Using Sediment Bacterial Communities to Predict Trace Metal Pollution Risk in Coastal Environment Management: Feasibility, Reliability, and Practicability
<p>Sampling locations map in the catchment area (CA), estuarine area (EA), and offshore area (OA) of Duliujian river watershed in Bohai Bay (details in <a href="#app1-toxics-12-00839" class="html-app">Table S1</a>).</p> "> Figure 2
<p>TM contents in the sediments of the CA, EA, and OA of Duliujian river watershed in Bohai Bay.</p> "> Figure 3
<p>(<b>A</b>) Geoaccumulation index (I<sub>geo</sub>), (<b>B</b>) enrichment factors (EF), and (<b>C</b>) Nemerow pollution index of TMs in the sediments of the CA, EA, and OA of the Duliujian river watershed in Bohai Bay.</p> "> Figure 4
<p>(<b>A</b>). Principal component analysis of TMs in the different spatial units. (<b>B</b>) RDA of TM with environmental factors. (<b>C</b>) SourceTracker analysis of the sink and source relationships of TMs in different spatial units. The values represent the total exchange potential. (<b>D</b>) The degree of contribution of TMs in sediments to each index. The red box represents the degree of contributions of As and Cr. (<b>E</b>) Paired comparison of environmental factors and TMs with the TM related indices. The color gradient and circle size represent the Spearman correlation coefficients; the width of the line represents the degree of correlations among potential risks, TMs, and environmental factors. Asterisks denote statistically significant differences (***, <span class="html-italic">p</span> < 0.001; **, <span class="html-italic">p</span> < 0.01; *, <span class="html-italic">p</span> < 0.05).</p> "> Figure 5
<p>(<b>A</b>) Regression analysis for pairwise combination of Fe and Mn with TM correlation indices, and (<b>B</b>) pairwise combination of Fe and Mn with toxic metals (As and Cr). Axes are log<sub>10</sub> scaled.</p> "> Figure 6
<p>Changes in community composition (<b>A</b>) and diversity (<b>B</b>) of bacterial communities and NMDS analysis (<b>C</b>) for determining differences in bacterial communities at the watershed scale.</p> "> Figure 7
<p>RDA of TM with bacterial dynamics. (<b>A</b>) TM with dominant abundance of bacterial community; (<b>B</b>) TM with bacterial diversity; (<b>C</b>) TM with bacterial metabolism abundance. Among them, PC represents the poorly characterized; EM represents the energy metabolism; RR represents the replication and repair; NM represents the nucleotide metabolism; Tran represents the translation; CM represents the carbohydrate metabolism; AAM represents the amino acid metabolism; LM represents the lipid metabolism; MT represents the membrane transport; XBM represents the xenobiotics biodegradation and metabolism.</p> "> Figure 8
<p>VPA of traditional TM identification (Fe and Mn) and bacterial metabolic abundance for toxic metals (<b>A</b>) and TM-related indices (<b>B</b>). Among them, * and ** represent <span class="html-italic">p</span> < 0.05 and <span class="html-italic">p</span> < 0.01, respectively. Toxic metals contain As and Cr.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling Collection
2.3. Sample Processing, Sequencing, and Analysis
2.4. Laboratory Analysis
2.4.1. Enrichment Factor
2.4.2. Geoaccumulation Index
2.4.3. Nemero Comprehensive Pollution Index
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties in Sediments of Duliujian River Watershed
3.2. Distribution of TMs in Sediments of Duliujian River Watershed
3.3. Pollution and Enrichment Indices of TMs in Sediments
3.4. Source Analysis for TMs and Their Abiotic Influencing Factors
