC | immunohistochemistry |
WSI | whole-slide image |
GAN | generative adversarial network |
CD3 | cluster of differentiation 3 |
CD8 | cluster of differentiation 8 |
TSA | tyramide signal amplification |
HRP | horseradish peroxidase |
JSON | JavaScript object notation |
PNG | portable network graphics |
CSV | comma-separated values |
References
- Cancer Research UK. Kidney Cancer Statistics. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/kidney-cancer (accessed on 30 September 2022).
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Moch, H.; Cubilla, A.L.; Humphrey, P.A.; Reuter, V.E.; Ulbright, T.M. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs—Part A: Renal, Penile, and Testicular Tumours. Eur. Urol. 2016, 70, 93–105. [Google Scholar] [CrossRef]
- De Filippis, R.; Wölflein, G.; Um, I.H.; Caie, P.D.; Warren, S.; White, A.; Suen, E.; To, E.; Arandjelović, O.; Harrison, D.J. Use of high-plex data reveals novel insights into the tumour microenvironment of clear cell renal cell carcinoma. Cancers 2022, 14, 5387. [Google Scholar] [CrossRef] [PubMed]
- Coons, A.H.; Creech, H.J.; Jones, R.N.; Berliner, E. The Demonstration of Pneumococcal Antigen in Tissues by the Use of Fluorescent Antibody. J. Immunol. 1942, 45, 159–170. [Google Scholar] [CrossRef]
- Kalyuzhny, A.E. Immunohistochemistry—Essential Elements and Beyond; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Goldstein, N.S.; Hewitt, S.M.; Taylor, C.R.; Yaziji, H.; Hicks, D.G.; Members of Ad-Hoc Committee on Immunohistochemistry Standardization. Recommendations for Improved Standardization of Immunohistochemistry. Appl. Immunohistochem. Mol. Morphol. 2007, 15, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, J.G. Immunofluorescence Staining. Curr. Protoc. Cell Biol. 2015, 69, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, A.U.; Enomoto, H.; Milbrandt, J.; Roth, K.A. Dual Fluorescent in Situ Hybridization and Immunohistochemical Detection with Tyramide Signal Amplification. J. Histochem. Cytochem. 2000, 48, 1369–1375. [Google Scholar] [CrossRef] [Green Version]
- Buchwalow, I.B.; Böcker, W. Immunohistochemistry: Basics and Methods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Chazotte, B. Labeling Nuclear DNA with Hoechst 33342. Cold Spring Harb. Protoc. 2011, 2011, pdb-prot5557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caie, P.D.; Dimitriou, N.; Arandjelović, O. Precision Medicine in Digital Pathology via Image Analysis and Machine Learning. In Artificial Intelligence and Deep Learning in Pathology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 149–173. [Google Scholar]
- Kather, J.N.; Krisam, J.; Charoentong, P.; Luedde, T.; Herpel, E.; Weis, C.A.; Gaiser, T.; Marx, A.; Valous, N.A.; Ferber, D.; et al. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS Med. 2019, 16, e1002730. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Zhu, X.; Huang, J. Deep multi-instance learning for survival prediction from whole-slide images. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, 13–17 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 496–504. [Google Scholar]
- Abousamra, S.; Gupta, R.; Hou, L.; Batiste, R.; Zhao, T.; Shankar, A.; Rao, A.; Chen, C.; Samaras, D.; Kurc, T.; et al. Deep learning-based mapping of tumor infiltrating lymphocytes in whole-slide images of 23 types of cancer. Front. Oncol. 2022, 11, 5971. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.; Um, I.H.; Arandjelović, O.; Harrison, D.J. Lymphocyte Classification from Hoechst Stained Slides with Deep Learning. Cancers 2022, 14, 5957. [Google Scholar] [CrossRef] [PubMed]
- Wölflein, G.; Um, I.H.; Harrison, D.J.; Arandjelović, O. HoechstGAN: Virtual Lymphocyte Staining Using Generative Adversarial Networks. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2–8 January 2023; pp. 4997–5007. [Google Scholar]
- Warren, A.Y.; Harrison, D. WHO/ISUP classification, grading and pathological staging of renal cell carcinoma: Standards and controversies. World J. Urol. 2018, 36, 1913–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bektas, S.; Bahadir, B.; Kandemir, N.O.; Barut, F.; Gul, A.E.; Ozdamar, S.O. Intraobserver and interobserver variability of Fuhrman and modified Fuhrman grading systems for conventional renal cell carcinoma. Kaohsiung J. Med Sci. 2009, 25, 596–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulrane, L.; Rexhepaj, E.; Penney, S.; Callanan, J.J.; Gallagher, W.M. Automated image analysis in histopathology: A valuable tool in medical diagnostics. Expert Rev. Mol. Diagn. 2008, 8, 707–725. [Google Scholar] [CrossRef] [PubMed]
- Wölflein, G.; Um, I.H.; Harrison, D.J.; Arandjelović, O. Whole Slide Images and Patches of Clear Cell Renal Cell Carcinoma Counterstained with Multiple Immunofluorescence for Hoechst, CD3, and CD8. 2022. Available online: https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD605 (accessed on 6 February 2023).
