The Effect of Rooibos Tea (Aspalathus linearis) Consumption on Human Health Outcomes: A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Search Terminology
2.3. Eligibility and Data Extraction
2.4. Data Extraction and Quality Assessment
3. Results
3.1. Study Characteristics
3.2. Interventions
3.3. Outcome Measures
3.4. Risk of Bias
3.5. Study Results
3.5.1. Effect of Rooibos Consumption on Blood and Urinary Biomarkers
3.5.2. Effect of Rooibos Consumption on Blood Pressure, Heart Rate and Muscle Strength
4. Discussion
4.1. Rooibos Consumption and Cardiometabolic Indicators of Health
4.2. Limitations
4.3. Implications and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yi, M.; Wu, X.; Zhuang, W.; Xia, L.; Chen, Y.; Zhao, R.; Wan, Q.; Du, L.; Zhou, Y. Tea consumption and health outcomes: Umbrella review of meta-analyses of observational studies in humans. Mol. Nutr. Food Res. 2019, 63, 1900389. [Google Scholar] [CrossRef] [PubMed]
- Hogenkamp, P.S.; Jerling, J.C.; Hoekstra, T.; Melse-Boonstra, A.; MacIntyre, U.E. Association between consumption of black tea and iron status in adult Africans in the North West Province: The THUSA study. Br. J. Nutr. 2008, 100, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Abe, S.K.; Inoue, M. Green tea and cancer and cardiometabolic diseases: A review of the current epidemiological evidence. Eur. J. Clin. Nutr. 2021, 75, 865–876. [Google Scholar] [CrossRef] [PubMed]
- Vuong, Q.V. Epidemiological evidence linking tea consumption to human health: A review. Crit. Rev. Food Sci. Nutr. 2014, 54, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Bendall, D.S. A Historical View of Tea. Sci. Cult. 2011, 77, 353–361. [Google Scholar]
- Chieng, D.; Kistler, P.M. Coffee and tea on cardiovascular disease (CVD) prevention. Trends Cardiovasc. Med. 2022, 32, 399–405. [Google Scholar] [CrossRef]
- Banerjee, P.; Ray, D.P. Functional food: A brief overview. Int. J. Bioresour. Sci. 2019, 6, 57–60. [Google Scholar] [CrossRef]
- Shin, S.; Lee, J.E.; Loftfield, E.; Shu, X.O.; Abe, S.K.; Rahman, M.S.; Saito, E.; Islam, M.R.; Tsugane, S.; Sawada, N.; et al. Coffee and tea consumption and mortality from all causes, cardiovascular disease and cancer: A pooled analysis of prospective studies from the Asia Cohort Consortium. Int. J. Epidemiol. 2022, 51, 626–640. [Google Scholar] [CrossRef]
- Zhang, C.; Qin, Y.-Y.; Wei, X.; Yu, F.-F.; Zhou, Y.-H.; He, J. Tea consumption and risk of cardiovascular outcomes and total mortality: A systematic review and meta-analysis of prospective observational studies. Eur. J. Epidemiol. 2015, 30, 103–113. [Google Scholar] [CrossRef]
- de Souza, J.G.; Del Coso, J.; Fonseca, F.d.S.; Silva, B.V.C.; de Souza, D.B.; da Silva Gianoni, R.L.; Filip-Stachnik, A.; Serrão, J.C.; Claudino, J.G. Risk or benefit? Side effects of caffeine supplementation in sport: A systematic review. Eur. J. Nutr. 2022, 61, 3823–3834. [Google Scholar] [CrossRef]
- Piek, H.; Venter, I.; Rautenbach, F.; Marnewick, J.L. Rooibos herbal tea: An optimal cup and its consumers. Health SA 2019, 24, 1090. [Google Scholar] [CrossRef] [PubMed]
- Sibanda, M. Evaluation of the Therapeutic Potential of Green Rooibos (Aspalathus linearis) Extract in Neurological Disease. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2021. [Google Scholar]
- Joubert, E.; de Beer, D. Rooibos (Aspalathus linearis) beyond the farm gate: From herbal tea to potential phytopharmaceutical. S. Afr. J. Bot. 2011, 77, 869–886. [Google Scholar] [CrossRef]
