Soil Nutrient Status and Morphometric Responses of Guava under Drip Irrigation and High-Tech Horticultural Techniques for Sustainable Farming
<p>Interactive effect of mulching in combination with drip irrigation and nutrient management on (<b>a</b>) increase in plant spread and canopy volume and (<b>b</b>) leaf area and number of flower/shoot of guava cv. VNR Bihi. M (mulch), M0 (no mulch); DI (drip irrigation level: 100% CPE, 80% CPE, 60% CPE); F (fertigation level: 100% RDF, 80% RDF, 60% RDF).</p> "> Figure 2
<p>Nutrient availability (NPK, kg/ha) influenced by mulching and fertigation system (pooled data of two-year experiment). M (mulch), M0 (no mulch); DI (drip irrigation level: 100% CPE, 80% CPE, 60% CPE); F (fertigation level 100% RDF, 80% RDF, 60% RDF).</p> "> Figure 3
<p>Pearson’s correlation of plant growth response, fruit yield, and soil properties, as augmented by management practices (<span class="html-italic">p</span> < 0.05, <span class="html-italic">n</span> = 76). DHD (dehydrogenase); Avl N (available nitrogen); Avl P (available phosphorus); Avl K (available potassium); SOC (soil organic carbon); LA (leaf area); CS (canopy spread). <span class="html-fig-inline" id="hydrology-09-00151-i001"> <img alt="Hydrology 09 00151 i001" src="/hydrology/hydrology-09-00151/article_deploy/html/images/hydrology-09-00151-i001.png"/></span> strong positive correlation; <span class="html-fig-inline" id="hydrology-09-00151-i002"> <img alt="Hydrology 09 00151 i002" src="/hydrology/hydrology-09-00151/article_deploy/html/images/hydrology-09-00151-i002.png"/></span> negative or no correlation; <span class="html-fig-inline" id="hydrology-09-00151-i003"> <img alt="Hydrology 09 00151 i003" src="/hydrology/hydrology-09-00151/article_deploy/html/images/hydrology-09-00151-i003.png"/></span> weak positive correlation.</p> "> Figure 4
<p>Correlation of soil properties as augmented by management practices with fruit yield (<span class="html-italic">p</span> < 0.05, <span class="html-italic">n</span> = 76).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Details
2.2. Experimental Design with Treatment Details
2.3. Observations and Laboratory Analyses
2.4. Statistical Analyses
3. Results
3.1. Growth Dynamics
3.2. Fruit Yield
3.2.1. Soil Organic Carbon and Dehydrogenate Activity
3.2.2. Nutrient Availability
4. Discussion
4.1. Plant Growth and Yield Response
4.2. Soil Health
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parvez, G.M.; Shakib, U.; Khokon, M.A.; Sanzia, M. A short review on a nutritional fruit: Guava. Open Access Toxicol. Res. 2018, 1, 1–8. [Google Scholar]
- Vijaya, A.A.; Velayuthaprabhu, S.; Rengarajan, R.L.; Sampathkumar, P.; Radhakrishnan, R. Bioactive Compounds of Guava (Psidium guajava L.). In Bioactive Compounds in Underutilized Fruits and Nuts; Springer International Publishing: Cham, Switzerland, 2020; pp. 503–527. [Google Scholar]
- Saxena, M.; Rathore, R.P.S.; Gupta, R.P.; Bhargav, H.; Thakur, B. Horticultural Statistics at a Glance. Horticulture Statistics division, Department of Agriculture. In Cooperation & Farmers Welfare, Ministry of Agriculture & Farmers Welfare, Government of India. 2018. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjLtZyP8dv5AhULv5QKHaSmBroQFnoECAMQAQ&url=https%3A%2F%2Fagricoop.nic.in%2Fsites%2Fdefault%2Ffiles%2FHorticulture%2520Statistics%2520at%2520a%2520Glance-2018.pdf&usg=AOvVaw0zG88g0I6lWc8epxZVGYNB (accessed on 15 June 2022).
- Singh, H.P.; Singh, G. Nutrient and Water Management in Guava. In I International Guava Symposium; International Society for Horticultural Science. 2005, Volume 735, pp. 389–397. Available online: https://www.ishs.org/ishs-article/735_55 (accessed on 15 June 2022).
