Does Ortho-Substitution Enhance Cytotoxic Potencies in a Series of 3,5-Bis(benzylidene)-4-piperidones?
<p>The synthesis of <b>1a</b>–<b>n</b>. The aryl substituents are presented in <a href="#medicines-11-00019-t001" class="html-table">Table 1</a>.</p> "> Figure 2
<p>The compounds in series <b>2</b>.</p> "> Figure 3
<p>The designation of the torsion angles θ<sub>A</sub> and θ<sub>B</sub>.</p> "> Figure 4
<p>Correlation between the IC<sub>50</sub> figures of <b>1a</b>–<b>n</b>/<b>2a</b> against Molt4/C8 (<b>A</b>,<b>D</b>), CEM (<b>B</b>,<b>E</b>) and L1210 (<b>C</b>,<b>F</b>) and the interplanar angles designated θ<sub>A</sub> (<b>A</b>–<b>C</b>) and θ<sub>B</sub> (<b>D</b>–<b>F</b>). These data are derived from <a href="#medicines-11-00019-t001" class="html-table">Table 1</a>.</p> "> Figure 5
<p>Correlation between the IC<sub>50</sub> figures of <b>1a</b>–<b>n</b>/<b>2a</b> against Molt4/C8 (<b>A</b>,<b>D</b>,<b>G</b>), CEM (<b>B</b>,<b>E</b>,<b>H</b>) and L1210 (<b>C</b>,<b>F</b>,<b>I</b>) and the MR (<b>A</b>–<b>C</b>), π (<b>D</b>–<b>F</b>) or σ/σ* (<b>G</b>–<b>I</b>). These data are derived from <a href="#medicines-11-00019-t001" class="html-table">Table 1</a>.</p> "> Figure 6
<p>The 3,5-bis(benzylidene)-4-piperidones and melphalan were cytotoxic, while the 5-FU was cytostatic. Malignant (red) and non-malignant (blue) cells were treated for 48 h with the indicated concentrations of samples, and the viable cell number was determined by the MTT method. Each value represents the mean of triplicate determinations. It should be noted that the concentration of compounds (<b>1a</b>–<b>1n</b>) increases at the ratio of 1:3.162, whereas that of melphalan and 5-FU increases at the ratio of 1:2.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Compounds
2.2. Cytotoxicity Assays
2.3. Molecular Modeling
2.4. Statistical Analyses
3. Results
4. Discussion
Compound | Aryl Substituent | Molt4/C8 a | CEM a | L1210 a | θA b | θB b |
---|---|---|---|---|---|---|
1a | 2-F | 0.94 ± 0.74 | 1.46 ± 0.52 | 7.18 ± 1.02 | 34.69 | 147.74 |
1b | 3-F | 0.59 ± 0.39 | 0.75 ± 0.42 | 6.48 ± 1.19 | 41.48 | 140.22 |
1c | 2,4-F2 | 3.91 ± 3.15 | 6.21 ± 3.09 | 27.4 ± 17.3 | 34.44 | 148.02 |
1d | 2,5-F2 | 3.26 ± 2.44 | 8.10 ± 0.48 | 37.4 ± 8.80 | 33.57 | 148.55 |
1e | 2,6-F2 | 1.13 ± 0.65 | 3.20 ± 2.07 | 8.83 ± 1.80 | 42.51 | 140.17 |
1f | 2-Cl | 1.13 ± 0.26 | 1.14 ± 0.73 | 6.35 ± 1.63 | 50.64 | 131.52 |
1g | 2,4-Cl2 | 4.70 ± 3.95 | 7.30 ± 0.46 | 34.0 ± 3.60 | 51.67 | 130.39 |
1h | 2,6-Cl2 | 6.01 ± 1.46 | 6.51 ± 0.17 | 9.87 ± 1.31 | 78.62 | 103.08 |