3.5. Correlation Analysis Between Potential Risks and Environmental Factors
3.6. Bacterial Communities and Their Influencing Factors at the Coastal Watershed
3.7. The Indicative Role of Bacterial Community on TMs in Duliujian River Watershed
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goyette, J.O.; Bennett, E.M.; Maranger, R. Low buffering capacity and slow recovery of anthropogenic phosphorus pollution in watersheds. Nat. Geosci. 2018, 11, 921–925. [Google Scholar] [CrossRef]
- Goyette, J.O.; Bennett, E.M.; Maranger, R. Differential influence of landscape features and climate on nitrogen and phosphorus transport throughout the watershed. Biogeochemistry 2019, 142, 155–174. [Google Scholar] [CrossRef]
- Raj, P.R.S.; Viswanathan, P.M. Occurrence and distribution of geochemical elements in Miri estuary, NW Borneo: Evaluating for processes, sources and pollution status. Chemosphere 2023, 316, 137838. [Google Scholar] [CrossRef]
- Uzairu, A.; Harrison, G.F.S.; Balarabe, M.L.; Nnaji, J.C. Concentration levels of trace metals in fish and sediment from Kubanni River, Northern Nigeria. Bull. Chem. Soc. Ethiopia 2009, 23, 9–17. [Google Scholar] [CrossRef]
- Ardila, P.A.R.; Alonso, R.Á.A.; Valsero, J.J.D.; García, R.M.; Cabera, F.Á.; Cosío, E.L.; Laforet, S.D. Assessment of heavy metal pollution in marine sediments from southwest of Mallorca island, Spain. Environ. Sci. Pollut. Res. 2023, 30, 16852–16866. [Google Scholar] [CrossRef] [PubMed]
- Ardila, P.A.R.; Alonso, R.Á.; Árcega-Cabrera, F.; Valsero, J.J.D.; García, R.M.; Lamas-Cosío, E.; Oceguera-Vargas, I.; DelValls, A. Assessment and review of heavy metals pollution in sediments of the Mediterranean Sea. Appl. Sci. 2024, 14, 1435. [Google Scholar] [CrossRef]
- Lordache, A.M.; Nechita, C.; Voica, C.W.; Pluháček, T.; Schug, K.A. Climate change extreme and seasonal toxic metal occurrence in Romanian freshwaters in the last two decades—Case study and critical review. Npj Clean Water 2022, 5, 2. [Google Scholar] [CrossRef]
- Pejman, A.; Bidhendi, G.N.; Ardestani, M.; Saeedi, M.; Baghvand, A. A new index for assessing heave metals contamination in sediments: A case study. Ecol. Indic. 2015, 58, 365–373. [Google Scholar] [CrossRef]
- Yu, H.; Ni, S.J.; He, Z.W.; Zhang, C.J.; Nan, X.; Kong, B.; Weng, Z.Y. Analysis of the spatial relationship between heavy metals in soil and human activities based on landscape geochemical interpretation. J. Geochem. Explor. 2014, 46, 136–148. [Google Scholar] [CrossRef]
- Maanan, M.; Saddik, M.; Maanan, M.; Chaibi, M.; Assobhei, O.; Zourarah, B. Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecol. Indic. 2015, 48, 616–626. [Google Scholar] [CrossRef]
- Li, P.F.; Hua, P.; Zhang, J.; Krebes, P. Ecological risk and machine learning based source analyses of trace metals in typical surface water. Sci. Total Environ. 2022, 838, 155944. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Ge, Y.X.; Li, J.; Lai, X.Y.; Chen, R.H. A PMF-SSD based approach for the source apportionment and source-specific ecological risk assessment of Le’an river in Jiangxi Province, China. Environ. Res. 2023, 219, 115027. [Google Scholar] [CrossRef] [PubMed]
- Bervoets, L.; Solis, D.; Romero, A.M.; Van Damme, P.A.; Ollevier, F. Trace metal levels in chironomid larvae and sediments from a Bolivian river: Impact of mining activities. Ecotox Environ. Safe 1998, 41, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Li, D.B.; Pan, B.Z.; Han, X.; Lu, Y.; Wang, Y.X. Toxicity risks associated with trace metals call for conservation of threatened fish species in heavily sediment-laden Yellow River. J. Hazard. Mater. 2023, 448, 130928. [Google Scholar] [CrossRef] [PubMed]
