The Use of Unmanned Aerial Systems for River Monitoring: A Bibliometric Analysis Covering the Last 25 Years
<p>Annual scientific production of UAS monitoring in rivers during the last 25 years.</p> "> Figure 2
<p>Geographical distribution map of countries’ scientific production in publishing papers on UAS monitoring in rivers, and country collaboration network map (brown lines) from 1999 to 2023. Darker blue colour means more scientific production.</p> "> Figure 3
<p>Network map of the 50 most frequently used author keywords in documents on UAS monitoring in rivers from 1999 to 2023. Different colours represent different clusters. The size of the box (and the keyword in question) represents the number of times that the keyword appeared within the database.</p> ">
Abstract
:1. Introduction
1.1. River Flow Velocity
1.2. River Morphology and Bathymetry
1.3. Water Levels
1.4. River Discharge
1.5. Flood Monitoring
1.6. River Water Quality and Pollution
2. Materials and Methods
2.1. Search Strategy and Data Extraction
2.2. Data Analyses
3. Results
3.1. Publication Analysis Based on Numbers
3.2. Publication Analysis Based on Journals
3.3. Publication Analysis Based on Countries/Regions and Institutions
3.4. Publication Analysis Based on Citations
3.5. Publication Analysis Based on Term Frequency
4. Discussion
5. Conclusions
- Rapid Growth: The field has experienced exponential growth, with a significant increase in publications, particularly in the last decade.
- Global Collaboration: International collaboration is a prominent feature, with researchers from different countries actively contributing to this interdisciplinary field.
- Journal Information: High-impact journals in water resources, physical geography, remote sensing, and environmental sciences are the primary outlets for UAS monitoring research.
- Country Contributions: China, the USA, and Italy are leading in both publications and intra-country collaborations. Productive authors from various countries have contributed significantly to this research area, often through multi-authored publications.
- Keyword Themes: Author keywords such as “river”, “topography”, “photogrammetry”, and “Structure-from-Motion” outline the core themes of UAS monitoring research.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pearce, S.; Ljubičić, R.; Peña-Haro, S.; Perks, M.; Tauro, F.; Pizarro, A.; Dal Sasso, S.F.; Strelnikova, D.; Grimaldi, S.; Maddock, I.; et al. An Evaluation of Image Velocimetry Techniques under Low Flow Conditions and High Seeding Densities Using Unmanned Aerial Systems. Remote Sens. 2020, 12, 232. [Google Scholar] [CrossRef]
- Pizarro, A.; Sasso, S.F.D.; Manfreda, S. Refining Image-Velocimetry Performances for Streamflow Monitoring: Seeding Metrics to Errors Minimization. Hydrol. Process. 2020, 34, 5167–5175. [Google Scholar] [CrossRef]
- Pizarro, A.; Dal Sasso, S.F.; Perks, M.T.; Manfreda, S. Identifying the Optimal Spatial Distribution of Tracers for Optical Sensing of Stream Surface Flow. Hydrol. Earth Syst. Sci. 2020, 24, 5173–5185. [Google Scholar] [CrossRef]
- Dal Sasso, S.F.; Pizarro, A.; Pearce, S.; Maddock, I.; Manfreda, S. Increasing LSPIV Performances by Exploiting the Seeding Distribution Index at Different Spatial Scales. J. Hydrol. 2021, 598, 126438. [Google Scholar] [CrossRef]