- Damiani, E.; Carloni, P.; Rocchetti, G.; Senizza, B.; Tiano, L.; Joubert, E.; de Beer, D.; Lucini, L. Impact of cold versus hot brewing on the phenolic profile and antioxidant capacity of rooibos (Aspalathus linearis) herbal tea. Antioxidants 2019, 8, 499. [Google Scholar] [CrossRef] [PubMed]
- Villaño, D.; Pecorari, M.; Testa, M.F.; Raguzzini, A.; Stalmach, A.; Crozier, A.; Tubili, C.; Serafini, M. Unfermented and fermented rooibos teas (Aspalathus linearis) increase plasma total antioxidant capacity in healthy humans. Food Chem. 2010, 123, 679–683. [Google Scholar] [CrossRef]
- Pyrzanowska, J.; Fecka, I.; Mirowska-Guzel, D.; Joniec-Maciejak, I.; Blecharz-Klin, K.; Piechal, A.; Wojnar, E.; Widy-Tyszkiewicz, E. Long-term administration of Aspalathus linearis infusion affects spatial memory of adult Sprague-Dawley male rats as well as increases their striatal dopamine content. J. Ethnopharmacol. 2019, 238, 111881. [Google Scholar] [CrossRef]
- Schloms, L.; Smith, C.; Storbeck, K.H.; Marnewick, J.L.; Swart, P.; Swart, A.C. Rooibos influences glucocorticoid levels and steroid ratios in vivo and in vitro: A natural approach in the management of stress and metabolic disorders? Mol. Nutr. Food Res. 2014, 58, 537–549. [Google Scholar] [CrossRef]
- Hesseling, P.B.; Joubert, J.R. The effect of rooibos tea on the type I allergic reaction. S. Afr. Med. J. 1982, 62, 1037–1038. [Google Scholar]
- Marnewick, J.; Rautenbach, F.; Venter, I.; Neethling, H.; Blackhurst, D.; Wolmarans, P.; Macharia, M. Effects of rooibos (Aspalathus linearis) on oxidative stress and biochemical parameters in adults at risk for cardiovascular disease. J. Ethnopharmacol. 2011, 133, 46–52. [Google Scholar] [CrossRef]
- Shindo, Y.; Kato, K. Effect of rooibos tea on some dermatological diseases. In Proceedings of the International Symposium on Tea Science, Shizuoka, Japan, 26–29 August 1991; pp. 385–389. [Google Scholar]
- Dludla, P.V.; Gabuza, K.B.; Muller, C.J.F.; Joubert, E.; Louw, J.; Johnson, R. Aspalathin, a C-glucosyl dihydrochalcone from rooibos improves the hypoglycemic potential of metformin in type 2 diabetic (db/db) mice. Physiol. Res. 2018, 67, 813–818. [Google Scholar] [CrossRef]
- Dludla, P.V.; Muller, C.J.F.; Louw, J.; Mazibuko-Mbeje, S.E.; Tiano, L.; Silvestri, S.; Orlando, P.; Marcheggiani, F.; Cirilli, I.; Chellan, N.; et al. The Combination Effect of Aspalathin and Phenylpyruvic Acid-2-O-β-D-glucoside from Rooibos against Hyperglycemia-Induced Cardiac Damage: An In Vitro Study. Nutrients 2020, 12, 1151. [Google Scholar] [CrossRef]
- Breet, P.; Kruger, H.S.; Jerling, J.C.; Oosthuizen, W. Actions of black tea and Rooibos on iron status of primary school children. Nutr. Res. 2005, 25, 983–994. [Google Scholar] [CrossRef]
- Chepulis, L.; Al-Aubaidy, H.; Page, R. Effects of selected antioxidant food extracts on postprandial glucose responses in healthy individuals. Funct. Foods Health Dis. 2016, 6, 493–505. [Google Scholar] [CrossRef]
- Marnewick, J.L.; Venter, I.; Rautenbach, F.; Neethling, H.; Kotze, M. Rooibos: Effect on Iron Status in South African Adults at Risk for Coronary Heart Disease. In African Natural Plant Products Volume II: Discoveries and Challenges in Chemistry, Health, and Nutrition; ACS Publications: Washington, DC, USA, 2013; pp. 103–114. [Google Scholar]