- Crisostomo, L.A.; Naumov, A. Fertilizing for high yield and quality: Tropical fruits of Brazil. In International Institute Potash; CHE: Horgen, Switzerland, 2007. [Google Scholar]
- Singh, P.; Singh, A.K.; Sahu, K. Irrigation and fertigation of pomegranate cv. Ganesh in Chhattisgarh. Indian J. Hortic. 2006, 63, 148–151. [Google Scholar]
- Pramanik, S.; Patra, S.K. Influence of fertigation on fruit yield, water use and distribution efficiency and economics of guava (Psidium guajava L.). J. Soil Water Conserv. 2014, 13, 164–169. [Google Scholar]
- Tiwari, K.N.; Kumar, M.; Santosh, D.T.; Singh, V.K.; Maji, M.K. Influence of Drip Irrigation and Plastic Mulch on Yield of Sapota (Achraszapota) and Soil Nutrients. Irrig. Drain. Syst. Eng. 2014, 3, 116. [Google Scholar] [CrossRef]
- Bisbis, M.B.; Gruda, N.; Blanke, M. Potential impacts of climate change on vegetable production and product quality—A review. J. Clean. Prod. 2018, 170, 1602–1620. [Google Scholar] [CrossRef]
- Raina, J.N. Drip irrigation and fertigation: Prospects and retrospects in temperate fruit production. In Enhancement of Temperate Fruit Production; Jindal, K.K., Gautam, D.R., Eds.; Dr. Yashwant Singh Parmar University of Horticulture and Forestry: Solan, India, 2002; pp. 296–301. [Google Scholar]
- Veeraputhiram, R.; Kandasamy, O.S.; Singh, S.D.S.; Chinnusamy, C. Influence of drip irrigation and nitrogen fertigation on growth and yield of hybrid cotton. J. Ecobiol. 2005, 17, 329–335. [Google Scholar]
- Badr, M.A.; Abou Hussein, S.D.; El-Tohamy, W.A.; Gruda, N. Efficiency of subsurface drip irrigation for potato production under different dry stress conditions. Gesunde Pflanz. 2010, 62, 63–70. [Google Scholar] [CrossRef]
- Saleh, S.A.; El-Shal, Z.S.; Fawzy, Z.S.; El-Bassiony, A.M. Effect of water amounts on artichoke productivity irrigated with brackish water. Aust. J. Basic Appl. Sci. 2012, 6, 54–61. [Google Scholar]
- Panigrahi, P.; Raychaudhuri, S.; Thakur, A.K.; Nayak, A.K.; Sahu, P.; Ambast, S.K. Automatic drip irrigation scheduling effects on yield and water productivity of banana. Sci. Hortic. 2019, 257, 108677. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, I.P.; Raina, J.N. Effect of levels and application methods of irrigation and mulch materials on strawberry production in north-west Himalayas. J. Indian Soc. Soil Sci. 2005, 53, 60–65. [Google Scholar]
- Preet, M.S.; Kumar, R.; Singh, V.P.; Kumar, J.; Singh, A.K.; Chand, S. Effect of plastic mulch, drip irrigation and fertigation on vegetative growth and chemical attributes of guava in Tarai region. Int. J. Chem. Stud. 2019, 7, 214–218. [Google Scholar] [CrossRef]
- Preet, M.S.; Kumar, R.; Singh, V.P.; Dongariyal, A.; Srivastava, R. Response of guava to integrated nutrient and water management. Indian J. Hortic. 2021, 78, 189–197. [Google Scholar] [CrossRef]
- Vermeiren, L.; Jobling, G.A. Localized irrigation design, installation, operation, evaluation. Estud. FAO Irrig. Drain. Pap. 1984, 36, 10–11. [Google Scholar]
- Westwood, M.N. Temperate Zone Pomology, Physiology and Culture, 3rd ed.; Timber Press, Inc.: Portland, OR, USA, 1993. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the different method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1934, 63, 251–263. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for estimation of available nitrogen in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (No. 939); US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Schollenberger, C.J.; Simon, R.H. Determination of exchange capacity and exchangeable bases in soil—Ammonium acetate method. Soil Sci. 1945, 59, 13–24. [Google Scholar] [CrossRef]
