The Impact of Blood Lead and Its Interaction with Occupational Factors and Air Pollution on Hypertension Prevalence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Outcomes
2.3. Measurement of Blood Lead
2.4. Covariates
2.5. Air Pollution and Meteorological Exposure
2.6. Statistical Analysis
2.7. Sensitivity Analyses
3. Results
3.1. Baseline Characteristic
3.2. Association of Blood Lead Levels with Hypertension
3.3. Potential Modifiers on the Relationship of Blood Lead Levels and Hypertension
3.4. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, L.M.; Friesen, M.C.; Xiang, Y.-B.; Cai, H.; Koh, D.-H.; Ji, B.-T.; Yang, G.; Li, H.-L.; Locke, S.J.; Rothman, N.; et al. Occupational Lead Exposure and Associations with Selected Cancers: The Shanghai Men’s and Women’s Health Study Cohorts. Environ. Health Perspect. 2016, 124, 97–103. [Google Scholar] [CrossRef]
- Walter, K. What Is Lead Poisoning? JAMA 2023, 329, 1040. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The Public Health Impact of Chemicals: Knowns and Unknowns—Data Addendum for 2019; WHO: Geneva, Switzerland, 2021.
- Chen, L.; Xie, J.; Ma, T.; Chen, M.; Gao, D.; Li, Y.; Ma, Y.; Wen, B.; Jiang, J.; Wang, X.; et al. Greenness Alleviates the Effects of Ambient Particulate Matter on the Risks of High Blood Pressure in Children and Adolescents. Sci. Total Environ. 2022, 812, 152431. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guideline for the Pharmacological Treatment of Hypertension in Adults; WHO: Geneva, Switzerland, 2021.
- Hu, S.-S. Report on Cardiovascular Health and Diseases in China 2021: An Updated Summary. J. Geriatr. Cardiol. 2023, 20, 399–430. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wang, X.; Wang, Z.; Zhang, L.; Chen, Z.; Zhu, M.; Chang, C.; Gao, R. Prevalence, Awareness, Treatment, and Control of Hypertension among Chinese Working Population: Results of a Workplace-Based Study. J. Am. Soc. Hypertens. 2018, 12, 311–322.e2. [Google Scholar] [CrossRef]
- He, P.; Yang, C.; He, D.; Zhao, S.; Xie, Y.; Wang, H.; Ma, J. Blood Lead, Systemic Inflammation, and Blood Pressure: Exploring Associations and Mediation Effects in Workers Exposed to Lead. Biol. Trace Elem. Res. 2021, 199, 2573–2581. [Google Scholar] [CrossRef]
- Bulka, C.M.; Scannell Bryan, M.; Persky, V.W.; Daviglus, M.L.; Durazo-Arvizu, R.A.; Parvez, F.; Slavkovich, V.; Graziano, J.H.; Islam, T.; Baron, J.A.; et al. Changes in Blood Pressure Associated with Lead, Manganese, and Selenium in a Bangladeshi Cohort. Environ. Pollut. 2019, 248, 28–35. [Google Scholar] [CrossRef]
- Were, F.H.; Moturi, M.C.; Gottesfeld, P.; Wafula, G.A.; Kamau, G.N.; Shiundu, P.M. Lead Exposure and Blood Pressure among Workers in Diverse Industrial Plants in Kenya. J. Occup. Environ. Hyg. 2014, 11, 706–715. [Google Scholar] [CrossRef]