- Sinisalo, M.; Enkovaara, A.L.; Kivistö, K.T. Possible hepatotoxic effect of rooibos tea: A case report. Eur. J. Clin. Pharmacol. 2010, 66, 427–428. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Higgins, J.P.; Savović, J.; Page, M.J.; Elbers, R.G.; Sterne, J.A. Assessing risk of bias in a randomized trial. In Cochrane Handbook for Systematic Reviews of Interventions; Wiley: Hoboken, NJ, USA, 2019; pp. 205–228. [Google Scholar]
- Jonathan, A.C.S.; Jelena, S.; Matthew, J.P.; Roy, G.E.; Natalie, S.B.; Isabelle, B.; Christopher, J.C.; Hung-Yuan, C.; Mark, S.C.; Sandra, M.E.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Jonathan, A.C.S.; Miguel, A.H.; Barnaby, C.R.; Jelena, S.; Nancy, D.B.; Meera, V.; David, H.; Douglas, G.A.; Mohammed, T.A.; Isabelle, B.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Lim, W.X.J.; Gammon, C.S.; von Hurst, P.R.; Chepulis, L.; Mugridge, O.; Page, R.A. Hypoglycemic effects of antioxidant-rich plant extracts on postprandial glycemic responses in participants with prediabetes (GLARE study). Funct. Foods Health Dis. 2021, 11, 604–626. [Google Scholar] [CrossRef]
- Davies, S.E.; Marnewick, J.L.; West, S.; Taliep, M.S.; Rautenbach, F.; Gamieldien, R. The efficacy of rooibos Aspalathus linearis as an ergogenic aid during exercise. Int. J. Hum. Factors Ergon. 2019, 6, 88–102. [Google Scholar] [CrossRef]
- Breiter, T.; Laue, C.; Kressel, G.; Gröll, S.; Engelhardt, U.H.; Hahn, A. Bioavailability and antioxidant potential of rooibos flavonoids in humans following the consumption of different rooibos formulations. Food Chem. 2011, 128, 338–347. [Google Scholar] [CrossRef]
- Utter, A.C.; Quindry, J.C.; Emerenziani, G.P.; Valiente, J.S. Effects of rooibos tea, bottled water, and a carbohydrate beverage on blood and urinary measures of hydration after acute dehydration. Res. Sports Med. 2010, 18, 85–96. [Google Scholar] [CrossRef]
- Persson, I.A.; Persson, K.; Hägg, S.; Andersson, R.G. Effects of green tea, black tea and Rooibos tea on angiotensin-converting enzyme and nitric oxide in healthy volunteers. Public Health Nutr. 2010, 13, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Dludla, P.V.; Joubert, E.; Muller, C.J.F.; Louw, J.; Johnson, R. Hyperglycemia-induced oxidative stress and heart disease-cardioprotective effects of rooibos flavonoids and phenylpyruvic acid-2-O-β-D-glucoside. Nutr. Metab. 2017, 14, 45. [Google Scholar] [CrossRef] [PubMed]
- Annuzzi, G.; Bozzetto, L.; Costabile, G.; Giacco, R.; Mangione, A.; Anniballi, G.; Vitale, M.; Vetrani, C.; Cipriano, P.; Corte, G.D.; et al. Diets naturally rich in polyphenols improve fasting and postprandial dyslipidemia and reduce oxidative stress: A randomized controlled trial123. Am. J. Clin. Nutr. 2014, 99, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Mazibuko, S.E.; Muller, C.J.; Joubert, E.; de Beer, D.; Johnson, R.; Opoku, A.R.; Louw, J. Amelioration of palmitate-induced insulin resistance in C₂C₁₂ muscle cells by rooibos (Aspalathus linearis). Phytomedicine 2013, 20, 813–819. [Google Scholar] [CrossRef]
- Mikami, N.; Tsujimura, J.; Sato, A.; Narasada, A.; Shigeta, M.; Kato, M.; Hata, S.; Hitomi, E. Green Rooibos Extract from Aspalathus linearis, and its Component, Aspalathin, Suppress Elevation of Blood Glucose Levels in Mice and Inhibit α-amylase and α-glucosidase Activities in vitro. Food Sci. Technol. Res. 2015, 21, 231–240. [Google Scholar] [CrossRef]