- Thuong, N.T.; Yoneda, M.; Shimada, Y.; Matsui, Y. Assessment of trace metal contamination and exchange between water and sediment systems in the To Lich River in inner Hanoi, Vietnam. Environ. Earth Sci. 2015, 73, 3925–3936. [Google Scholar] [CrossRef]
- Chakraborty, P.; Jayachandran, S.; Raghynadh Babu, P.V.; Karri, S.; Tyadi, P.; Yao, K.M.; Sharma, B.M. Intra-annual variations of arsenic totals and species in tropical estuary surface sediments. Chem. Geol. 2012, 322, 172–180. [Google Scholar] [CrossRef]
- Young, S.M.; Ishiga, H. Assessment of dam removal from geochemical examination of Kuma River sediment, Kyushu, Japan. Environ. Monit. Assess. 2014, 186, 8267–8289. [Google Scholar] [CrossRef]
- Müller-Karulis, B.; Poikāne, R.; Segliņš, V. Heavy metals in the Ventspils Harbour:: Normalization based on a multi-parameter dataset. Environ. Geol. 2003, 43, 445–456. [Google Scholar] [CrossRef]
- Shulkin, V.; Zhang, J. Trace metals in estuaries in the Russian Far East and China: Case studies from the Amur River and the Changjiang. Sci. Total Environ. 2014, 499, 196–211. [Google Scholar] [CrossRef]
- Gillan, D.C.; Baeyens, W.; Bechara, R.; Billon, G.; Denis, K.; Grosjean, P.; Leermakers, M.; Lesven, L.; Pode, A.; Sabbe, K.; et al. Links between bacterial communities in marine sediments and trace metal geochemistry as measured by in situ DET/DGT approaches. Mar. Pollut. Bull. 2012, 64, 353–362. [Google Scholar] [CrossRef]
- Schlekat, C.E.; Decho, A.W.; Chandler, G.T. Bioavailability of particle-associated silver, cadmium, and zinc to the estuarine amphipod Leptocheirus plumulosus through dietary ingestion. Limnol. Oceanogr. 2000, 45, 11–21. [Google Scholar] [CrossRef]
- Barton, L.L.; Goulhen, F.; Bruschi, M.; Woodards, N.A.; Plunkett, R.M.; Rietmeijer, F.J.M. The bacterial metallome: Composition and stability with specific reference to the anaerobic bacterium Desulfovibrio desulfuricans. Biometals 2007, 20, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.H.; Huang, L.B.; Yan, D.H.; Wang, Q.G.; Gao, H.F.; Xiao, R.; Huang, C. Contamination characteristics of heavy metals in wetland soils along a tidal ditch of the Yellow River Estuary, China. Stochastic Environ. Res. Risk Assess. 2011, 25, 671–676. [Google Scholar] [CrossRef]
- Yin, Y.; Impellitteri, C.A.; You, S.J.; Allen, H.E. The importance of organic matter distribution and extract soil: Solution ratio on the desorption of heavy metals from soils. Sci. Total Environ. 2002, 287, 107–119. [Google Scholar] [CrossRef]
- Cifuentes, G.R.; Jiménez-Millán, J.; Quevedo, C.P.; Gálvez, A.; Castellanos-Rozo, J.; Jiménez-Espinosa, R. Trace element fixation in sediments rich in organic matter from a saline lake in tropical latitude with hydrothermal inputs (Sochagota Lake, Colombia): The role of bacterial communities. Sci. Total Environ. 2021, 762, 143113. [Google Scholar] [CrossRef]
- Pal, A.; Bhattacharjee, S.; Saha, J.; Sarkar, M.; Mandal, P. Bacterial survival strategies and responses under heavy metal stress: A comprehensive overview. Crit. Rev. Microbiol. 2021, 37, 17603–17624. [Google Scholar] [CrossRef]
- Lian, T.X.; Ma, Q.B.; Shi, Q.H.; Cai, Z.D.; Zhang, Y.T.; Cheng, Y.B.; Nian, H. High aluminum stress drives different rhizosphere soil enzyme activities and bacterial community structure between aluminum-tolerant and aluminum-sensitive soybean genotypes. Plant Soil. 2019, 440, 409–425. [Google Scholar] [CrossRef]