- Yu, Y.-L.; Yang, W.-Y.; Thijs, L.; Melgarejo, J.D.; Yu, C.-G.; Wei, D.-M.; Wei, F.-F.; Nawrot, T.S.; Zhang, Z.-Y.; Staessen, J.A. Two-Year Responses of Office and Ambulatory Blood Pressure to First Occupational Lead Exposure. Hypertension 2020, 76, 1299–1307. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Liu, Q.; Sun, N.; Zhang, R.; Li, X.; Yuan, J. Association of occupational heat and noise exposure with hypertension. J. Prev. Med. 2019, 31, 1189–1192. [Google Scholar] [CrossRef]
- Wu, Q.; Han, L.; Xu, M.; Zhang, H.; Ding, B.; Zhu, B. Effects of Occupational Exposure to Dust on Chest Radiograph, Pulmonary Function, Blood Pressure and Electrocardiogram among Coal Miners in an Eastern Province, China. BMC Public Health 2019, 19, 1229. [Google Scholar] [CrossRef]
- Attarchi, M.; Golabadi, M.; Labbafinejad, Y.; Mohammadi, S. Combined Effects of Exposure to Occupational Noise and Mixed Organic Solvents on Blood Pressure in Car Manufacturing Company Workers. Am. J. Ind. Med. 2013, 56, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, S.; Chen, Z.; Yin, W.; Fu, W.; He, F.; Pan, Z.; Yi, G.; Tan, X. Relationship between Occupational Noise Exposure and Hypertension: Cross-Sectional Evidence from Real-World. Front. Public Health 2022, 10, 1037246. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Allen, J.; Bahnfleth, W.; Bennett, B.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.J.; Floto, A.; et al. Mandating Indoor Air Quality for Public Buildings. Science 2024, 383, 1418–1420. [Google Scholar] [CrossRef] [PubMed]
- Murga, A.; Kuga, K.; Yoo, S.-J.; Ito, K. Can the Inhalation Exposure of a Specific Worker in a Cross-Ventilated Factory Be Evaluated by Time- and Spatial-Averaged Contaminant Concentration? Environ. Pollut. 2019, 252, 1388–1398. [Google Scholar] [CrossRef]
- Choudhary, H.; Tarlo, S.M. Airway Effects of Traffic-Related Air Pollution on Outdoor Workers. Curr. Opin. Allergy Clin. Immunol. 2014, 14, 106–112. [Google Scholar] [CrossRef] [PubMed]
- China Hypertension Prevention Guidelines Revision Committee 2018 Chinese guidelines for the management of hypertension. Chin. J. Cardiol. 2019, 24, 24–56.
- World Health Organization. WHO Guideline for the Clinical Management of Exposure to Lead; WHO: Geneva, Switzerland, 2021.
- National Bureau of Statistics of China. Statistically Classified Methods for Large, Medium, Small and Micro Enterprises (2017). Available online: https://www.stats.gov.cn/sj/tjbz/gjtjbz/202302/t20230213_1902763.html (accessed on 9 September 2024).
- GBZ/T 229.1~4-2010/2012; Classification of Occupational Disease Hazards in the Workplace. Ministry of Health of the People’s Republic of China Standards Press of China: Beijing, China, 2012.