- Patel, O.; Muller, C.J.F.; Joubert, E.; Rosenkranz, B.; Louw, J.; Awortwe, C. Aspalathin-rich green rooibos tea in combination with glyburide and atorvastatin enhances lipid metabolism in a db/db mouse model. Front. Clin. Diabetes Healthc. 2022, 3, 963489. [Google Scholar] [CrossRef]
- Webster, I.; Imperial, E.G.; Westcott, C.; Strijdom, H. The cardiovascular effects of Aspalathus linearis supplementation in male Wistar rats receiving fixed-dose combination first-line antiretroviral therapy. Cardiovasc. J. Afr. 2019, 30, 95–102. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- Pantsi, W.G.; Marnewick, J.L.; Esterhuyse, A.J.; Rautenbach, F.; van Rooyen, J. Rooibos (Aspalathus linearis) offers cardiac protection against ischaemia/reperfusion in the isolated perfused rat heart. Phytomedicine 2011, 18, 1220–1228. [Google Scholar] [CrossRef]
- Mihaylova, M.M.; Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 2011, 13, 1016–1023. [Google Scholar] [CrossRef]
- Kar, P.; Laight, D.; Rooprai, H.K.; Shaw, K.M.; Cummings, M. Effects of grape seed extract in Type 2 diabetic subjects at high cardiovascular risk: A double blind randomized placebo controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity. Diabet. Med. 2009, 26, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Sochorova, L.; Prusova, B.; Cebova, M.; Jurikova, T.; Mlcek, J.; Adamkova, A.; Nedomova, S.; Baron, M.; Sochor, J. Health Effects of Grape Seed and Skin Extracts and Their Influence on Biochemical Markers. Molecules 2020, 25, 5311. [Google Scholar] [CrossRef] [PubMed]
- Hasain, Z.; Che Roos, N.A.; Rahmat, F.; Mustapa, M.; Raja Ali, R.A.; Mokhtar, N.M. Diet and pre-intervention washout modifies the effects of probiotics on gestational diabetes mellitus: A comprehensive systematic review and meta-analysis of randomized controlled trials. Nutrients 2021, 13, 3045. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Consumer Acceptance toward Functional Foods: A Scoping Review. Int. J. Environ. Res. Public. Health 2022, 19, 1217. [Google Scholar] [CrossRef]
- Nehme, R.; Chervet, A.; Decombat, C.; Longechamp, L.; Rossary, A.; Boutin, R.; Rousset, A.; Senejoux, F.; Vachias, C.; Auxenfans, C.; et al. Aspalathus linearis (Rooibos) Targets Adipocytes and Obesity-Associated Inflammation. Nutrients 2023, 15, 1751. [Google Scholar] [CrossRef]
- Minné, D.; Stromin, J.; Docrat, T.; Engel-Hills, P.; Marnewick, J.L. The effects of tea polyphenols on emotional homeostasis: Understanding dementia risk through stress, mood, attention & sleep. Clin. Nutr. ESPEN 2023, 57, 77–88. [Google Scholar] [CrossRef]
- Debnath, S.; Levy, T.J.; Bellehsen, M.; Schwartz, R.M.; Barnaby, D.P.; Zanos, S.; Volpe, B.T.; Zanos, T.P. A method to quantify autonomic nervous system function in healthy, able-bodied individuals. Bioelectron. Med. 2021, 7, 13. [Google Scholar] [CrossRef]
- Urlacher, S.S.; Kim, E.Y.; Luan, T.; Young, L.J.; Adjetey, B. Minimally invasive biomarkers in human and non-human primate evolutionary biology: Tools for understanding variation and adaptation. Am. J. Hum. Biol. 2022, 34, e23811. [Google Scholar] [CrossRef]
Author (Year) | Aim | Study Design, Sample Size (n) and % Female | Age of Participants (Years) | Intervention and Comparator Groups | Data Collection Points and Markers Assessed | Main Findings |
---|---|---|---|---|---|---|