1i | 2-Br | 1.33 ± 0.17 | 1.19 ± 0.54 | 2.54 ± 1.39 | 48.94 | 133.26 |
1j | 3-Br | 5.28 ± 2.64 | 7.10 ± 0.95 | 48.0 ± 6.70 | 41.65 | 139.96 |
1k | 2-CH3 | 1.59 ± 0.07 | 1.62 ± 0.22 | 8.59 ± 0.65 | 51.60 | 130.05 |
1l | 2,4-(CH3)2 | 5.08 ± 4.30 | 6.79 ± 1.66 | 26.0 ± 9.00 | 49.23 | 132.55 |
1m | 2-OCH3 | 0.73 ± 0.44 | 0.91 ± 0.50 | 0.90 ± 0.64 | −55.01 | 145.72 |
1n | 2,3-(OCH3)2 | 0.36 ± 0.11 | 0.66 ± 0.45 | 0.84 ± 0.12 | −56.67 | 144.13 |
2a c | H | 1.67 ± 0.15 | 1.70 ± 0.02 | 7.96 ± 0.11 | 39.81 | 141.78 |
2b | 4-F | 5.00 ± 1.20 | 2.05 ± 0.36 | 0.60 ± 0.01 | --- | --- |
2c | 4-Cl | 13.4 ± 4.00 | 8.63 ± 0.48 | 4.15 ± 0.30 | --- | --- |
2d | 4-Br | 7.70 ± 0.81 | 1.70 ± 0.04 | 31.1 ± 11.0 | --- | --- |
2e | 4-CH3 | 1.69 ± 0.09 | 1.69 ± 0.00 | 8.47 ± 0.14 | --- | --- |
2f | 4-OCH3 | 288 ± 43.0 | 164 ± 104 | 244 ± 43.0 | --- | --- |
Melphalan c | ---- | 3.24 ± 0.56 | 2.47 ± 0.21 | 2.13 ± 0.02 | --- | --- |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolton, J.L.; Turnipseed, S.B.; Thompson, J.A. Influence of quinone methide reactivity on the alkylation of thiol and amino groups in proteins: Studies utilizing amino acid and peptide models. Chem. Biol. Interact. 1997, 107, 185–200. [Google Scholar] [CrossRef] [PubMed]
- Peter, M.G. Chemical Modifications of Biopolymers by Quinones and Quinone Methides. Angew. Chem. Int. Ed. Engl. 1989, 28, 555–570. [Google Scholar] [CrossRef]
- Karpavičienė, I.; Valiulienė, G.; Raškevičius, V.; Lebedytė, I.; Brukštus, A.; Kairys, V.; Rūta, N.; Čikotienė, I. Synthesis and antiproliferative activity of α-branched α,β-unsaturated ketones in human hematological and solid cancer cell lines. Eur. J. Med. Chem. 2015, 98, 30–48. [Google Scholar] [CrossRef] [PubMed]
- Page, C.P.; Curtis, M.; Walker, M.; Hoffman, B. Integrated Pharmacology, 3rd ed.; Elsevier: Philadelphia, PA, USA, 2006; p. 643. [Google Scholar]
- Chen, G.; Waxman, D.J. Role of cellular glutathione and glutathione S-transferase in the expression of alkylating agent cytotoxicity in human breast cancer cells. Biochem. Pharmacol. 1994, 47, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, K.; Komuro, C.; Ono, K.; Nishidea, T.; Shibamoto, Y.; Takahashi, M.; Abe, M. Chemosensitization by buthionine sulfoximine in vivo. Int. J. Radiat. Oncol. Biol. Phys. 1986, 12, 1183–1186. [Google Scholar] [CrossRef] [PubMed]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Bustamante Munguira, E.; Andrés Juan, C.; Pérez-Lebeña, E. Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality? Int. J. Mol. Sci. 2024, 25, 6099. [Google Scholar] [CrossRef] [PubMed]