- Wei, J.; Li, Z.; Lyapustin, A.; Sun, L.; Peng, Y.; Xue, W.; Su, T.; Cribb, M. Reconstructing 1-Km-Resolution High-Quality PM2.5 Data Records from 2000 to 2018 in China: Spatiotemporal Variations and Policy Implications. Remote Sens. Environ. 2021, 252, 112136. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Xue, W.; Sun, L.; Fan, T.; Liu, L.; Su, T.; Cribb, M. The ChinaHighPM10 Dataset: Generation, Validation, and Spatiotemporal Variations from 2015 to 2019 across China. Environ. Int. 2021, 146, 106290. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Li, Z.; Li, K.; Dickerson, R.R.; Pinker, R.T.; Wang, J.; Liu, X.; Sun, L.; Xue, W.; Cribb, M. Full-Coverage Mapping and Spatiotemporal Variations of Ground-Level Ozone (O3) Pollution from 2013 to 2020 across China. Remote Sens. Environ. 2022, 270, 112775. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Wang, J.; Li, C.; Gupta, P.; Cribb, M. Ground-Level Gaseous Pollutants (NO2, SO2, and CO) in China: Daily Seamless Mapping and Spatiotemporal Variations. Atmos. Chem. Phys. 2023, 23, 1511–1532. [Google Scholar] [CrossRef]
- Yan, L.D.; Rouzier, V.; Pierre, J.L.; Lee, M.H.; Muntner, P.; Parsons, P.J.; Apollon, A.; St-Preux, S.; Malebranche, R.; Pierre, G.; et al. High Lead Exposure Associated with Higher Blood Pressure in Haiti: A Warning Sign for Low-Income Countries. Hypertension 2022, 79, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Gambelunghe, A.; Sallsten, G.; Borné, Y.; Forsgard, N.; Hedblad, B.; Nilsson, P.; Fagerberg, B.; Engström, G.; Barregard, L. Low-Level Exposure to Lead, Blood Pressure, and Hypertension in a Population-Based Cohort. Environ. Res. 2016, 149, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Nash, D.; Magder, L.; Lustberg, M.; Sherwin, R.W.; Rubin, R.J.; Kaufmann, R.B.; Silbergeld, E.K. Blood Lead, Blood Pressure, and Hypertension in Perimenopausal and Postmenopausal Women. JAMA 2003, 289, 1523. [Google Scholar] [CrossRef]
- Qu, Y.; Lv, Y.; Ji, S.; Ding, L.; Zhao, F.; Zhu, Y.; Zhang, W.; Hu, X.; Lu, Y.; Li, Y.; et al. Effect of Exposures to Mixtures of Lead and Various Metals on Hypertension, Pre-Hypertension, and Blood Pressure: A Cross-Sectional Study from the China National Human Biomonitoring. Environ. Pollut. 2022, 299, 118864. [Google Scholar] [CrossRef]
- Farzan, S.F.; Howe, C.G.; Chen, Y.; Gilbert-Diamond, D.; Cottingham, K.L.; Jackson, B.P.; Weinstein, A.R.; Karagas, M.R. Prenatal Lead Exposure and Elevated Blood Pressure in Children. Environ. Int. 2018, 121, 1289–1296. [Google Scholar] [CrossRef]
- Huang, Z. Association Between Blood Lead Level with High Blood Pressure in US (NHANES 1999–2018). Front. Public Health 2022, 10, 836357. [Google Scholar] [CrossRef]
- Vaziri, N.D. Mechanisms of Lead-Induced Hypertension and Cardiovascular Disease. Am. J. Physiol.-Heart Circ. Physiol. 2008, 295, H454–H465. [Google Scholar] [CrossRef] [PubMed]
- Farmand, F.; Ehdaie, A.; Roberts, C.K.; Sindhu, R.K. Lead-Induced Dysregulation of Superoxide Dismutases, Catalase, Glutathione Peroxidase, and Guanylate Cyclase. Environ. Res. 2005, 98, 33–39. [Google Scholar] [CrossRef]
- Vaziri, N.; Khan, M. Interplay of Reactive Oxygen Species and Nitric Oxide in the Pathogenesis of Experimental Lead-Induced Hypertension. Clin. Exp. Pharmacol. Physiol. 2007, 34, 920–925. [Google Scholar] [CrossRef]