- Casida, L.E.; Klein, D.A.; Santoro, T. Soil Dehydrogenase Activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- Kavino, M.; Kumar, N.; Soorianath Sundaram, K.; Jeyakumar, P. Effect of source of fertilisers for fertigation on yield and quality of banana cv. obusta (AAA). South Indian Hortic. 2002, 50, 301–307. [Google Scholar]
- Mahalakshmi, M.; Kumar, N.; Jeyakumar, P.; Sivapathasundaram, K. Fertigation studies in banana under normal system of planting. South Indian Hortic. 2001, 49, 80–83. [Google Scholar]
- Ramniwas Kaushik Sarolia, D.K.; Pareek, S.; Singh, V. Effect of irrigation and fertigation scheduling on growth and yield of guava (Psidium guajava L.) under meadow orcharding. Afr. J. Agric. Res. 2012, 7, 6350–6356. [Google Scholar] [CrossRef]
- Khan, J.N.; Jain, A.K.; Sharda, R.; Singh, N.; Gill, P.S.; Kaur, S. Growth, yield and nutrient uptake of guava (Psidium guavaja L.) affected by soil matric potential, fertigation and mulching under drip irrigation. Agric. Eng. Int. CIGR J. 2013, 15, 17–28. [Google Scholar]
- Kumawat, K.L.; Sarolia, D.K.; Kaushik, R.A.; Jodha, A.S. Effect of irrigation and fertigation scheduling on growth, flowering, yield and economics of guava cv. Lalit under ultra-high density planting system. Hortic. Soc. India 2017, 74, 362–368. [Google Scholar]
- Biswas, T.; Bandyopadhyay, P.K.; Nandi, R.; Mukherjee, S.; Kundu, A.; Reddy, P.; Kumar, P. Impact of mulching and nutrients on soil water balance and actual evapotranspiration of irrigated winter cabbage (Brassica oleracea var. capitata L.). Agric. Water Manag. 2022, 263, 107456. [Google Scholar] [CrossRef]
- Takahashi, H.; Shennan, C.; Huffaker, R.C. Agronomical and physiological studies on zinc deficiency in crop plants. 2. Effect of zinc concentration in nutrient solution and shading on growth, N content and nitrate reductase activity in tomato. Nettai Nogyo 1993, 37, 22–27. [Google Scholar]
- Sarıdaş, M.A.; Kapur, B.; Çeliktopuz, E.; Şahiner, Y.; Kargı, S.P. Land productivity, irrigation water use efficiency and fruit quality under various plastic mulch colors and irrigation regimes of strawberry in the eastern Mediterranean region of Turkey. Agric. Water Manag. 2021, 245, 106568. [Google Scholar] [CrossRef]
- Sharma, U.K.; Meshram, K.S. Evaluate the effect of mulches on soil temperature, soil moisture level and yield of capsicum (Capsicum annuum) under drip irrigation system. Int. J. Agric. Eng. 2015, 8, 54–59. [Google Scholar] [CrossRef]
- Ma, D.; Chen, L.; Qu, H.; Wang, Y.; Misselbrook, T.; Jiang, R. Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in North-western China: A meta-analysis. Agric. Water Manag. 2020, 202, 166–173. [Google Scholar] [CrossRef]
- Kotur, S.C. Changes in the spatial root activity distribution and placement of superphosphate for maximum absorption as influenced by age of trees of cv. Arka Mridula (Psidium guajava L.). Acta Hortcult. 2007, 735, 413–418. [Google Scholar] [CrossRef]
- Liu, J.; Bu, L.; Zhu, L. Optimizing plant density and plastic film mulch to increase maize productivity and water-Use efficiency in semiarid areas. Agron. J. 2014, 106, 1138–1146. [Google Scholar] [CrossRef]
- Tank, R.V.; Patel, N.L. Influence of fertigation on yield and nutrient status in soil and leaf of papaya (Carica papaya L.) var. Madhu Bindu under south Gujarat condition. Asian J. Hortic. 2013, 8, 170–173. [Google Scholar]