- Selvaraju, K.; Lotfi, K.; Gubat, J.; Miquel, M.; Nilsson, A.; Hill, J.; Jensen, L.D.; Linder, S.; D’Arcy, P. Sensitivity of Acute Myelocytic Leukemia Cells to the Dienone Compound VLX1570 Is Associated with Inhibition of the Ubiquitin-Proteasome System. Biomolecules 2021, 11, 1339. [Google Scholar] [CrossRef] [PubMed]
- Makarov, M.V.; Rybalkina, E.Y.; Anikina, L.V.; Pukhov, S.A.; Klochkov, S.G.; Mischenko, D.V.; Neganova, M.E.; Khrustalev, V.N.; Klemenkova, Z.S.; Brel, V.K. 1,5-Diaryl-3-oxo-1,4-pentadienes based on (4-oxopiperidin-1-yl)(aryl)methyl phosphonate scaffold: Synthesis and antitumor properties. Med. Chem. Res. 2017, 26, 140–152. [Google Scholar] [CrossRef]
- Das, S.; Das, U.; Sakagami, H.; Hashimoto, K.; Kawase, M.; Gorecki, D.K.J.; Dimmock, J.R. Sequential cytotoxicity: A theory examined using a series of 3,5-bis(benzylidene)-1-diethylphosphono-4-oxopiperidines and related phosphonic acids. Bioorg. Med. Chem. Lett. 2010, 20, 6464–6468. [Google Scholar] [CrossRef] [PubMed]
- Baraldi, P.B.; del Carmen Nunez, M.; Tabrizi, M.A.; de Clercq, E.; Balzarini, J.; Bermejo, J.; Estevez, F.; Romagnoli, R. Design, syntheses and biological evaluation of hybrid molecules containing [alpha]-methylene-[gamma]-butyrolactones and polypyrrole minor groove binders. J. Med. Chem. 2004, 47, 2877–2886. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Gul, H.I.; Das, U.; Balzarini, J.; Dimmock, S.G.; Dimmock, J.R. Novel conjugated unsaturated ketones with submicromolar potencies towards some leukemic and colon cancer cells. Med. Chem. 2019, 15, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immun. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Spartan 14, version 1.1.4. 9 January 2014.
- Hansch, C.; Leo, A.J. Substituent Constants for Correlation Analysis in Chemistry and Biology; John Wiley and Sons: New York, NY, USA, 1979; p. 49. [Google Scholar]
- Taft, R.W., Jr. Steric Effects in Organic Chemistry; Newman, M.S., Ed.; John Wiley and Sons, Inc.: New York, NY, USA, 1956; p. 591. [Google Scholar]
- Statistical Package for Social Scientists, SPSS Inc. SPSS Statistics for Windows; Version 17.0; SPSS Inc.: Chicago, IL, USA, 2008. [Google Scholar]
- Dimmock, J.R.; Kandepu, N.M.; Nazarali, A.J.; Kowalchuk, T.P.; Motaganahalli, N.; Quail, J.W.; Mykytiuk, P.A.; Audette, G.F.; Prasad, L.; Perjesi, P.; et al. Conformational and quantitative structure-activity relationship study of cytotoxic 2-arylidenebenzocycloalkanones. J. Med. Chem. 1999, 42, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Dimmock, J.R.; Padmanilayam, M.P.; Puthucode, R.N.; Nazarali, A.J.; Motaganahalli, N.L.; Zello, G.A.; Quail, J.W.; Oloo, E.O.; Kraatz, H.