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the Advances in Neural Information Processing Systems; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K., Eds.; Curran Associates, Inc.: New York, NY, USA, 2014; Volume 27. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Fuhrman, S.A.; Lasky, L.C.; Limas, C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am. J. Surg. Pathol. 1982, 6, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Leibovich, B.C.; Blute, M.L.; Cheville, J.C.; Lohse, C.M.; Frank, I.; Kwon, E.D.; Weaver, A.L.; Parker, A.S.; Zincke, H. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: A stratification tool for prospective clinical trials. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2003, 97, 1663–1671. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, U.; Weigert, M.; Broaddus, C.; Myers, G. Cell Detection with Star-Convex Polygons. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2018—21st International Conference, Granada, Spain, 6–20 September 2018; pp. 265–273. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [PubMed]
Mode | Channel | Description |
---|---|---|
raw | H3342 | normalised Hoechst patch |
raw | Cy3 | normalised CD3 patch |
raw | Cy5 | normalised CD8 patch |
mask | Hoechst | segmentation mask of all detected cells |
mask | CD3 | segmentation mask of CD3+ cells (subset of Hoechst cells) |
mask | CD8 | segmentation mask of CD8+ cells (subset of CD3+ cells) |
mask | unclassified | segmentation mask of CD3- cells (subset of Hoechst cells) |
Hoechst | CD3 | CD8 | |
---|---|---|---|
Total cells | 15,956,049 | 3,390,533 | 1,894,016 |
Cells per patch | 25.42 | 5.40 | 3.02 |
Presence | 99.95% | 93.08% | 71.61% |
Area coverage | 26.48% | 05.01% | 03.02% |
Column Name | Format | Description |
---|---|---|
ICAIRD number | ICAIRD_XXX | patient ID |
Gender | M or F | gender |
Response | 0 or 1 | recurrence within 5 years after surgery |
Age at surgery | whole number | age at surgery in years |
Disease-free months | float | number of months with no recurrence |
Fuhrman nuclear grade | 1 – 4 | Fuhrman grade [24] |
ISUP nuclear grade | 1 – 4 | ISUP grade [3] |
Tumour stage | 1a, 1b, 2a, 2b, 3a, 3b, 3c, or 4 | tumour size according to TNM system [25] |
Tumour size | float | tumour size in cm |
Node status | 0 or 1 | lymph node status according to TNM system [25] |
Necrosis | 0 or 1 | whether necrosis is detected |
Leibovich score (Fuhrman) | 0 – 11 | Leibovich score [26] using Fuhrman nuclear grade [24] |
Leibovich score (ISUP) | 0 – 11 | Leibovich score [26] using ISUP nuclear grade [3] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wölflein, G.; Um, I.H.; Harrison, D.J.; Arandjelović, O. Whole-Slide Images and Patches of Clear Cell Renal Cell Carcinoma Tissue Sections Counterstained with Hoechst 33342, CD3, and CD8 Using Multiple Immunofluorescence. Data 2023, 8, 40. https://doi.org/10.3390/data8020040
Wölflein G, Um IH, Harrison DJ, Arandjelović O. Whole-Slide Images and Patches of Clear Cell Renal Cell Carcinoma Tissue Sections Counterstained with Hoechst 33342, CD3, and CD8 Using Multiple Immunofluorescence. Data. 2023; 8(2):40. https://doi.org/10.3390/data8020040
Chicago/Turabian StyleWölflein, Georg, In Hwa Um, David J. Harrison, and Ognjen Arandjelović. 2023. "Whole-Slide Images and Patches of Clear Cell Renal Cell Carcinoma Tissue Sections Counterstained with Hoechst 33342, CD3, and CD8 Using Multiple Immunofluorescence" Data 8, no. 2: 40. https://doi.org/10.3390/data8020040
APA StyleWölflein, G., Um, I. H., Harrison, D. J., & Arandjelović, O. (2023). Whole-Slide Images and Patches of Clear Cell Renal Cell Carcinoma Tissue Sections Counterstained with Hoechst 33342, CD3, and CD8 Using Multiple Immunofluorescence. Data, 8(2), 40. https://doi.org/10.3390/data8020040