- Muñoz, K.; Thiele-Bruhn, S.; Kenngott, K.G.J.; Meyer, M.; Diehl, D.; Steinmetz, Z.; Schaumann, G.E. Effects of Plastic versus Straw Mulching Systems on Soil Microbial Community Structure and Enzymes in Strawberry Cultivation. Soil Syst. 2022, 6, 21. [Google Scholar] [CrossRef]
- Stepniewska, Z.; Wolinska, A. Soil dehydrogenase activity in the presence of chromium (III) and (VI). Int. Agrophys. 2005, 19, 79–83. [Google Scholar]
- Luo, P.; Han, H.; Wang, Y.; Han, M.; Shi, H.; Liu, N.; Bai, H. Influence of long-term fertilization on soil microbial biomass, dehydrogenase activity, and bacterial and fungal community structure in a brown soil of northeast China. Ann. Microbiol. 2015, 65, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.V.; Sousa, P.L.; Smith, R.E. Model simulation of water and nitrate movement in a level basin under fertigation treatments. Agric. Water Manag. 1997, 32, 293–306. [Google Scholar] [CrossRef]
- Bangar, A.R.; Chaudhari, B.C. Nutrient mobility in soil, uptake, quality and yield of Suru sugarcane as influenced by drip fertigation in medium vertisols. J. Indian Soc. Soil Sci. 2004, 52, 164–171. [Google Scholar]
- Bacon, P.E.; Davey, B.G. Nutrient availability under trickle irrigation: II. Mineral Nitrogen 1. Soil Sci. Soc. Am. J. 1982, 46, 987–993. [Google Scholar] [CrossRef]
- Klein, I.; Meimon, A.; Skedi, D. Drip nitrogen, phosphorus, and potassium fertigation of ‘Spadona’ Pear. J. Plant Nutr. 1999, 22, 489–499. [Google Scholar] [CrossRef]
- Kumar, P.; Suman, S.; Spehia, R.S.; Kumar, V.; Kaith, N.S. Studies on method and rate of fertilizer application in apple under mulch in north-western Himalayas. J. Plant Nutr. 2016, 39, 219–226. [Google Scholar] [CrossRef]
- Bindra, M. Effect of Drip Fertigation and Mulch on Soil Nutrient Status and Growth Parameters of Apricot (Prunus Armeniaca) cv. Harcot. Ph.D. Thesis, Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India, 2012. [Google Scholar]
- Pramanik, S.; Lai, S.; Ray, R.; Patra, S.K. Effect of drip fertigation on yield, water use efficiency, and nutrients availability in banana in West Bengal, India. Commun. Soil Sci. Plant Anal. 2016, 47, 1691–1700. [Google Scholar] [CrossRef]
- Campos, O.; Paredes, F.; Rey, J.; Lobo, D.; Galvis-Causil, S. The relationship between the normalized difference vegetation index, rainfall, and potential evapotranspiration in a banana plantation of Venezuela. Sains Tanah. J. Soil Sci. Agroclimatol. 2021, 18, 58–64. [Google Scholar] [CrossRef]
- Olivares, B.; Rey, J.C.; Lobo, D.; Navas-Cortés, J.A.; Gómez, J.A.; Landa, B.B. Fusarium Wilt of Bananas: A Review of Agro-Environmental Factors in the Venezuelan Production System Affecting Its Development. Agronomy 2021, 11, 986. [Google Scholar] [CrossRef]
- Araya-Alman, M.; Acevedo-Opazo, C.; Rey, J.C.; Lobo, D.; Navas-Cortés, J.A.; Gómez, J.A.; Landa, B.B.; Orlando, O. Relationship Between Soil Properties and Banana Productivity in the Two Main Cultivation Areas in Venezuela. J. Soil Sci. Plant Nutr. 2020, 20, 2512–2524. [Google Scholar] [CrossRef]
- Calero, J.; Rey, J.C.; Lobo, D.; Landa, B.B.; Gómez, J.A. Correlation of banana productivity levels and soil morphological properties using regularized optimal scaling regression. Catena 2022, 208, 105718. [Google Scholar] [CrossRef]
- Olivares, B.; Hernández, R. Application of multivariate techniques in the agricultural land’s aptitude in Carabobo, Venezuela. Trop. Subtrop. Agroecosyst. 2020, 23, 2. Available online: https://n9.cl/zeedh (accessed on 15 June 2022).