- Manfreda, S.; Sasso, S.F.D.; Pizarro, A.; Tauro, F. New Insights Offered by UAS for River Monitoring. In Applications of Small Unmanned Aircraft Systems; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-0-429-24411-7. [Google Scholar]
- Ljubičić, R.; Strelnikova, D.; Perks, M.T.; Eltner, A.; Peña-Haro, S.; Pizarro, A.; Dal Sasso, S.F.; Scherling, U.; Vuono, P.; Manfreda, S. A Comparison of Tools and Techniques for Stabilising UAS Imagery for Surface Flow Observations. Hydrol. Earth Syst. Sci. Discuss. 2021, 25, 5105–5132. [Google Scholar] [CrossRef]
- Perks, M.T.; Dal Sasso, S.F.; Hauet, A.; Jamieson, E.; Le Coz, J.; Pearce, S.; Peña-Haro, S.; Pizarro, A.; Strelnikova, D.; Tauro, F.; et al. Towards Harmonisation of Image Velocimetry Techniques for River Surface Velocity Observations. Earth Syst. Sci. Data 2020, 12, 1545–1559. [Google Scholar] [CrossRef]
- Tauro, F.; Grimaldi, S. Ice Dices for Monitoring Stream Surface Velocity. J. Hydro-Environ. Res. 2017, 14, 143–149. [Google Scholar] [CrossRef]
- Tauro, F.; Tosi, F.; Mattoccia, S.; Toth, E.; Piscopia, R.; Grimaldi, S. Optical Tracking Velocimetry (OTV): Leveraging Optical Flow and Trajectory-Based Filtering for Surface Streamflow Observations. Remote Sens. 2018, 10, 2010. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Dietrich, J.T. Bathymetric Structure-from-Motion: Extracting Shallow Stream Bathymetry from Multi-View Stereo Photogrammetry. Earth Surf. Process. Landf. 2017, 42, 355–364. [Google Scholar] [CrossRef]
- Hemmelder, S.; Marra, W.; Markies, H.; De Jong, S.M. Monitoring River Morphology & Bank Erosion Using UAV Imagery—A Case Study of the River Buëch, Hautes-Alpes, France. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 428–437. [Google Scholar] [CrossRef]
- Casado, M.R.; Gonzalez, R.B.; Kriechbaumer, T.; Veal, A. Automated Identification of River Hydromorphological Features Using UAV High Resolution Aerial Imagery. Sensors 2015, 15, 27969–27989. [Google Scholar] [CrossRef]
- García, M.; Alcayaga, H.; Pizarro, A. Automatic Segmentation of Water Bodies Using RGB Data: A Physically Based Approach. Remote Sens. 2023, 15, 1170. [Google Scholar] [CrossRef]
- Kröhnert, M.; Meichsner, R. Segmentation of Environmental Time Lapse Image Sequences for the Determination of Shore Lines Captured by Hand-Held Smartphone Cameras. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 1–8. [Google Scholar] [CrossRef]
- Moramarco, T.; Corato, G.; Melone, F.; Singh, V.P. An Entropy-Based Method for Determining the Flow Depth Distribution in Natural Channels. J. Hydrol. 2013, 497, 176–188. [Google Scholar] [CrossRef]
- Arshad, B.; Ogie, R.; Barthelemy, J.; Pradhan, B.; Verstaevel, N.; Perez, P. Computer Vision and IoT-Based Sensors in Flood Monitoring and Mapping: A Systematic Review. Sensors 2019, 19, 5012. [Google Scholar] [CrossRef]
- Albertini, C.; Gioia, A.; Iacobellis, V.; Manfreda, S. Detection of Surface Water and Floods with Multispectral Satellites. Remote Sens. 2022, 14, 6005. [Google Scholar] [CrossRef]
- Eltner, A.; Kaiser, A.; Castillo, C.; Rock, G.; Neugirg, F.; Abellán, A. Image-Based Surface Reconstruction in Geomorphometry – Merits, Limits and Developments. Earth Surf. Dyn. 2016, 4, 359–389. [Google Scholar] [CrossRef]
