Rapid and Simultaneous Authentication of Six Laver Species Using Capillary Electrophoresis-Based Multiplex PCR
<p>Specificity of multiplex PCR. (<b>A</b>) Set1; <span class="html-italic">N. dentata</span>, <span class="html-italic">N. seriata</span>, <span class="html-italic">P. suborbiculata</span>, and 18S rRNA gene. (<b>B</b>) Set2; <span class="html-italic">N. yezoensis</span>, <span class="html-italic">N. tenera</span>, <span class="html-italic">N. haitanensis</span>, and 18S rRNA gene. Lane M, 100 bp ladder; lane P, mixture of each target DNA; lanes 1–17, <span class="html-italic">N. yezoensis</span>, <span class="html-italic">N. tenera</span>, <span class="html-italic">N. haitanensis</span>, <span class="html-italic">N. dentata</span>, <span class="html-italic">N. seriata</span>, <span class="html-italic">P. suborbiculata</span>, <span class="html-italic">P. koreana</span>, <span class="html-italic">N. katadae</span>, <span class="html-italic">P. kuniedae</span>, <span class="html-italic">P. ishigecola</span>, <span class="html-italic">U. pinnatifida</span>, <span class="html-italic">C. costata</span>, <span class="html-italic">U. crenata</span>, <span class="html-italic">S. japonica</span>, <span class="html-italic">S. sculpera</span>, <span class="html-italic">S. fusiforme</span>, <span class="html-italic">G. longissima</span>; lane N, non-template.</p> "> Figure 2
<p>Sensitivity of singleplex PCR for detecting (<b>A</b>) <span class="html-italic">N. dentata</span>, (<b>B</b>) <span class="html-italic">N. haitanensis</span>, (<b>C</b>) <span class="html-italic">N. seriata</span>, (<b>D</b>) <span class="html-italic">N. yezoensis</span>, (<b>E</b>) <span class="html-italic">N. tenera</span>, and (<b>F</b>) <span class="html-italic">P. suborbiculata</span>. Gel-like images of PCR products obtained by serial-diluted genomic DNA of target. Lane M, 100 bp DNA ladder; lanes 1–7, 10, 1, 0,1, 0.01, 0.001, 0.0001, and 0.00001 ng of each target genomic DNA; lane N, non-template.</p> "> Figure 3
<p>Sensitivity of multiplex PCR of set1 (<span class="html-italic">N. dentata</span>, <span class="html-italic">N. seriata</span>, <span class="html-italic">P. suborbiculata</span>, and 18S rRNA gene). Gel-like (<b>top</b>) and electropherogram (<b>bottom</b>) images of multiplex PCR products obtained by serial-diluted mixed DNA. Lane M, 100 bp DNA ladder; lanes 1–7, 10, 1, 0,1, 0.01, 0.001, 0.0001, and 0.00001 ng of mixed genomic DNA; lane N, non-template. In the electropherogram, the X-axis represents amplicon size (bp) and the Y-axis represents the measurement response of fluorescence intensity. PS, <span class="html-italic">P. suborbiculata</span>; NS, <span class="html-italic">N. seriata</span>; ND, <span class="html-italic">N. dentata</span>.</p> "> Figure 4