- Montenegro, E.; Pitti, J.; Orlando, B. Identification of the main subsistence crops of Teribe: A case study based on multivariate techniques. Idesia 2021, 39, 83–94. [Google Scholar] [CrossRef]
- Pitti, J.; Olivares, B.; Montenegro, E. The role of agriculture in the Changuinola District: A case of applied economics in Panama. Trop. Subtrop. Agroecosyst. 2021, 25, 1–11. Available online: https://n9.cl/quyl2 (accessed on 15 June 2022).
- Orlando, B.; Pitti, J.; Montenegro, E. Socioeconomic characterization of Bocas del Toro in Panama: An application of multivariate techniques. Rev. Bras. De Gest. E Desenvolv. Reg. 2020, 16, 59–71. [Google Scholar] [CrossRef]
- Valipour, M.; Guzmán, S.M. Identification of the Meteorological Variables Influencing Evapotranspiration Variability Over Florida. Environ. Model. Assess. 2022, 27, 645–663. [Google Scholar] [CrossRef]
- Valipour, M. Calibration of mass transfer-based models to predict reference crop evapotranspiration. Appl. Water Sci. 2017, 7, 625–635. [Google Scholar] [CrossRef]
- Angelakis, A.N.; Valipour, M.; Dietrich, J.; Voudouris, K.; Kumar, R.; Salgot, M.; Mahmoudian, S.A.; Rontogianni, A.; Tsoutsos, T. Sustainable and Regenerative Development of Water Mills as an Example of Agricultural Technologies for Small Farms. Water 2022, 14, 1621. [Google Scholar] [CrossRef]
Serial No. | Treatment | Treatment Details |
---|---|---|
1 | MDI1F1 | Mulch + 100% CPE + 100% RDF |
2 | MDI1F2 | Mulch + 100% CPE + 80% RDF |
3 | MDI1F3 | Mulch + 100% CPE + 60% RDF |
4 | MDI2F1 | Mulch + 80% CPE + 100% RDF |
5 | MDI2F2 | Mulch + 80% CPE + 80% RDF |
6 | MDI2F3 | Mulch + 80% CPE + 60% RDF |
7 | MDI3F1 | Mulch + 60% CPE + 100% RDF |
8 | MDI3F2 | Mulch + 60% CPE + 80% RDF |
9 | MDI3F3 | Mulch + 60% CPE + 60% RDF |
10 | M0DI1F1 | No Mulch + 100% CPE + 100% RDF |
11 | M0DI1F2 | No Mulch + 100% CPE + 80% RDF |
12 | M0DI1F3 | No Mulch + 100% CPE + 60% RDF |
13 | M0DI2F1 | No Mulch + 80% CPE + 100% RDF |
14 | M0DI2F2 | No Mulch + 80% CPE + 80% RDF |
15 | M0DI2F3 | No Mulch + 80% CPE + 60% RDF |
16 | M0DI3F1 | No Mulch + 60% CPE +100% RDF |
17 | M0DI3F2 | No Mulch + 60% CPE + 80% RDF |
18 | M0DI3F3 | No Mulch + 60% CPE + 60% RDF |
19 | Control | Conventional system (CS) + 100% RDF |
Treatments | Increase in Plant Spread (%) | Increase in Canopy Volume (%) | Leaf Area (cm2) | Number of Flowers/Shoot | Fruit Yield (kg/plant) |
---|---|---|---|---|---|
Control | |||||
M | 25.34 | 32.69 | 72.51 | 35.92 | 44.36 |
M0 | 21.53 | 26.02 | 67.39 | 30.09 | 40.42 |
SE(m) | 1.03 | 0.53 | 0.22 | 0.3 | 0.12 |
C.D. at 5% | 2.94 | 1.52 | 0.63 | 0.87 | 0.34 |
DI1 | 20.96 | 29.31 | 70.25 | 33.17 | 42.33 |
DI2 | 26.92 | 32.27 | 71.79 | 34.61 | 43.9 |