- Toscano, C.M.; Simões, M.R.; Alonso, M.J.; Salaices, M.; Vassallo, D.V.; Fioresi, M. Sub-Chronic Lead Exposure Produces Β1-Adrenoceptor Downregulation Decreasing Arterial Pressure Reactivity in Rats. Life Sci. 2017, 180, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Simões, M.R.; Ribeiro Júnior, R.F.; Vescovi, M.V.A.; De Jesus, H.C.; Padilha, A.S.; Stefanon, I.; Vassallo, D.V.; Salaices, M.; Fioresi, M. Acute Lead Exposure Increases Arterial Pressure: Role of the Renin-Angiotensin System. PLoS ONE 2011, 6, e18730. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-K.; Lee, H.; Kwon, J.-T.; Kim, H.-J. A Polymorphism in AGT and AGTR1 Gene Is Associated with Lead-Related High Blood Pressure. J. Renin-Angiotensin-Aldosterone Syst. 2015, 16, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, H.-K.; Won, H.; Im, J.; Kwon, J.-T.; Kim, H.-J. Genetic Relationship between an Endothelin 1 Gene Polymorphism and Lead-Related High Blood Pressure. Mol. Cell. Toxicol. 2016, 12, 111–116. [Google Scholar] [CrossRef]
- Guallar, E.; Silbergeld, E.K.; Navas-Acien, A.; Malhotra, S.; Astor, B.C.; Sharrett, A.R.; Schwartz, B.S. Confounding of the Relation between Homocysteine and Peripheral Arterial Disease by Lead, Cadmium, and Renal Function. Am. J. Epidemiol. 2006, 163, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Wen, H.; Zhou, M.; Lei, T.; Shen, J.; Zhang, D.; Wang, R.; Wu, H.; Jiang, S.; Li, W. Low-Dose Combined Exposure of Carboxylated Black Carbon and Heavy Metal Lead Induced Potentiation of Oxidative Stress, DNA Damage, Inflammation, and Apoptosis in BEAS-2B Cells. Ecotoxicol. Environ. Saf. 2020, 206, 111388. [Google Scholar] [CrossRef]
- Baltrusaitis, J.; Chen, H.; Rubasinghege, G.; Grassian, V.H. Heterogeneous Atmospheric Chemistry of Lead Oxide Particles with Nitrogen Dioxide Increases Lead Solubility: Environmental and Health Implications. Environ. Sci. Technol. 2012, 46, 12806–12813. [Google Scholar] [CrossRef]
- Edwards, R.D.; Lam, N.L.; Zhang, L.; Johnson, M.A.; Kleinman, M.T. Nitrogen Dioxide and Ozone as Factors in the Availability of Lead from Lead-Based Paints. Environ. Sci. Technol. 2009, 43, 8516–8521. [Google Scholar] [CrossRef]
- Levin, R.; Zilli Vieira, C.L.; Mordarski, D.C.; Rosenbaum, M.H. Lead Seasonality in Humans, Animals, and the Natural Environment. Environ. Res. 2020, 180, 108797. [Google Scholar] [CrossRef]
Characteristics | Overall (N = 22,002) | Blood Lead Levels | |||
---|---|---|---|---|---|
≤20 μg/L (n = 9415) | 20~50 μg/L (n = 9000) | >50 μg/L (n = 3587) | p-Value | ||
Hypertension, n (%) | <0.001 | ||||
Yes | 2805 (12.75) | 1029 (10.93) | 1163 (12.92) | 613 (17.09) | |
No | 19,197 (87.25) | 8386 (89.07) | 7837 (87.08) | 2974 (82.91) | |
SBP, mmHg, mean (SD) | 122.85 (14.93) | 121.68 (14.57) | 123.38 (14.60) | 124.63 (16.37) | <0.001 |