- Hermans, S.M.; Buckley, H.L.; Case, B.S.; Curran-Cournane, F.; Taylor, M.; Lear, G. Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome 2020, 8, 79. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Feng, Y.; Zhang, Y.; Liang, N.; Wu, H.L.; Liu, F.D. Allometric releases of nitrogen and phosphorus from sediments mediated by bacteria determines water eutrophication in coastal river basins of Bohai Bay. Ecotox Environ. Safe 2022, 235, 113426. [Google Scholar] [CrossRef]
- Ghate, S.D.; Shastry, R.P.; Arun, A.B.; Rekha, P.D. Unraveling the bacterial community composition across aquatic sediments in the Southwestern coast of India by employing high-throughput 16S rRNA gene sequencing. Reg. Stud. Mar. Sci. 2021, 46, 101890. [Google Scholar] [CrossRef]
- He, Z.L.; Zhang, P.; Wu, L.W.; Rocha, A.W.; Tu, Q.C.; Shi, Z.; Wu, B.; Qin, T.J.; Wang, J.J.; Yan, Q.Y.; et al. Microbial functional gene diversity predicts groundwater contamination and ecosystem functioning. MBIO 2018, 9, e02435-17. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Feng, Y.; Yang, X.C.; Zhang, Y.; Li, D.E.; Liu, F.D. Identification of bacterial flora and metabolic function of sediment in different channels of Duliujian River Basin, Tianjin. Environ. Sci. 2022, 43, 3635–3644. (In Chinese) [Google Scholar] [CrossRef]
- Sun, C.H.; Wei, Q.; Ma, L.X.; Li, L.; Wu, G.H.; Pan, L. Trace metal pollution and carbon and nitrogen isotope tracing through the Yongdingxin River estuary in Bohai Bay, Northern China. Mar. Pollut. Bull. 2017, 115, 451–458. [Google Scholar] [CrossRef]
- Wang, X.J.; Fu, R.L.; Li, H.L.; Zhang, Y.; Lu, M.Q.; Xiao, K.; Zhang, X.L.; Zheng, C.M.; Xiong, Y. Heavy metal contamination in the surface sediments: A comprehensive, large-scale evaluation for the Bohai Sea, China. Environ. Pollut. 2020, 260, 113986. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.H. Numerical simulation of aquatic Eco-environment of Bohai bay. J. Hydrodyn. 2006, 18, 34–42. [Google Scholar] [CrossRef]
- Feng, H.; Jiang, H.Y.; Gao, W.S.; Weinstein, M.P.; Zhang, Q.F.; Zhang, W.G.; Yu, L.Z.; Yuan, D.Y.; Tao, J.H. Metal contamination in sediments of the western Bohai Bay and adjacent estuaries, China. J. Environ. Manag. 2011, 92, 1185–1197. [Google Scholar] [CrossRef] [PubMed]
- HJ 1315–2023; Soil and Sediment—Determination of 19 Total Metal Elements—Inductively Coupled Plasma Mass Spectrometry. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2023.
- Zahra, A.; Hashmi, M.Z.; Malik, R.N.; Ahmed, Z. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah-Feeding tributary of the Rawal Lake Reservoir, Pakistan. Sci. Total Environ. 2014, 470–471, 925–933. [Google Scholar] [CrossRef]
- China National Environmental Monitoring Centre. Background Values of Elements in Soils of China; China Environmental Science and Technology Press: Beijing, China, 1990; p. 501.
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geo J. 1969, 2, 108–118. [Google Scholar]
- Liu, F.D.; Zheng, B.W.; Zheng, Y.; Mo, X.; Li, D.S. Accumulation risk and sources of heavy metals in supratidal wetlands along the west coast of the Bohai Sea. RSC Adv. 2019, 9, 30615–30627. [Google Scholar] [CrossRef]
- Liu, J.Y.; Lu, B.H.; Liu, Y.H.; Wang, L.X.; Liu, F.D.; Chen, Y.X.; Mustafa, G.; Qin, Z.R.; Lv, C.Q. Role of BP-ANN in simulating greenhouse gas emissions from global aquatic ecosystems via carbon component-environmental factor coupling. Sci. Total Environ. 2024, 930, 172722. [Google Scholar] [CrossRef]