DI3 | 22.43 | 26.49 | 67.81 | 31.23 | 40.94 |
SE(m) | 1.26 | 0.65 | 0.27 | 0.37 | 0.15 |
C.D. at 5% | 3.6 | 1.87 | 0.77 | 1.06 | 0.42 |
F1 | 25.44 | 32.74 | 72.59 | 35.48 | 45.2 |
F2 | 25.18 | 30.62 | 70.5 | 30.48 | 42.38 |
F3 | 19.7 | 24.71 | 66.76 | 27.74 | 39.58 |
SE(m) | 1.26 | 0.65 | 0.27 | 0.37 | 0.14 |
C.D. at 5% | 3.6 | 1.87 | 0.78 | 1.06 | 0.41 |
Treatments | SOC (g/kg Soil) | Dehydrogenase Activity (µg TPF/g/24 h) | Nutrient Availability (kg/ha) | ||
---|---|---|---|---|---|
Nitrogen | Phosphorus | Potassium | |||
Control | 77 | 161.6 | 159.9 | 28.66 | 171.95 |
M | 76 | 295.4 | 201.64 | 46.91 | 237.85 |
M0 | 78 | 207.7 | 180.91 | 36.59 | 207.65 |
SE(m) | 0.03 | 1.3 | 2.05 | 0.74 | 1.08 |
C.D. at 5% | 0.09 | 3.6 | 5.82 | 2.1 | 3.06 |
DI1 | 77 | 251.9 | 190.56 | 41.98 | 206.25 |
DI2 | 77 | 263.7 | 198.15 | 45.27 | 210.82 |
DI3 | 76 | 239 | 185.11 | 38 | 119.85 |
SE(m) | 0.04 | 1.6 | 2.51 | 0.9 | 1.32 |
C.D. at 5% | NS | 4.4 | 7.12 | 2.57 | 3.75 |
F1 | 78 | 254.2 | 203.03 | 47.73 | 242.19 |
F2 | 77 | 261.6 | 193.09 | 43.22 | 223.09 |
F3 | 76 | 238.9 | 177.7 | 34.3 | 202.97 |
SE(m) | 0.01 | 1.6 | 2.51 | 0.9 | 1.32 |
C.D. at 5% | 0.04 | 4.1 | 7.12 | 2.57 | 3.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Preet, M.S.; Kumar, R.; Valipour, M.; Singh, V.P.; Neha; Singh, A.K.; Iqbal, R.; Zafar, M.U.; Sharma, R.; Singh, S.V.; et al. Soil Nutrient Status and Morphometric Responses of Guava under Drip Irrigation and High-Tech Horticultural Techniques for Sustainable Farming. Hydrology 2022, 9, 151. https://doi.org/10.3390/hydrology9090151
Preet MS, Kumar R, Valipour M, Singh VP, Neha, Singh AK, Iqbal R, Zafar MU, Sharma R, Singh SV, et al. Soil Nutrient Status and Morphometric Responses of Guava under Drip Irrigation and High-Tech Horticultural Techniques for Sustainable Farming. Hydrology. 2022; 9(9):151. https://doi.org/10.3390/hydrology9090151
Chicago/Turabian StylePreet, Manpreet Singh, Rajesh Kumar, Mohammad Valipour, Vijay Pratap Singh, Neha, Ashok Kumar Singh, Rashid Iqbal, Muhammad Umar Zafar, Rashmi Sharma, Shiv Vendra Singh, and et al. 2022. "Soil Nutrient Status and Morphometric Responses of Guava under Drip Irrigation and High-Tech Horticultural Techniques for Sustainable Farming" Hydrology 9, no. 9: 151. https://doi.org/10.3390/hydrology9090151
APA StylePreet, M. S., Kumar, R., Valipour, M., Singh, V. P., Neha, Singh, A. K., Iqbal, R., Zafar, M. U., Sharma, R., Singh, S. V., Kumari, A., Minkina, T., Soufan, W., Faraj, T. K., Ditta, A., & Sabagh, A. E. (2022). Soil Nutrient Status and Morphometric Responses of Guava under Drip Irrigation and High-Tech Horticultural Techniques for Sustainable Farming. Hydrology, 9(9), 151. https://doi.org/10.3390/hydrology9090151