<p>Sensitivity of multiplex PCR of set2 (<span class="html-italic">N. yezoensis</span>, <span class="html-italic">N. tenera</span>, <span class="html-italic">N. haitanensis</span>). Gel-like (<b>top</b>) and electropherogram (<b>bottom</b>) images of multiplex PCR products obtained by serial-diluted mixed DNA. Lane M, 100 bp DNA ladder; lanes 1–7, 10, 1, 0,1, 0.01, 0.001, 0.0001, and 0.00001 ng of mixed genomic DNA; lane N, non-template. In the electropherogram, the X-axis represents amplicon size (bp) and the Y-axis represents the measurement response of fluorescence intensity. NH, <span class="html-italic">N. haitanensis</span>; NT, <span class="html-italic">N. tenera</span>; NY, <span class="html-italic">N. yezoensis</span>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction
2.3. Primer Design
2.4. PCR Conditions
2.4.1. Singleplex PCR Conditions
2.4.2. Multiplex PCR Conditions
2.4.3. Electrophoresis
2.5. Specificity and Sensitivity
2.6. DNA Sequencing
2.7. Statistical Analysis
3. Results and Discussion
3.1. Specificity of the Primers
3.2. Optimization of Multiplex PCR
3.3. Sensitivity of Singleplex and Multiplex PCR
3.4. Laver Authentication Using Multiplex PCR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thi, N.D.; Hwang, E.S. Effects of laver extracts on adhesion, invasion, and migration in SK-Hep1 human hepatoma cancer cells. Biosci. Biotechnol. Biochem. 2014, 78, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Cho, T.J.; Rhee, M.S. Health functionality and quality control of laver (Porphyra, Pyropia): Current issues and future perspectives as an edible seaweed. Mar. Drugs 2020, 18, 14. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Wang, J.; Wang, S.; Xu, X. Porphyra species: A mini-review of its pharmacological and nutritional properties. J. Med. Food 2016, 19, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Bito, T.; Teng, F.; Watanabe, F. Bioactive compounds of edible purple laver Porphyra sp. (Nori). J. Agric. Food Chem. 2017, 65, 10685–10692. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, F.; Yabuta, Y.; Bito, T.; Teng, F. Vitamin B12-containing plant food sources for vegetarians. Nutrients 2014, 6, 1861–1873. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.J.; Sampaio, I.; da Silva, E.M.; Alcântara, J.V.L.; Santos, S. Molecular authentication by DNA barcoding and multiplex PCR assay reveals mislabeling and commercial fraud of the Acoupa weakfish (Cynoscion acoupa), an economically important sciaenid marketed in Brazil. Food Control 2020, 117, 107351. [Google Scholar] [CrossRef]
- Adibah, A.B.; Syazwan, S.; Haniza Hanim, M.Z.; Badrul Munir, M.Z.; Intan Faraha, A.G.; Siti Azizah, M.N. Evaluation of DNA barcoding to facilitate the authentication of processed fish products in the seafood industry. LWT 2020, 129, 109585. [Google Scholar] [CrossRef]
- Ji, C.; He, Y.; Xing, Y.; Hua, M.Z.; Liu, W.; Xie, Y.; Ba, H.; Yang, M.; He, X.; Zheng, W.; et al. Development of a PCR-based lateral flow immunoassay for the identification of rainbow trout ingredient in foods. Food Control 2023, 154, 110034. [Google Scholar] [CrossRef]
- Uddin, S.M.K.; Hossain, M.A.M.; Chowdhury, Z.Z.; Johan, M.R. Bin Short targeting multiplex PCR assay to detect and discriminate beef, buffalo, chicken, duck, goat, sheep and pork DNA in food products. Food Addit. Contam.—Part A Chem. Anal. Control. Expo. Risk Assess. 2021, 38, 1273–1288. [Google Scholar] [CrossRef]