Chepulis et al. (2016) [24] | To measure the effects of antioxidant food extracts on postprandial glucose responses in healthy individuals | Crossover n = 10 100% female | Range: 19–43 Mean: 28 ± 4.2 | Study 1: Glucose 1. Green tea capsule (1 g) 2. Amla berry capsule (700 mg) 3. Propolis BIO100 capsule (400 mg) 4. Grape seed capsule (500 mg) 5. Rooibos (U or F not specified) capsule (≥30% polyphenols) 6. Control (50 g carbohydrate) Study 2: Bread and Ham 1. Green tea capsule (1 g) 2. Amla berry capsule (700 mg) 3. Propolis BIO100 capsule (400 mg) 4. Grape seed capsule (500 mg) 5. Rooibos (U or F not specified) capsule (≥30% polyphenols) 6. Control (50 g carbohydrate + 25 g of ham) | Baseline and every 15 min for 2 h post-consumption Markers: Blood glucose and iAUC | ↓↓ iAUC compared with glucose-only and white bread controls |
Lim et al. (2021) [31] | To investigate the acute effect of grape seed, rooibos tea and olive leaf extracts on postprandial blood glucose and insulin in participants with prediabetes | Crossover N = 19 74% female | Mean: 65 ± 1.6 | 1. Placebo (not specified) 2. Grape seed extract (40 g dry grape seed + 10 g fresh grape seed per capsule) 3. Unfermented rooibos tea extract (at least 485 mg total polyphenols per capsule) 4. Olive leaf extract (3.5 g fresh leaf suspended in olive oil + 264 mg polyphenols per capsule) Prediabetes subgroups 1. Healthier 2. Less healthy | Baseline 1 (10-min pre-capsule consumption); Baseline 2 (0-min pre OGGT); 15, 30, 45, 60, 90 and 120 min post-OGTT Markers: Serum glucose and insulin measures | ↔ glucose and insulin measures between all plant extracts and placebo; ↑ iAUCglucose in healthier subgroup and ↑ DI in less healthy subgroup |
Villaño et al. (2010) [15] | To assess the effect of drinking rooibos tea on TAC, lipid triacylglycerols, cholesterol and glycaemia plasma levels in humans | Crossover N = 15 Not specified | Mean: 33 ± 5 | 1. Group A (500 mL water) 2. Group B (500 mL fermented rooibos tea) 3. Group C (500 mL unfermented rooibos tea) | Time 0, 30, 60, 120 and 300 min post-ingestion Markers: Fasting BGL, TG, TC, uric acid, TRAP | ↔ TG, TC, uric acid; ↑ TRAP |
Davies et al. (2019) [32] | To investigate whether rooibos tea has an ergogenic effect during a fatiguing arm strength test | Crossover N = 32 0% female | Mean: 22.2 | 1. Fermented rooibos capsule (~340 mg polyphenols capsule) 2. Placebo capsule (not specified) | Five bouts of exercise Markers: Peak torque extension, peak torque flexion, total work extension and total work flexion | ↔ peak torque extension, peak torque flexion, total work extension, total work flexion |
Breiter et al. (2011) [33] | To identify the metabolites after administration of an aspalathin-rich, isolated active fraction and unfermented rooibos tea | Crossover N = 10 0% female | Range: 21–35 Mean: 25.3 | 1. Water (500 mL) 2. Unfermented rooibos tea (10 g rooibos extract in 500 mL water) 3. Isolated active fraction (500 mg isolated active fraction in 500 mL water) | Before consumption, 30, 60, 90, 120, 180, 300 and 480 min after consumption Marker: Serum antioxidant capacity | ↓ antioxidant capacity for all groups following ingestions of all treatment drinks; ↔ serum antioxidant levels between groups |
Utter et al. (2010) [34] | To evaluate the effects of rooibos tea, bottled water and a carbohydrate beverage on blood and urinary markers of hydration after acute dehydration in collegiate wrestlers | Crossover N = 23 0% female | Mean: 19.6 ± 0.3 | 1. Rooibos tea (6% or 60 g L−1)—U or F not specified 2. Regular bottled water (not specified) 3. Carbohydrate beverage (6% or 60 g L−1) | 1. Pre-dehydration 2. Post-dehydration 3. 1 h after rehydration Markers: Urine specific gravity, urine osmolarity, plasma osmolarity and plasma volume | ↔ in promoting rehydration |