-B.; Prisciak, J.S.; et al. A conformational and structure-activity relationship study of cytotoxic 3,5-bis(arylidene)-4-piperidones and related N-acryloyl analogues. J. Med. Chem. 2001, 44, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Suffness, M.; Douros, J. Methods in Cancer Research; Part A; De Vita, V.T., Busch, H., Eds.; Academic Press: New York, NY, USA, 1979; Volume XVI, p. 84. [Google Scholar]
- Das, U.; Alcorn, J.; Shrivastav, A.; Sharma, R.K.; De Clercq, E.; Balzarini, J.; Dimmock, J.R. Design, synthesis and cytotoxic properties of novel 1-[4-(2-alkylaminoethoxy)phenylcarbonyl]-3,5-bis(arylidene)-4-piperidones and related compounds. Eur. J. Med. Chem. 2007, 42, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Pandeya, S.N.; Dimmock, J.R. An Introduction to Drug Design; New Age International Publishers: New Delhi, India, 1997; pp. 72–74. [Google Scholar]
Compound | CC50 (µM) a | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
HSC-2 | SI b | HSC-3 | SI b | HSC-4 | SI b | HL-60 | SI b | Ave. CC50 | Ave. SI | |
1a | 0.57 ± 0.24 | 8.12 | 0.89 ± 0.08 | 5.20 | 0.18 ± 0.08 | 25.7 | 0.29 ± 0.02 | 16.0 | 0.48 | 13.8 |
1b | 0.41 ± 0.12 | 5.81 | 0.47 ± 0.06 | 5.06 | 0.19 ± 0.08 | 12.5 | 0.17 ± 0.10 | 14.0 | 0.31 | 9.34 |
1c | 1.27 ± 0.21 | 6.32 | 1.06 ± 0.16 | 7.58 | 0.72 ± 0.04 | 11.2 | 2.60 ± 0.03 | 3.09 | 1.41 | 7.05 |
1d | 1.17 ± 0.06 | 5.28 | 1.06 ± 0.08 | 5.83 | 0.41 ± 0.14 | 15.1 | 1.00 ± 0.27 | 6.18 | 0.91 | 8.10 |
1e | 0.53 ± 0.17 | 4.74 | 0.67 ± 0.29 | 3.75 | 0.25 ± 0.10 | 10.0 | 0.60 ± 0.28 | 4.18 | 0.51 | 5.67 |
1f | 0.24 ± 0.07 | 8.00 | 0.35 ± 0.05 | 5.49 | 0.12 ± 0.10 | 16.0 | 0.42 ± 0.10 | 4.57 | 0.28 | 8.52 |
1g | 0.95 ± 0.13 | 4.04 | 1.10 ± 0.10 | 3.49 | 0.75 ± 0.20 | 5.12 | 2.60 ± 0.56 | 1.48 | 1.35 | 3.53 |
1h | 10.67 ± 0.8 | >14.8 | 45.33 ± 7.23 | >3.52 | 44.67 ± 1.53 | >3.58 | 7.00 ± 2.90 | >22.8 | 26.9 | >11.2 |
1i | 0.37 ± 0.07 | 11.1 | 0.79 ± 0.06 | 5.18 | 0.32 ± 0.02 | 12.8 | 1.20 ± 0.10 | 3.41 | 0.67 | 8.12 |
1j | 0.81 ± 0.42 | 6.48 | 1.06 ± 0.06 | 4.95 | 0.38 ± 0.08 | 13.8 | 2.60 ± 0.04 | 2.02 | 1.21 | 6.81 |
1k | 0.62 ± 0.42 | 6.23 | 1.04 ± 0.06 | 3.71 | 0.45 ± 0.30 | 8.58 | 1.10 ± 0.21 | 3.51 | 0.80 | 5.51 |
1l | 4.47 ± 0.21 | 3.00 | 8.17 ± 2.16 | 1.64 | 2.80 ± 1.39 | 4.79 | 6.70 ± 2.30 | 2.00 | 5.54 | 2.86 |
1m | 0.87 ± 0.10 | 4.16 | 1.13 ± 0.12 | 3.20 | 0.74 ± 0.14 | 4.89 | 0.74 ± 0.18 | 4.89 | 0.87 | 4.29 |
1n | 0.24 ± 0.02 | 5.63 | 0.33 ± 0.01 | 4.09 | 0.18 ± 0.08 | 7.50 | 0.31 ± 0.01 | 4.36 | 0.27 | 5.40 |