- Li, Y.B.; Zhang, M.M.; Xu, R.; Lin, H.Z.; Sun, X.X.; Xu, F.Q.; Gao, P.; Kong, T.; Xiao, E.Z.; Yang, N.; et al. Arsenic and antimony co-contamination influences on soil microbial community composition and functions: Relevance to arsenic resistance and carbon, nitrogen, and sulfur cycling. Environ. Int. 2021, 153, 106522. [Google Scholar] [CrossRef] [PubMed]
- Kenya, E.; Kinyanjui, G.; Kipnyargis, A.; Kinyua, F.; Mwangi, M.; Khamis, F.; Mwirichia, R. Amplicon-based assessment of bacterial diversity and community structure in three tropical forest soils in Kenya. Heliyon 2022, 8, e11577. [Google Scholar] [CrossRef] [PubMed]
- Swamy, C.T.; Gayathri, D. High throughput sequencing study of foliose lichen-associated bacterial communities from India. Mol. Biol. Rep. 2021, 48, 2389–2394. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, N.E.; Ferry, M. ggtern: Ternary diagrams using ggplot2. J. Stat. Softw. 2019, 87, 1–17. [Google Scholar] [CrossRef]
- Zhang, G.L.; Bai, J.H.; Tebbe, C.C.; Huang, L.B.; Jia, J.; Wang, X.; Yu, L.; Zhao, Q.Q. Plant invasion reconstructs soil microbial assembly and functionality in coastal salt marshes. Mol. Ecol. 2022, 31, 4478–4494. [Google Scholar] [CrossRef]
- Knights, D.; Kuczynski, J.; Charlson, E.S.; Zaneveld, J.; Mozer, M.C.; Collman, R.G.; Bushman, F.D.; Knight, R.; Kelley, S.T. Bayesiam community-wied culture-independent microbial source tracking. Nat. Methods 2011, 8, 761–763. [Google Scholar] [CrossRef]
- Zhang, G.Z.; Bai, J.H.; Tebbe, C.C.; Zhao, Q.Q.; Jia, J.; Wang, W.; Wang, X.; Yu, L. Salinity controls soil microbial community structure and function in coastal estuarine wetlands. Environ. Microbiol. 2021, 23, 1020–1037. [Google Scholar] [CrossRef]
- Zhou, F.X.; Gao, X.L.; Zhang, Y.; Yuan, H.M.; Song, J.M.; Liu, K.; Yang, B.; Zhang, W. Potential mobility of inorganic nutrients and its controls at the sediment water interface in the main path of Kuroshio Current off eastern Taiwan. Mar. Pollut. Bull. 2017, 119, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.L.; Zhou, F.X.; Chen, C.T.A. Pollution status of the Bohai Sea: An overview of the environmental quality assessment related trace metals. Environ. Int. 2014, 62, 12–30. [Google Scholar] [CrossRef]
- Wang, Y.; Ling, M.; Liu, R.H.; Yu, P.; Tang, A.K.; Luo, X.X.; Ma, Q.M. Distribution and source identification of trace metals in the sediment of Yellow River Estuary and the adjacent Laizhou Bay. Phys. Chem. Earth 2017, 97, 62–70. [Google Scholar] [CrossRef]
- Li, H.J.; Gao, X.L.; Gu, Y.B.; Wang, R.R.; Xie, P.F.; Liang, M.; Ming, H.X.; Su, J. Comprehensive large-scale investigation and assessment of trace metal in the coastal sediments of Bohai Sea. Mar. Pollut. Bull. 2018, 129, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Artigas, F.; Loh, J.M.; Shin, J.Y.; Grzyb, J.; Yao, Y. Baseline and distribution of organic pollutants and heavy metals in tidal creek sediments after Hurricane Sandy in the Meadowlands of New Jersey. Environ. Earth Sci. 2017, 76, 293. [Google Scholar] [CrossRef]
- Zhou, X.H.; Liu, L.M.; Chen, X.; Chen, Z.G.; Zhang, J.P.; Li, Y.M.; Liu, B. Heavy metals distribution characteristics and ecological risk evaluation in surface sediments of Dammed Jinshan Lake. Environ. Sci. 2014, 35, 4127–4134. (In Chinese) [Google Scholar]
- Xia, Y.F.; Ling, X.F.; Fang, Y.; Xu, Z.; Liu, J.Y.; Liu, F.D. Effects of tidal dikes on the distribution and accumulation risk of trace metals in the coastal wetlands of Laizhou Bay, China. Water 2024, 16, 3230. [Google Scholar] [CrossRef]