Persson et al. (2010) [35] | To investigate the effect of green tea, black tea and rooibos tea on ACE and NO | Crossover N = 17 47% female | Range: 20–31 Mean: 26 | 1. 10 g green tea in 400 mL water 2. 10 g black tea in 400 mL water 3. 10 g rooibos tea in 400 mL water—U or F not specified | Data collected before tea consumption, 30, 60 and 180 min after tea consumption Markers: BP, HR, serum ACE activity and serum nitrite | ↓ ACE activity at 30-min and 60-min post consumption |
Marnewick et al. (2011) [19] | To investigate the effect of rooibos on biochemical and oxidative stress parameters in adults at risk for cardiovascular disease | Crossover N = 49 65% female | Mean: 46.8 ± 9.7 | 1. Fermented rooibos (six, 200 mL cups/day; one tea bag per cup) 2. Water (six, 200 mL cups/day) | 1. Washout 2. Post-rooibos consumption 3. Post-water consumption Markers: Serum markers of antioxidant activity and content (total polyphenols), lipid peroxidation, redox status, lipid profile, liver and kidney function and BP | ↔ antioxidant capacity; ↑ plasma total polyphenols, ↓ CDs; ↓↓↓ TBARS, gluathtione, GSH:GSSG, LDL-C and triacylglycerol; ↑↑↑ HDL-C |
Author (Year) | Randomisation | Carryover Effects | Assignment/Adherence to Intervention | Missing Outcome Data | Outcome Measurement | Selective Reporting | Overall Risk of Bias |
---|---|---|---|---|---|---|---|
Chepulis et al. (2016) [24] | Some concerns | Some concerns | Some concerns | Low | Low | Low | Some Concerns |
Villaño et al. (2010) [15] | Some concerns | Low | Low | Low | Low | Low | Some Concerns |
Persson et al. (2010) [35] | Some concerns | Some concerns | Some concerns | Low | Some concerns | Low | High |
Davies et al. (2019) [32] | Some concerns | Some concerns | Some concerns | Low | Some concerns | Low | High |
Breiter et al. (2011) [33] | Some concerns | Some concerns | Some concerns | Some concerns | Some concerns | Low | High |
Utter et al. (2010) [34] | Some concerns | Some concerns | Some concerns | Low | Some concerns | Low | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speer, K.E.; Marnewick, J.L.; Davies, S.E.H.; Turner, M.; Nikolova, V.L.; Day, R.; McKune, A.J.; Naumovski, N. The Effect of Rooibos Tea (Aspalathus linearis) Consumption on Human Health Outcomes: A Systematic Literature Review. Beverages 2024, 10, 113. https://doi.org/10.3390/beverages10040113
Speer KE, Marnewick JL, Davies SEH, Turner M, Nikolova VL, Day R, McKune AJ, Naumovski N. The Effect of Rooibos Tea (Aspalathus linearis) Consumption on Human Health Outcomes: A Systematic Literature Review. Beverages. 2024; 10(4):113. https://doi.org/10.3390/beverages10040113
Chicago/Turabian StyleSpeer, Kathryn E., Jeanine L. Marnewick, Simeon E. H. Davies, Murray Turner, Viktoriya L. Nikolova, Richard Day, Andrew J. McKune, and Nenad Naumovski. 2024. "The Effect of Rooibos Tea (Aspalathus linearis) Consumption on Human Health Outcomes: A Systematic Literature Review" Beverages 10, no. 4: 113. https://doi.org/10.3390/beverages10040113
APA StyleSpeer, K. E., Marnewick, J. L., Davies, S. E. H., Turner, M., Nikolova, V. L., Day, R., McKune, A. J., & Naumovski, N. (2024). The Effect of Rooibos Tea (Aspalathus linearis) Consumption on Human Health Outcomes: A Systematic Literature Review. Beverages, 10(4), 113. https://doi.org/10.3390/beverages10040113