- Rodríguez-Ramírez, R.; González-Córdova, A.F.; Vallejo-Cordoba, B. Review: Authentication and traceability of foods from animal origin by polymerase chain reaction-based capillary electrophoresis. Anal. Chim. Acta 2011, 685, 120–126. [Google Scholar] [CrossRef]
- Catanese, G.; Manchado, M.; Fernández-Trujillo, A.; Infante, C. A multiplex-PCR assay for the authentication of mackerels of the genus Scomber in processed fish products. Food Chem. 2010, 122, 319–326. [Google Scholar] [CrossRef]
- Kwawukume, S.; Velez, F.J.; Williams, D.; Cui, L.; Singh, P. Rapid PCR-lateral flow assay for the onsite detection of Atlantic white shrimp. Food Chem. Mol. Sci. 2023, 6, 100164. [Google Scholar] [CrossRef]
- Lee, G.Y.; Kim, E.; Yang, S.M.; Kim, H.Y. Rapid on-site identification for three arcidae species (Anadara kagoshimensis, Tegillarca granosa, and Anadara broughtonii) using ultrafast PCR combined with direct DNA extraction. Foods 2022, 11, 2449. [Google Scholar] [CrossRef]
- Hadziavdic, K.; Lekang, K.; Lanzen, A.; Jonassen, I.; Thompson, E.M.; Troedsson, C. Characterization of the 18s rRNA gene for designing universal eukaryote specific primers. PLoS ONE 2014, 9, e87624. [Google Scholar] [CrossRef]
- Kotsanopoulos, K.V.; Exadactylos, A.; Gkafas, G.A.; Martsikalis, P.V.; Parlapani, F.F.; Boziaris, I.S.; Arvanitoyannis, I.S. The use of molecular markers in the verification of fish and seafood authenticity and the detection of adulteration. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1584–1654. [Google Scholar] [CrossRef]
- Uddin, S.M.K.; Hossain, M.A.M.; Chowdhury, Z.Z.; Johan, M.R. Detection and discrimination of seven highly consumed meat species simultaneously in food products using heptaplex PCR-RFLP assay. J. Food Compos. Anal. 2021, 100, 103938. [Google Scholar] [CrossRef]
- Moon, J.C.; Kim, J.H.; Jang, C.S. Development of multiplex PCR for species-specific identification of the Poaceae family based on chloroplast gene, rpoC2. Appl. Biol. Chem. 2016, 59, 201–207. [Google Scholar] [CrossRef]
- Puente-Lelievre, C.; Eischeid, A.C. Development and evaluation of a real-time PCR multiplex assay for the detection of allergenic peanut using chloroplast DNA markers. J. Agric. Food Chem. 2018, 66, 8623–8629. [Google Scholar] [CrossRef] [PubMed]
- Mondal, D.; Mandal, N. Molecular phylogeny of mitochondrial DNA: Shrimp species identification by multiplex and real-time PCR. Food Control 2020, 108, 106868. [Google Scholar] [CrossRef]
- Wilai, P.; Namgay, R.; Made Ali, R.S.; Saingamsook, J.; Saeung, A.; Junkum, A.; Walton, C.; Harbach, R.E.; Somboon, P. A multiplex PCR based on mitochondrial COI sequences for identification of members of the Anopheles barbirostris complex (Diptera: Culicidae) in Thailand and other countries in the region. Insects 2020, 11, 409. [Google Scholar] [CrossRef] [PubMed]
- Travadi, T.; Shah, A.P.; Pandit, R.; Sharma, S.; Joshi, C.; Joshi, M. Detection of carica papaya adulteration in Piper nigrum using chloroplast DNA marker-based PCR assays. Food Anal. Methods 2023, 16, 107–114. [Google Scholar] [CrossRef]
- Lee, Y.M.; Lee, S.; Kim, H.Y. A multiplex PCR assay combined with capillary electrophoresis for the simultaneous identification of atlantic cod, pacific cod, blue whiting, haddock, and alaska pollock. Foods 2021, 10, 2631. [Google Scholar] [CrossRef]