- Wu, H.H.; Xu, C.B.; Wang, J.H.; Xiang, Y.; Ren, M.; Qie, H.T.; Zhang, Y.J.; Yao, R.H.; Li, L.; Lin, A.J. Health risk assessment based on source identification of heavy metals: A case study of Beiyun River, China. Ecotox Environ. Safe 2021, 213, 112046. [Google Scholar] [CrossRef]
- Jroundi, F.; Martinez-Ruiz, F.; Merroun, M.L.; Gonzalez-Muñoz, M.T. Exploring bacterial community composition in Mediterranean deep-sea sediments and their role in heavy metal accumulation. Sci. Total Environ. 2020, 712, 135600. [Google Scholar] [CrossRef] [PubMed]
- Aiman, U.; Mahmood, A.; Waheed, S.; Malik, R.N. Enrichment, geo-accumulation and risk surveillance of toxic metals for different environmental compartments from Mehmood Booti dumping site, Lahore city, Pakistan. Chemosphere 2016, 20, 356. [Google Scholar] [CrossRef]
- Huang, S.H.; Yang, Y.; Yuan, C.Y.; Ouyang, K.; Wang, B.; Wang, Z.X. Pollution evaluation of heavy metals in soil near smelting area by index of geoaccumulation (Igeo). IOP Conf. Ser. Earth Environ. Sci. 2017, 52, 012095. [Google Scholar] [CrossRef]
- Zhang, G.L.; Bai, J.H.; Zhao, Q.Q.; Lu, Q.Q.; Jia, J.; Wen, X.J. Heavy metals in wetland soils along a wetland-forming chronosequence in Yellow River Delta of China: Levels, sources and toxic risks. Ecol. Indic. 2016, 69, 331–339. [Google Scholar] [CrossRef]
- Ngatia, L.W.; De Oliveira, L.M.; Betiku, O.C.; Fu, R.; Moriasi, D.N.; Steiner, J.L.; Verser, J.A.; Taylor, R.W. Relationship of arsenic and chromium availability with carbon functional groups, aluminum and iron in Little Washita River Experimental Watershed Reservoirs, Oklahoma, USA. Ecotox Environ. Safe 2021, 207, 111468. [Google Scholar] [CrossRef]
- Liu, F.D.; Zhang, S.; Dong, Y.F.; Zheng, Y.; Li, D.S.; Wang, M.H. The distribution and enrichment of trace metals in the rainfall-driven supratidal wetlands of Tianjin, China. Clean-Soil. Air Water 2017, 45, 1700200. [Google Scholar] [CrossRef]
- Chai, Y.; Guo, J.; Chai, S.L.; Cai, J.; Xue, L.F.; Zhang, Q.W. Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area, Jilin Province, Northeast China. Chemosphere 2015, 134, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Franco-Uría, A.; López-Mateo, C.; Roca, E.; Fernández-Marcos, M.L. Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. J. Hazard. Mater. 2009, 165, 1008–1015. [Google Scholar] [CrossRef]
- Chen, D.Q.; Xie, Z.Y.; Zhang, Y.J.; Luo, X.L.; Guo, Q.R.; Yang, J.J.; Liang, Y.J. Source apportionment of soil heavy metals in Guangzhou Based on the PCA/APCS Model and Geostatistics. Ecol. Environ. Sci. 2016, 25, 1014–1022. (In Chinese) [Google Scholar]
- Bataille, C.P.; Willis, A.; Yang, X.; Liu, X.M. Continental igneous rock composition: A major control of past global chemical weathering. Sci. Adv. 2017, 3, e1602183. [Google Scholar] [CrossRef]
- Carrero, S.; Slorznick, S.P.; Fakra, S.C.; Sitar, M.C.; Bone, S.E.; Mauk, J.L.; Manning, A.H.; Swanson-Hysell, N.L.; Williams, K.H.; Banfield, J.F.; et al. Mineralogical, magnetic and geochemical data constrain the pathways and extent of weathering of mineralized sedimentary rocks. Geochim. Cosmochim. AC 2023, 343, 180–195. [Google Scholar] [CrossRef]
- Peng, B.; Piestrzynski, A.; Pieczonka, J.; Xiao, M.; Wang, Y.Z.; Xie, S.R.; Tang, X.Y.; Yu, C.X.; Song, Z. Mineralogical and geochemical constraints on environmental impacts from waste rock at Taojiang Mn-ore deposit, central Hunan, China. Environ. Geol. 2007, 52, 1277–1296. [Google Scholar] [CrossRef]