DBP, mmHg, mean (SD) | 78.11 (10.67) | 77.49 (10.47) | 78.07 (10.53) | 79.82 (11.34) | <0.001 |
Age, year, mean (SD) | 34.83 (8.38) | 33.41 (7.95) | 34.66 (8.09) | 38.97 (8.83) | <0.001 |
Sex, n (%) | <0.001 | ||||
Male | 13,278 (60.35) | 5306 (56.36) | 5519 (61.32) | 2453 (68.39) | |
Female | 8724 (39.65) | 4109 (43.64) | 3481 (38.68) | 1134 (31.61) | |
Enterprise size, n (%) | <0.001 | ||||
Micro | 464 (2.11) | 249 (2.64) | 180 (2.00) | 35 (0.98) | |
Small | 6952 (31.60) | 2416 (25.66) | 2730 (30.33) | 1806 (50.35) | |
Medium | 5942 (27.01) | 2880 (30.59) | 2584 (28.71) | 478 (13.33) | |
Large | 7434 (33.79) | 3818 (40.55) | 2604 (28.93) | 1012 (28.21) | |
Unknown | 1210 (5.50) | 52 (0.55) | 902 (10.02) | 256 (7.14) | |
Dust exposure, n (%) | <0.001 | ||||
Yes | 6987 (31.76) | 1625 (17.26) | 4136 (45.96) | 1226 (34.18) | |
No | 15,015 (68.24) | 7790 (82.74) | 4864 (54.04) | 2361 (65.82) | |
Noise exposure, n (%) | <0.001 | ||||
Yes | 2671 (12.14) | 968 (10.28) | 1104 (12.27) | 599 (16.70) | |
No | 19,331 (87.86) | 8447 (89.72) | 7896 (87.73) | 2988 (83.30) | |
High temperature exposure, n (%) | <0.001 | ||||
Yes | 1279 (5.81) | 346 (3.67) | 544 (6.04) | 389 (10.84) | |
No | 20,723 (94.19) | 9069 (96.33) | 8456 (93.96) | 3198 (89.16) | |
BTEX exposure, n (%) | <0.001 | ||||
Yes | 1030 (4.68) | 596 (6.33) | 380 (4.22) | 54 (1.51) | |
No | 20,972 (95.32) | 8819 (93.67) | 8620 (95.78) | 3533 (98.49) | |
PM2.5, μg/m3, mean (SD) | 24.44 (2.33) | 24.27 (2.51) | 24.50 (2.16) | 24.77 (2.23) | <0.001 |
PM10, μg/m3, mean (SD) | 43.52 (3.70) | 43.38 (3.93) | 43.79 (3.41) | 43.19 (3.73) | <0.001 |
O3, μg/m3, mean (SD) | 102.78 (8.15) | 103.41 (8.08) | 102.35 (8.49) | 102.20 (7.27) | <0.001 |
SO2, μg/m3, mean (SD) | 7.48 (1.40) | 7.61 (1.14) | 7.11 (1.29) | 8.07 (1.93) | <0.001 |
NO2, μg/m3, mean (SD) | 29.16 (6.29) | 29.06 (6.53) | 29.60 (5.70) | 28.34 (6.91) | <0.001 |
Temperature, °C, mean (SD) | 23.74 (0.43) | 23.82 (0.24) | 23.80 (0.32) | 23.40 (0.75) | <0.001 |
Humidity, %, mean (SD) | 73.81 (2.81) | 73.96 (2.91) | 73.52 (2.80) | 74.15 (2.45) | <0.001 |
Outcomes | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|
SBP, β (95% CI) | ||||
≤20 | Ref. (0) | Ref. (0) | Ref. (0) | Ref. (0) |
20–50 | 2.45 (2.01, 2.88) | 1.46 (1.02, 1.89) | 1.27 (0.82, 1.71) | 1.24 (0.79, 1.70) |
>50 | 4.21 (3.56, 4.86) | 1.18 (0.53, 1.83) | 1.12 (0.47, 1.78) | 1.27 (0.60, 1.93) |
Ptrend | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
DBP, β (95% CI) | ||||
≤20 | Ref. (0) | Ref. (0) | Ref. (0) | Ref. (0) |
20–50 | 1.21 (0.90, 1.52) | 0.67 (0.35, 0.98) | 0.47 (0.15, 0.79) | 0.65 (0.32, 0.98) |
>50 | 2.84 (2.37, 3.30) | 0.96 (0.49, 1.43) | 0.88 (0.40, 1.35) | 1.02 (0.54, 1.50) |
Ptrend | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Hypertension, OR (95% CI) | ||||
≤20 | Ref. (1) | Ref. (1) | Ref. (1) | Ref. (1) |
20–50 | 1.36 (1.24, 1.49) | 1.21 (1.10, 1.33) | 1.22 (1.10, 1.34) | 1.26 (1.15, 1.40) |