- Geraeds, M.; van Emmerik, T.; de Vries, R.; bin Ab Razak, M.S. Riverine Plastic Litter Monitoring Using Unmanned Aerial Vehicles (UAVs). Remote Sens. 2019, 11, 2045. [Google Scholar] [CrossRef]
- van Lieshout, C.; van Oeveren, K.; van Emmerik, T.; Postma, E. Automated River Plastic Monitoring Using Deep Learning and Cameras. Earth Space Sci. 2020, 7, e2019EA000960. [Google Scholar] [CrossRef]
- Gonçalves, G.; Andriolo, U.; Pinto, L.; Bessa, F. Mapping Marine Litter Using UAS on a Beach-Dune System: A Multidisciplinary Approach. Sci. Total Environ. 2020, 706, 135742. [Google Scholar] [CrossRef]
- Zeng, C.; Richardson, M.; King, D.J. The Impacts of Environmental Variables on Water Reflectance Measured Using a Lightweight Unmanned Aerial Vehicle (UAV)-Based Spectrometer System. ISPRS J. Photogramm. Remote Sens. 2017, 130, 217–230. [Google Scholar] [CrossRef]
- Flores, H.; Lorenz, S.; Jackisch, R.; Tusa, L.; Contreras, I.C.; Zimmermann, R.; Gloaguen, R. UAS-Based Hyperspectral Environmental Monitoring of Acid Mine Drainage Affected Waters. Minerals 2021, 11, 182. [Google Scholar] [CrossRef]
- Dal Sasso, S.F.; Pizarro, A.; Manfreda, S. Recent Advancements and Perspectives in UAS-Based Image Velocimetry. Drones 2021, 5, 81. [Google Scholar] [CrossRef]
- Manfreda, S.; Eyal, B.D. Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments. 2023. Available online: https://www.sciencedirect.com/book/9780323852838/unmanned-aerial-systems-for-monitoring-soil-vegetation-and-riverine-environments#book-info (accessed on 11 April 2024).
- Manfreda, S.; Miglino, D.; Saddi, K.C.; Jomaa, S.; Eltner, A.; Perks, M.; Peña-Haro, S.; Bogaard, T.; van Emmerik, T.H.; Mariani, S. Advancing River Monitoring Using Image-Based Techniques: Challenges and Opportunities. Hydrol. Sci. J. 2024, 69, 657–677. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Tamminga, A.; Hugenholtz, C.; Eaton, B.; Lapointe, M. Hyperspatial Remote Sensing of Channel Reach Morphology and Hydraulic Fish Habitat Using an Unmanned Aerial Vehicle (UAV): A First Assessment in the Context of River Research and Management. River Res. Appl. 2015, 31, 379–391. [Google Scholar] [CrossRef]
- Cook, K.L. An Evaluation of the Effectiveness of Low-Cost UAVs and Structure from Motion for Geomorphic Change Detection. Geomorphology 2017, 278, 195–208. [Google Scholar] [CrossRef]
- Dietrich, J.T. Riverscape Mapping with Helicopter-Based Structure-from-Motion Photogrammetry. Geomorphology 2016, 252, 144–157. [Google Scholar] [CrossRef]
- Dunford, R.; Michel, K.; Gagnage, M.; Piégay, H.; Trémelo, M.-L. Potential and Constraints of Unmanned Aerial Vehicle Technology for the Characterization of Mediterranean Riparian Forest. Int. J. Remote Sens. 2009, 30, 4915–4935. [Google Scholar] [CrossRef]
- Tauro, F.; Petroselli, A.; Arcangeletti, E. Assessment of Drone-based Surface Flow Observations. Hydrol. Process. 2016, 30, 1114–1130. [Google Scholar] [CrossRef]
- Coveney, S.; Roberts, K. Lightweight UAV Digital Elevation Models and Orthoimagery for Environmental Applications: Data Accuracy Evaluation and Potential for River Flood Risk Modelling. Int. J. Remote Sens. 2017, 38, 3159–3180. [Google Scholar] [CrossRef]
- Tomsett, C.; Leyland, J. Remote Sensing of River Corridors: A Review of Current Trends and Future Directions. River Res. Appl. 2019, 35, 779–803. [Google Scholar] [CrossRef]