- Yu, X.; LeMonte, J.J.; Li, J.X.; Stuckey, J.W.; Sparks, D.L.; Cargill, J.G.; Russoniello, C.J.; Michael, H.A. Hydrologic control on arsenic cycling at the groundwater—Surface water interface of a tidal channel. Environ. Sci. Technol. 2023, 57, 222–230. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, B.H.; Liu, L.S.; Ma, Y.Q.; Lin, K.X.; Wang, X.; Xia, Y. Response behaviors of heavy metals at tidal currents interface and salinity interface in the estuary area. Environ. Sci. 2016, 37, 2989–3000. (In Chinese) [Google Scholar]
- Zhang, H.J.; Liu, Y.G.; Wang, Y.; Hou, L. Spatial distribution of heavy metals in the sediments of Yangzonghai lake wetland. J. Hydroecol. 2017, 38, 44–50. (In Chinese) [Google Scholar] [CrossRef]
- Verslycke, T.; Vangheluwe, M.; Heijerick, D.; Schamphelaere, K.D.; Sprang, P.V.; Janssen, C.R. The toxicity of metal mixtures to the estuarine mysid Neomysis integer (Crustacea: Mysidacea) under changing salinity. Aquat. Toxicol. 2003, 64, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Blust, R.; Kockelbergh, E.; Baillieul, M. Effect of salinity on the uptake of cadmium by the brine shrimp Artemia franciscana. Mar. Ecol. Prog. Ser. 1992, 84, 245–254. [Google Scholar] [CrossRef]
- Roast, S.D.; Widdows, J.; Jones, M.B. Effects of salinity and chemical speciation on cadmium accumulation and toxicity to two mysid species. Environ. Toxicol. Chem. 2001, 20, 1078–1084. [Google Scholar] [CrossRef]
- Santos Bermejo, J.C.; Beltrán, R.; Gómez, A. Spatial variations of heavy metals contamination in sediments from Odiel river (Southwest Spain). Environ. Int. 2003, 29, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Augustynowicz, J.; Sitek, E.; Latowski, D.; Wolowski, K.; Kowalczyk, A.; Przejczowski, R. Unique biocenosis as a foundation to develop a phytobial consortium for effective bioremediation of Cr(VI)-polluted waters and sediments. Environ. Pollut. 2021, 273, 116506. [Google Scholar] [CrossRef]
- Tan, W.F.; Liu, F.; Feng, X.H.; Huang, Q.Y.; Li, X.Y. Adsorption and redox reactions of heavy metals on Fe-Mn nodules from Chinese soils. J. Colloid. Interf. Sci. 2005, 284, 600–605. [Google Scholar] [CrossRef]
- Gasparatos, D. Sequestration of heavy metals from soil with Fe-Mn concretions and nodules. Environ. Chem. Lett. 2013, 11, 1–9. [Google Scholar] [CrossRef]
- An, B.; Zhao, D.Y. Immobilization of As (III)in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles. J. Hazard. Mater. 2012, 211, 332–341. [Google Scholar] [CrossRef]
- Hai, J.; Liu, L.H.; Tan, W.F.; Hao, R.; Qiu, G.H. Catelytic oxidation and adsorption of Cr(III) on iron-manganese nodules under oxic conditions. J. Hazard. Mater. 2020, 390, 122166. [Google Scholar] [CrossRef]
- Zhang, G.S.; Qu, J.H.; Liu, H.J.; Liu, R.P.; Wu, R.C. Preparation and evaluation of novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Water Res. 2007, 41, 1921–1928. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.Y.; Zhao, Y.X.; Xu, Z.; Chen, X.; Zhang, X.L.; Chen, Z.B.; Ban, Y.H. Arbuscular mycorrhizal fungi enhanced the drinking water treatment residue-based vertical flow constructed wetlands on the purification of arsenic-containing wastewater. J. Hazard. Mater. 2023, 465, 133241. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.M.; Zakeel, M.C.M.; Zavahir, J.S.; Marikar, F.M.M.T.; Jahan, I. Heavy metal accumulation in rice and aquatic plants used as human food: A general review. Toxics 2021, 9, 360. [Google Scholar] [CrossRef] [PubMed]
- Alexander, T.J.; Vonlanthen, P.; Seehausen, O. Does eutrophication-driven evolution change aquatic ecosystems? Philos. Trans. R. Soc. B 2017, 372, 1712. [Google Scholar] [CrossRef]
- Fortunato, C.S.; Herfort, L.; Zuber, P.; Baptista, A.M.; Crump, B.C. Spatial variability overwhelms seasonal patterns in bacterioplankton communities across a river to ocean gradient. ISME J. 2011, 6, 554–563. [Google Scholar] [CrossRef]