>50 | 1.98 (1.75, 2.25) | 1.32 (1.16, 1.51) | 1.33 (1.17, 1.53) | 1.37 (1.19, 1.57) |
Ptrend | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Outcome | Hypertension | |||
---|---|---|---|---|
OR (95% CI) | Pinteraction | |||
Blood Lead Levels, μg/L | ≤20 | 20–50 | >50 | |
Dust exposure | ||||
No | Ref. (1) | 1.27 (1.02, 1.59) | 1.39 (1.07, 1.81) | 0.70 |
Yes | Ref. (1) | 1.23 (1.10, 1.38) | 1.35 (1.13, 1.60) | |
Noise exposure | ||||
No | Ref. (1) | 1.14 (0.82, 1.57) | 1.01 (0.69, 1.49) | 0.77 |
Yes | Ref. (1) | 1.27 (1.15, 1.41) | 1.41 (1.22, 1.64) | |
High temperature exposure | ||||
No | Ref. (1) | 1.18 (0.70, 1.99) | 0.99 (0.57, 1.72) | 0.71 |
Yes | Ref. (1) | 1.26 (1.14, 1.39) | 1.38 (1.20, 1.59) | |
BTEX exposure | ||||
No | Ref. (1) | 1.04 (0.63, 1.72) | 2.57 (0.93, 7.02) | 0.31 |
Yes | Ref. (1) | 1.27 (1.15, 1.40) | 1.34 (1.17, 1.53) |
Outcome | Hypertension | |||
---|---|---|---|---|
OR (95% CI) | Pinteraction | |||
Blood Lead Levels, μg/L | ≤20 | 20–50 | >50 | |
PM2.5 | ||||
Low | Ref. (1) | 1.13 (0.98, 1.31) | 1.27 (1.04, 1.55) | 0.22 |
High | Ref. (1) | 1.41 (1.23, 1.63) | 1.48 (1.22, 1.80) | |
PM10 | ||||
Low | Ref. (1) | 1.13 (0.97, 1.31) | 1.29 (1.07, 1.55) | 0.04 |
High | Ref. (1) | 1.41 (1.23, 1.62) | 1.39 (1.12, 1.72) | |
O3 | ||||
Low | Ref. (1) | 1.17 (1.01, 1.37) | 1.23 (0.99, 1.52) | 0.05 |
High | Ref. (1) | 1.34 (1.18, 1.53) | 1.47 (1.22, 1.76) | |
SO2 | ||||
Low | Ref. (1) | 1.14 (0.98, 1.33) | 1.31 (1.07, 1.60) | 0.28 |
High | Ref. (1) | 1.32 (1.16, 1.51) | 1.30 (1.05, 1.60) | |
NO2 | ||||
Low | Ref. (1) | 1.17 (1.01, 1.35) | 1.34 (1.11, 1.64) | 0.04 |
High | Ref. (1) | 1.38 (1.20, 1.59) | 1.30 (1.06, 1.60) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Y.; Wang, Y.; Nong, Q.; Hu, P.; Li, Z.; Huang, X.; Zhong, M.; Li, X.; Wu, S.; Zeng, F.; et al. The Impact of Blood Lead and Its Interaction with Occupational Factors and Air Pollution on Hypertension Prevalence. Toxics 2024, 12, 861. https://doi.org/10.3390/toxics12120861
Gong Y, Wang Y, Nong Q, Hu P, Li Z, Huang X, Zhong M, Li X, Wu S, Zeng F, et al. The Impact of Blood Lead and Its Interaction with Occupational Factors and Air Pollution on Hypertension Prevalence. Toxics. 2024; 12(12):861. https://doi.org/10.3390/toxics12120861
Chicago/Turabian StyleGong, Yajun, Ying Wang, Qiying Nong, Peixia Hu, Zhiqiang Li, Xiangyuan Huang, Meimei Zhong, Xinyue Li, Shaomin Wu, Fangfang Zeng, and et al. 2024. "The Impact of Blood Lead and Its Interaction with Occupational Factors and Air Pollution on Hypertension Prevalence" Toxics 12, no. 12: 861. https://doi.org/10.3390/toxics12120861
APA StyleGong, Y., Wang, Y., Nong, Q., Hu, P., Li, Z., Huang, X., Zhong, M., Li, X., Wu, S., Zeng, F., Zhao, N., Qin, Y., Liu, S., Hong, J., Hu, L., Zhang, W., & Huang, Y. (2024). The Impact of Blood Lead and Its Interaction with Occupational Factors and Air Pollution on Hypertension Prevalence. Toxics, 12(12), 861. https://doi.org/10.3390/toxics12120861