- Potapov, V.; Ong, J.L. Examining sources of error in PCR by single-molecule sequencing. PLoS ONE 2017, 12, e0169774. [Google Scholar] [CrossRef]
- Klapper, R.; Schröder, U. Verification of authenticity: A rapid identification method for commercial scallop species through multiplex real-time PCR. Food Control 2021, 121, 107574. [Google Scholar] [CrossRef]
- Lee, G.Y.; Yang, S.M.; Kim, H.Y. Development and intralaboratory validation of three Arcidae species using a multiplex polymerase chain reaction assay combined with capillary electrophoresis. Food Sci. Biotechnol. 2023, 32, 1395–1404. [Google Scholar] [CrossRef]
- Ali, M.E.; Razzak, M.A.; Hamid, S.B.A.; Rahman, M.M.; Amin, M.A.; Rashid, N.R.A. Asing Multiplex PCR assay for the detection of five meat species forbidden in Islamic foods. Food Chem. 2015, 177, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Wu, J.; Zhang, J.; Pan, A.; Quan, S.; Zhang, D.; Kim, H.Y.; Li, X.; Zhou, S.; Yang, L. Development and inter-laboratory transfer of a decaplex polymerase chain reaction assay combined with capillary electrophoresis for the simultaneous detection of ten food allergens. Food Chem. 2016, 199, 799–808. [Google Scholar] [CrossRef]
- Wilwet, L.; Shakila, R.J.; Sivaraman, B.; Nayak, B.B.; Kumar, H.S.; Jaiswar, A.K.; Jeyasekaran, G. Rapid detection of fraudulence in seven commercial shrimp products by species-specific PCR assays. Food Control 2021, 124, 107871. [Google Scholar] [CrossRef]
- Brenn, C.; Schröder, U.; Hanel, R.; Martínez Arbizu, P. A multiplex real-time PCR screening assay for routine species identification of four commercially relevant crustaceans. Food Control 2021, 125, 107986. [Google Scholar] [CrossRef]
- Choi, S.J.; Kim, Y.; Kim, D.W.; Oh, D.R.; Kim, Y.; Bae, D. The complete mitochondrial genome of Neoporphyra dentata (Bangiales, Rhodophyta). Mitochondrial DNA Part B Resour. 2022, 7, 1411–1412. [Google Scholar] [CrossRef]
- Giantsis, I.A.; Tokamani, M.; Triantaphyllidis, G.; Tzatzani, S.; Chatzinikolaou, E.; Toros, A.; Bouchorikou, A.; Chatzoglou, E.; Miliou, H.; Sarantopoulou, J.; et al. Development of multiplex PCR and melt–curve analysis for the molecular identification of four species of the mullidae family, available in the market. Genes 2023, 14, 960. [Google Scholar] [CrossRef]
- Saetang, J.; Benjakul, S. Identification and differentiation of Asian seabass and mangrove red snapper fillets by CYTB sequence-based PCR analysis. J. Food Meas. Charact. 2022, 16, 4596–4601. [Google Scholar] [CrossRef]
- Velasco, A.; Ramilo-Fernández, G.; Denis, F.; Oliveira, L.; Shum, P.; Silva, H.; Sotelo, C.G. A new rapid method for the authentication of common octopus (Octopus vulgaris) in seafood products using recombinase polymerase amplification (rpa) and lateral flow assay (lfa). Foods 2021, 10, 1825. [Google Scholar] [CrossRef]
- Tafvizi, F.; Hashemzadegan, M. Specific identification of chicken and soybean fraud in premium burgers using multiplex-PCR method. J. Food Sci. Technol. 2016, 53, 816–823. [Google Scholar] [CrossRef]
Scientific Name | Algae | Accession no. (rbcL and rbcS) |
---|---|---|