- Satinsky, B.M.; Fortunato, C.S.; Doherty, M.; Smith, C.B.; Sharma, S.; Ward, N.D. Metagenomic and metatranscriptomic inventories of the lower Amazon River, May 2011. Microbiome 2015, 3, 39. [Google Scholar] [CrossRef]
- Pan, K.; Wang, W.X. Trace metal contamination in estuarine and coastal environments in China. Sci. Total Environ. 2012, 421–422, 3–16. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.L. Riverine composition and estuarine geochemistry of particulate metals in China-Weathering features, anthropogenic impact and chemical fluxes. Estuar. Coast. Shelf Sci. 2002, 54, 1051–1070. [Google Scholar] [CrossRef]
- Sun, M.Y.; Dafforn, K.A.; Brown, M.V.; Johnston, E.L. Bacterial communities are sensitive indictors of contaminant stress. Mar. Pollut. Bull. 2012, 64, 1029–1038. [Google Scholar] [CrossRef]
- Martin, A.J.; Calvert, S.E. Hydrological and geochemical controls governing the distribution of trace metals in a mine-impacted lake. Environ. Geol. 2003, 43, 408–418. [Google Scholar] [CrossRef]
- Yuan, J.; Wen, T.; Zhang, H.; Zhao, M.L.; Pen, C.R.; Thomashow, L.S.; Shen, Q.R. Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt. ISME J. 2020, 14, 2936–2950. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Liu, Y.X.; Huang, L.Q. ImageGP: An easy-to-easy-use data visualization web server for scientific researchers. iMeta 2022, 1, e5. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Ra, K. Pollution and ecological risk assessments for heavy metals in coastal, river, and road-deposited sediments from Apia city in Upolu Island, Samoa. Mar. Pollut. Bull. 2023, 188, 114596. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Z.; Sheng, Y.Q.; Liu, Q.Q.; Li, Z.R. Ecological and environmental risks of heavy metals in sediments in Dingzi Bay, South Yellow Sea. Mar. Pollut. Bull. 2023, 188, 114683. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, L.L.; Zhang, X.X.; Jiang, S.H.; Gao, J.F.; Zhang, S.J. Distribution and pollution assess of heavy metals in surface sediments along the Weihai coast, China. Mar. Pollut. Bull. 2023, 190, 114885. [Google Scholar] [CrossRef]
- Tong, L. Element abundances of China’s continental crust and its sedimentary layer and upper continental crust. Chin. J. Geochem. 1995, 14, 26–32. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Liu, J.; Yang, X.; Ling, X.; Fang, Y.; Xu, Z.; Liu, F. Using Sediment Bacterial Communities to Predict Trace Metal Pollution Risk in Coastal Environment Management: Feasibility, Reliability, and Practicability. Toxics 2024, 12, 839. https://doi.org/10.3390/toxics12120839
Xia Y, Liu J, Yang X, Ling X, Fang Y, Xu Z, Liu F. Using Sediment Bacterial Communities to Predict Trace Metal Pollution Risk in Coastal Environment Management: Feasibility, Reliability, and Practicability. Toxics. 2024; 12(12):839. https://doi.org/10.3390/toxics12120839
Chicago/Turabian StyleXia, Yuanfen, Jiayuan Liu, Xuechun Yang, Xiaofeng Ling, Yan Fang, Zhen Xu, and Fude Liu. 2024. "Using Sediment Bacterial Communities to Predict Trace Metal Pollution Risk in Coastal Environment Management: Feasibility, Reliability, and Practicability" Toxics 12, no. 12: 839. https://doi.org/10.3390/toxics12120839
APA StyleXia, Y., Liu, J., Yang, X., Ling, X., Fang, Y., Xu, Z., & Liu, F. (2024). Using Sediment Bacterial Communities to Predict Trace Metal Pollution Risk in Coastal Environment Management: Feasibility, Reliability, and Practicability. Toxics, 12(12), 839. https://doi.org/10.3390/toxics12120839