- Koutalakis, P.; Tzoraki, O.; Zaimes, G. UAVs for Hydrologic Scopes: Application of a Low-Cost UAV to Estimate Surface Water Velocity by Using Three Different Image-Based Methods. Drones 2019, 3, 14. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, C.; Yang, S.; Liu, C.; Xiang, H.; Sun, Y.; Yang, Z.; Zhang, Y.; Yu, X.; Shao, N. Calculating E-Flow Using UAV and Ground Monitoring. J. Hydrol. 2017, 552, 351–365. [Google Scholar] [CrossRef]
- Michez, A.; Piégay, H.; Lisein, J.; Claessens, H.; Lejeune, P. Classification of Riparian Forest Species and Health Condition Using Multi-Temporal and Hyperspatial Imagery from Unmanned Aerial System. Environ. Monit. Assess. 2016, 188, 146. [Google Scholar] [CrossRef] [PubMed]
- Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic Structure from Motion: A New Development in Photogrammetric Measurement. Earth Surf. Process. Landf. 2013, 38, 421–430. [Google Scholar] [CrossRef]
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef]
- Woodget, A.S.; Carbonneau, P.E.; Visser, F.; Maddock, I.P. Quantifying Submerged Fluvial Topography Using Hyperspatial Resolution UAS Imagery and Structure from Motion Photogrammetry. Earth Surf. Process. Landf. 2015, 40, 47–64. [Google Scholar] [CrossRef]
- Smith, M.W.; Vericat, D. From Experimental Plots to Experimental Landscapes: Topography, Erosion and Deposition in Sub-Humid Badlands from Structure-from-Motion Photogrammetry. Earth Surf. Process. Landf. 2015, 40, 1656–1671. [Google Scholar] [CrossRef]
- Lejot, J.; Delacourt, C.; Piégay, H.; Fournier, T.; Trémélo, M.-L.; Allemand, P. Very high spatial resolution imagery for channel bathymetry and topography from an unmanned mapping controlled platform. Earth Surf. Process. Landf. 2007, 32, 1705–1725. [Google Scholar] [CrossRef]
- Flener, C.; Vaaja, M.; Jaakkola, A.; Krooks, A.; Kaartinen, H.; Kukko, A.; Kasvi, E.; Hyyppä, H.; Hyyppä, J.; Alho, P. Seamless Mapping of River Channels at High Resolution Using Mobile LiDAR and UAV-Photography. Remote Sens. 2013, 5, 6382–6407. [Google Scholar] [CrossRef]
Rank | Source | N° of Articles (% b) | Category (JIF Quartile and Rank) | IF (JCR) a |
---|---|---|---|---|
1st | Remote Sensing | 146 (13.46%) | Geosciences, Multidisciplinary; Environmental Sciences (Q1: 31/202; Q2: 78/275) | 5.0 |
2nd | Landslides | 28 (2.58%) | Engineering, Geological; Geosciences, Multidisciplinary (Q1: 4/41; Q1: 14/202) | 6.7 |
3rd | Water | 28 (2.58%) | Environmental Sciences; Water Resources (Q2: 135/275; Q2: 38/103) | 3.4 |
4th | Earth Surface Processes and Landforms | 26 (2.40%) | Geography, Physical; Geosciences, Multidisciplinary (Q2: 21/49; Q2: 75/201) | 3.3 |
5th | Geomorphology | 26 (2.40%) | Geography, Physical; Geosciences, Multidisciplinary (Q2: 13/49; Q2: 53/201) | 3.9 |
6th | Sensors | 25 (2.30%) | Chemistry, Analytical; Instruments & Instrumentation (Q2: 27/86; Q2: 19/63) | 3.9 |
7th | Science of the Total Environment | 24 (2.21%) | Environmental Sciences (Q1: 26/275) | 9.8 |
8th | Drones | 21 (1.94%) | Remote Sensing (Q2: 14/34) | 4.8 |
9th | Sustainability | 20 (1.84%) | Environmental Sciences; Environmental Studies (Q2: 114/275; Q2: 48/128) | 3.9 |
10th | International Journal of Remote Sensing | 18 (1.66%) | Imaging Science & Photographic Technology; Remote Sensing (Q2: 13/28; Q3: 21/34) | 3.4 |