Neoporphyra dentata | Red algae | LC521919.1, LC521919.1 |
Neoporphyra haitanensis | Red algae | KC464603.1, KC464603.1 |
Neoporphyra seriata | Red algae | LC505532.1, LC505532.1 |
Pyropia suborbiculata | Red algae | AB118580.1, AB118580.1 |
Neopyropia yezoensis | Red algae | MT876197.1, MT876197.1 |
Neopyropia tenera | Red algae | AB118576.1, AB118576.1 |
Porphyra koreana | Red algae | LC327005.1, LC327005.1 |
Neopyropia katadae | Red algae | AB118583.1, AB118583.1 |
Pyropia kuniedae | Red algae | LC505521.1, LC505521.1 |
Pyropia ishigecola | Red algae | GQ427224.1 |
Undaria pinnatifida | Brown algae | KP298002.1, KP298002.1 |
Costaria costata | Brown algae | KR336545.1, KR336545.1 |
Saccharina japonica | Brown algae | JQ405663.1, JQ405663.1 |
Saccharina sculpera | Brown algae | JX442492.1, AF318981.1 |
Sargassum fusiforme | Brown algae | MN794016.1, MN794016.1 |
Gracilaria vermiculophylla | Red algae | OP978508.1, OP978508.1 |
Set | Species | Gene | Primer | Sequence (5′→3′) | Size (bp) | Conc. (µM) | Reference |
---|---|---|---|---|---|---|---|
Set 1 | N. haitanensis | rbcS | HA_F | CCT TCC AGA CCT AAC TGA TGA AC | 127 | 1.6 | This study |
HA_R | TCC CCA TAA TTC CCA ATA TGA G | ||||||
N. tenera | rbcL | TE_F | CTA CTT GAA AGC GAA ACA GAT ATA | 169 | 1.8 | This study | |
TE_R | CAC CAC CAA ACT GAA GAA CC | ||||||
N. yezoensis | rbcL | YE_F | GCT GTT AAA GCT CTT CGC TTG | 211 | 0.8 | This study | |
YE_R | AAT CAA GAC CGC CTT TCA GG | ||||||
18S rRNA | 18S rRNA | 18S_F | GGT GCA TGG CCG TTC TTA GT | 89 | 0.2 | [14] | |
18S_R | TGC GCG CAC CTA TTT AGC AG | This study | |||||
Set 2 | N. dentata | rbcS | DE_F | GAG CAA ATT AAT AAG CAG CTT ACT TAC | 274 | 0.6 | This study |
DE_R | CTG GCT CGT TAG CAG GTC G | ||||||
P. suborbiculata | rbcL | SU_F | CAG GTG CAA CTG CTA ATA AAG | 117 | 2.6 | This study | |
SU_R | GTC CAC AAG TTT TAG CTG CA | ||||||
N. seriata | rbcL | SE_F | CTG GTA AAA ATT ATG GAA GAG TGG TG | 195 | 0.32 | This study | |
SE_R | TCG CGG CCG TTA CGT TTA AG | ||||||
18S rRNA | 18S rRNA | 18S_F | GGT GCA TGG CCG TTC TTA GT | 89 | 0.4 | [14] | |
18S_R | TGC GCG CAC CTA TTT AGC AG | This study |
No. | Country (Market) | Type | Labeling | Detection Results by Multiplex PCR 1 | |||||
---|---|---|---|---|---|---|---|---|---|
NY | NT | NH | ND | PS | NS | ||||
P1 | Japan (Online) | Seasoned | Laver | + | − | − | − | − | − |
P2 | Japan (Online) | Seasoned | Laver | + | − | − | − | − | − |
P3 | Japan (Online) | Seasoned | Laver | + | − | − | − | − | − |
P4 | Japan (Online) | Seasoned | Laver | + | − | − | − | − | − |
P5 | China (Online) | Dried | N. haitanensis | − | − | + | − | − | − |
P6 | China (Online) | Dried | N. haitanensis | − | − | + | − | − | − |
P7 | China (Online) | Dried | N. haitanensis | − | − | + | − | − | − |
P8 | Thailand (Online) | Seasoned | Laver | + | − | − | − | + | − |
P9 | Thailand (Online) | Seasoned | Laver | + | − | − | − | − | − |
P10 | Republic of Korea (Gyeonggi) | Seasoned | Laver | + | − | − | + | + | + |
P11 | Republic of Korea (Gyeonggi) | Seasoned | Laver | + | − | − | + | + | + |
P12 | Republic of Korea (Gyeonggi) | Seasoned | Laver | + | − | − | + | + | + |