(Average) | 6.69 | 4.48 | 10.83 | 6.61 | ||||||
Melphalan | 6.20 ± 0.32 | 13.9 | 19.00 ± 0.58 | 4.54 | 36.00 ± 1.7 | 2.40 | 1.00 ± 0.04 | 86.3 | 15.6 | 26.8 |
5-Fluorouracil | 4.90 ± 0.91 | >20.4 | 47.00 ± 7.20 | >2.13 | 2.50 ± 0.25 | >40 | 10.00 ± 1.1 | >10.0 | 16.1 | >18.1 |
Compound | CC50 (µM) a | PSE b | |||
---|---|---|---|---|---|
HGF | HPC | HPLF | Ave. CC50 | ||
1a | 5.57 ± 2.37 | 3.83 ± 0.55 | 4.50 ± 0.44 | 4.63 | 28.8 |
1b | 2.21 ± 0.09 | 2.33 ± 0.55 | 2.60 ± 0.17 | 2.38 | 30.1 |
1c | 8.73 ± 0.64 | 5.56 ± 0.05 | 9.80 ± 1.04 | 8.03 | 5.00 |
1d | 7.70 ± 0.50 | 4.60 ± 0.44 | 6.23 ± 0.74 | 6.18 | 8.90 |
1e | 2.47 ± 0.11 | 1.50 ± 0.20 | 3.57 ± 0.71 | 2.51 | 11.1 |
1f | 1.95 ± 0.46 | 1.43 ± 0.38 | 2.37 ± 0.12 | 1.92 | 30.4 |
1g | 5.03 ± 0.32 | 1.97 ± 0.50 | 4.53 ± 0.23 | 3.84 | 2.62 |
1h | >160 | >160 | >160 | >160 | >0.42 |
1i | 4.68 ± 0.21 | 3.40 ± 0.62 | 4.20 ± 0.26 | 4.09 | 12.1 |
1j | 5.40 ± 0.66 | 3.93 ± 1.00 | 6.43 ± 1.12 | 5.25 | 5.63 |
1k | 4.00 ± 1.13 | 2.55 ± 0.09 | 5.02 ± 0.10 | 3.86 | 6.89 |
1l | 15.03 ± 3.86 | 10.10 ± 1.39 | 15.00 ± 3.00 | 13.4 | 0.52 |
1m | 3.80 ± 0.78 | 3.13 ± 0.42 | 3.93 ± 1.08 | 3.62 | 4.93 |
1n | 1.36 ± 0.13 | 1.19 ± 0.02 | 1.50 ± 0.40 | 1.35 | 20.0 |
Melphalan | 96.00 ± 6.40 | 83.00 ± 4.50 | 80.00 ± 0.58 | 86.3 | 1.72 |
5-Fluorouracil | >100 | >100 | >100 | >100 | >1.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karki, S.S.; Das, U.; Balzarini, J.; De Clercq, E.; Sakagami, H.; Uesawa, Y.; Roayapalley, P.K.; Dimmock, J.R. Does Ortho-Substitution Enhance Cytotoxic Potencies in a Series of 3,5-Bis(benzylidene)-4-piperidones? Medicines 2024, 11, 19. https://doi.org/10.3390/medicines11080019
Karki SS, Das U, Balzarini J, De Clercq E, Sakagami H, Uesawa Y, Roayapalley PK, Dimmock JR. Does Ortho-Substitution Enhance Cytotoxic Potencies in a Series of 3,5-Bis(benzylidene)-4-piperidones? Medicines. 2024; 11(8):19. https://doi.org/10.3390/medicines11080019
Chicago/Turabian StyleKarki, Subhas S., Umashankar Das, Jan Balzarini, Erik De Clercq, Hiroshi Sakagami, Yoshihiro Uesawa, Praveen K. Roayapalley, and Jonathan R. Dimmock. 2024. "Does Ortho-Substitution Enhance Cytotoxic Potencies in a Series of 3,5-Bis(benzylidene)-4-piperidones?" Medicines 11, no. 8: 19. https://doi.org/10.3390/medicines11080019
APA StyleKarki, S. S., Das, U., Balzarini, J., De Clercq, E., Sakagami, H., Uesawa, Y., Roayapalley, P. K., & Dimmock, J. R. (2024). Does Ortho-Substitution Enhance Cytotoxic Potencies in a Series of 3,5-Bis(benzylidene)-4-piperidones? Medicines, 11(8), 19. https://doi.org/10.3390/medicines11080019