11th | River Research and Applications | 14 (1.29%) | Environmental Sciences; Water Resources (Q3: 202/275; Q3: 71/103) | 2.2 |
12th | Journal of Hydrology | 13 (1.20%) | Engineering, Civil; Geosciences, Multidisciplinary (Q1: 13/139; Q1: 15/201) | 6.4 |
13th | Ecological Indicators | 12 (1.11%) | Environmental Sciences (Q1: 48/275) | 6.9 |
14th | Land | 12 (1.11%) | Environmental Studies (Q2: 48/128) | 3.9 |
15th | International Journal of Applied Earth Observation and Geoinformation | 10 (0.92%) | Remote Sensing (Q1: 5/34) | 7.5 |
Countries | N of Documents | % a | SCP | MCP | MCP Ratio b |
---|---|---|---|---|---|
China | 371 | 34.19 | 292 | 79 | 0.21 |
USA | 138 | 12.72 | 113 | 25 | 0.18 |
Italy | 71 | 6.54 | 49 | 22 | 0.31 |
United Kingdom | 45 | 4.15 | 24 | 21 | 0.47 |
Japan | 40 | 3.69 | 31 | 9 | 0.23 |
Canada | 32 | 2.95 | 25 | 7 | 0.22 |
Korea | 26 | 2.40 | 20 | 6 | 0.23 |
Poland | 26 | 2.40 | 22 | 4 | 0.15 |
Germany | 21 | 1.94 | 11 | 10 | 0.48 |
Netherlands | 19 | 1.75 | 11 | 8 | 0.42 |
Greece | 18 | 1.66 | 13 | 5 | 0.28 |
Russia | 17 | 1.57 | 14 | 3 | 0.18 |
France | 16 | 1.47 | 11 | 5 | 0.31 |
India | 15 | 1.38 | 9 | 6 | 0.40 |
Brazil | 14 | 1.29 | 6 | 8 | 0.57 |
Research Institute | Country | N of Articles | % a |
---|---|---|---|
Beijing Normal University | China | 72 | 6.64 |
University of Chinese Academy of Sciences | China | 59 | 5.44 |
Institute of Geographic Sciences and Natural Resources Research | China | 32 | 2.95 |
Wuhan University | China | 31 | 2.86 |
Peking University | China | 30 | 2.76 |
Chengdu University of Technology | China | 29 | 2.67 |
China University of Geosciences | China | 28 | 2.58 |
Hohai University | China | 27 | 2.49 |
Shandong Agricultural University | China | 27 | 2.49 |
Guilin University of Technology | China | 26 | 2.40 |
Southwest University | USA | 22 | 2.03 |
Sun Yat-sen University | China | 22 | 2.03 |
Dartmouth College | USA | 21 | 1.94 |
Institute of Mountain Hazards and Environment | China | 21 | 1.94 |
Lanzhou University | China | 21 | 1.94 |
Technical University of Denmark | Denmark | 21 | 1.94 |
Universitas Gadjah Mada | Indonesia | 21 | 1.94 |
Xinjiang University | China | 21 | 1.94 |
Universidad Austral de Chile | Chile | 19 | 1.75 |
University of Florida | USA | 19 | 1.75 |
Rank | Reference | Year | Journal | DOI | LC | GC | LC/GC Ratio (%) | Topic |
---|---|---|---|---|---|---|---|---|
1st | [29] | 2015 | River Research and Applications | https://doi.org/10.1002/rra.2743 | 54 | 132 | 40.91 | Channel morphology and hydraulic habitats |
2nd | [30] | 2017 | Geomorphology | https://doi.org/10.1016/j.geomorph.2016.11.009 | 42 | 256 | 16.41 | Geomorphic change detection |
3rd | [31] | 2016 | Geomorphology | https://doi.org/10.1016/j.geomorph.2015.05.008 | 28 | 104 | 26.92 | Fluvial Geomorphology |
4th | [32] | 2009 | International Journal of Remote Sensing | https://doi.org/10.1080/01431160903023025 | 26 | 159 | 16.35 | Classification of riparian forest |
5th | [33] | 2016 | Hydrological Processes | https://doi.org/10.1002/hyp.10698 | 24 | 51 | 47.06 | Image velocimetry in rivers |
6th | [34] | 2017 | International Journal of Remote Sensing | https://doi.org/10.1080/01431161.2017.1292074 | 20 | 69 | 28.99 | Photogrammetric DEMs for flood prediction assessment |