P13 | Republic of Korea (Gyeonggi) | Seasoned | Laver | + | − | − | + | + | + |
P14 | Republic of Korea (Gyeonggi) | Seasoned | Laver | + | − | − | − | + | + |
P15 | Republic of Korea (Gyeonggi) | Seasoned | Laver | + | − | − | − | + | + |
P16 | Republic of Korea (Gyeonggi) | Seasoned | Laver | + | − | − | − | + | + |
P17 | Republic of Korea (Gyeonggi) | Seasoned | Laver | + | − | − | − | + | − |
P18 | Republic of Korea (Gyeonggi) | Seasoned | Laver | + | − | − | − | − | − |
P19 | Republic of Korea (Gyeonggi) | Seasoned | Laver | + | − | − | − | − | − |
P20 | Republic of Korea (Gyeonggi) | Seasoned | Laver | + | − | − | − | + | − |
P21 | Republic of Korea (Gyeonggi) | Roasted | Laver | + | − | − | + | + | − |
P22 | Republic of Korea (Gyeonggi) | Seasoned | Laver | + | − | − | − | + | − |
P23 | Republic of Korea (Gyeonggi) | Seasoned | Laver | + | − | − | − | + | − |
P24 | Republic of Korea (Gyeonggi) | Seasoned | Laver | + | − | − | − | + | − |
P25 | Republic of Korea (Gyeonggi) | Roasted | Laver | + | − | − | + | + | + |
P26 | Republic of Korea (Jeolla) | Roasted | N. dentata | + | − | − | + | + | − |
P27 | Republic of Korea (Gyeonggi) | Roasted | Laver | + | − | − | − | + | + |
P28 | Republic of Korea (Gyeonggi) | Seasoned | Laver | + | − | − | − | − | − |
P29 | Republic of Korea (Gyeonggi) | Seasoned | Laver | + | − | − | − | + | + |
P30 | Republic of Korea (Jeolla) | Roasted | N. dentata | + | − | − | + | + | − |
P31 | Republic of Korea (Jeolla) | Roasted | N. tenera | + | − | − | − | + | − |
P32 | Republic of Korea (Jeolla) | Roasted | N. tenera | + | − | − | + | + | − |
P33 | Republic of Korea (Gyeonggi) | Roasted | Laver | + | − | − | + | − | − |
P34 | Republic of Korea (Jeolla) | Roasted | N. tenera | + | − | − | + | + | − |
P35 | Republic of Korea (Gyeonggi) | Roasted | Laver | + | − | − | − | − | + |
P36 | Republic of Korea (Gyeonggi) | Seasoned | Laver | + | − | − | − | + | − |
P37 | Republic of Korea (Jeolla) | Seasoned | N. dentata | + | − | − | + | + | + |
P38 | Republic of Korea (Gyeonggi) | Seasoned | Laver | + | − | − | − | + | − |
P39 | Republic of Korea (Gyeonggi) | Seasoned | Laver | + | − | − | − | + | − |
P40 | Republic of Korea (Gyeonggi) | Roasted | Laver | + | − | − | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.-M.; Kim, J.-S.; Kim, E.; Kim, H.-Y. Rapid and Simultaneous Authentication of Six Laver Species Using Capillary Electrophoresis-Based Multiplex PCR. Foods 2024, 13, 363. https://doi.org/10.3390/foods13030363
Yang S-M, Kim J-S, Kim E, Kim H-Y. Rapid and Simultaneous Authentication of Six Laver Species Using Capillary Electrophoresis-Based Multiplex PCR. Foods. 2024; 13(3):363. https://doi.org/10.3390/foods13030363
Chicago/Turabian StyleYang, Seung-Min, Jun-Su Kim, Eiseul Kim, and Hae-Yeong Kim. 2024. "Rapid and Simultaneous Authentication of Six Laver Species Using Capillary Electrophoresis-Based Multiplex PCR" Foods 13, no. 3: 363. https://doi.org/10.3390/foods13030363
APA StyleYang, S. -M., Kim, J. -S., Kim, E., & Kim, H. -Y. (2024). Rapid and Simultaneous Authentication of Six Laver Species Using Capillary Electrophoresis-Based Multiplex PCR. Foods, 13(3), 363. https://doi.org/10.3390/foods13030363