7th | [35] | 2019 | River Research and Applications | https://doi.org/10.1002/rra.3479 | 19 | 75 | 25.33 | Review of river corridor remote sensing |
8th | [36] | 2019 | Drones | https://doi.org/10.3390/drones3010014 | 19 | 47 | 40.43 | Image velocimetry in rivers |
9th | [37] | 2017 | Journal of Hydrology | https://doi.org/10.1016/j.jhydrol.2017.06.047 | 17 | 35 | 48.57 | Environmental flows and supply rates for dominant fish species |
10th | [38] | 2016 | Environmental Monitoring and Assessment | https://doi.org/10.1007/s10661-015-4996-2 | 15 | 162 | 9.26 | Classification of riparian forest species and health condition |
Rank | Reference | Year | Journal | DOI | LC | GC | LC/GC Ratio (%) | Topic |
---|---|---|---|---|---|---|---|---|
1st | [39] | 2013 | Earth Surface Processes and Landforms | https://doi.org/10.1002/esp.3366 | 0 | 783 | 0.00 | Topographic modelling by SfM, LiDAR, and GPS techniques |
2nd | [40] | 2018 | Remote Sensing | https://doi.org/10.3390/rs10040641 | 0 | 424 | 0.00 | Review on the use of UAS for environmental monitoring |
3rd | [41] | 2015 | Earth Surface Processes and Landforms | https://doi.org/10.1002/esp.3613 | 0 | 273 | 0.00 | Submerged fluvial topography |
4th | [30] | 2017 | Geomorphology | https://doi.org/10.1016/j.geomorph.2016.11.009 | 42 | 256 | 16.41 | Geomorphic change detection |
5th | [42] | 2015 | Earth Surface Processes and Landforms | https://doi.org/10.1002/esp.3747 | 0 | 217 | 0.00 | Geomorphic change detection |
6th | [11] | 2017 | Earth Surface Processes and Landforms | https://doi.org/10.1002/esp.4060 | 0 | 167 | 0.00 | Bathymetric Structure-from-Motion photogrammetry |
7th | [38] | 2016 | Environmental Monitoring and Assessment | https://doi.org/10.1007/s10661-015-4996-2 | 15 | 162 | 9.26 | Classification of riparian forest species and health condition |
8th | [32] | 2009 | International Journal of Remote Sensing | https://doi.org/10.1080/01431160903023025 | 26 | 159 | 16.35 | Classification of riparian forest |
9th | [43] | 2007 | Earth Surface Processes and Landforms | https://doi.org/10.1002/esp.1595 | 0 | 157 | 0.00 | River channel bathymetry and topography |
10th | [44] | 2013 | Remote Sensing | https://doi.org/10.3390/rs5126382 | 0 | 151 | 0.00 | River channel mapping by LIDAR and UAV photography |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pizarro, A.; Valera-Gran, D.; Navarrete-Muñoz, E.-M.; Dal Sasso, S.F. The Use of Unmanned Aerial Systems for River Monitoring: A Bibliometric Analysis Covering the Last 25 Years. Hydrology 2024, 11, 80. https://doi.org/10.3390/hydrology11060080
Pizarro A, Valera-Gran D, Navarrete-Muñoz E-M, Dal Sasso SF. The Use of Unmanned Aerial Systems for River Monitoring: A Bibliometric Analysis Covering the Last 25 Years. Hydrology. 2024; 11(6):80. https://doi.org/10.3390/hydrology11060080
Chicago/Turabian StylePizarro, Alonso, Desirée Valera-Gran, Eva-María Navarrete-Muñoz, and Silvano Fortunato Dal Sasso. 2024. "The Use of Unmanned Aerial Systems for River Monitoring: A Bibliometric Analysis Covering the Last 25 Years" Hydrology 11, no. 6: 80. https://doi.org/10.3390/hydrology11060080
APA StylePizarro, A., Valera-Gran, D., Navarrete-Muñoz, E. -M., & Dal Sasso, S. F. (2024). The Use of Unmanned Aerial Systems for River Monitoring: A Bibliometric Analysis Covering the Last 25 Years. Hydrology, 11(6), 80. https://doi.org/10.3390/hydrology11060080