Preparation, Characterization, and Antioxidant Activity of L-Ascorbic Acid/HP-β-Cyclodextrin Inclusion Complex-Incorporated Electrospun Nanofibers
<p>Schematic illustration of molecular structure of: (<b>a</b>) L-ascorbic acid, (<b>b</b>) hydroxypropyl-<span class="html-italic">β</span>-cyclodextrin, and (<b>c</b>) formation of LAA/HP-<span class="html-italic">β</span>-CD-NFs, via the electrospinning technique.</p> "> Figure 2
<p>Graphical representation of continuous variation plot (Job plot) for the complexation of LAA with HP-<span class="html-italic">β</span>-CD, from absorbance measurements at 25 °C. R = [(LAA)/ (LAA) + (HP-<span class="html-italic">β</span>-CD)], ∆A = absorbance difference of LAA with and without HP-<span class="html-italic">β</span>-CD.</p> "> Figure 3
<p>Solid state characterization of LAA/HP-<span class="html-italic">β</span>-CD-NFs. (<b>a</b>) Surface micrograph of LAA/HP-<span class="html-italic">β</span>-CD-NFs captured by scanning electron microscope, (<b>b</b>,<b>c</b>) photographs of the obtained LAA/HP-<span class="html-italic">β</span>-CD-NFs and electrospinning solution, respectively, (<b>d</b>) histogram representing average diameter of LAA/HP-<span class="html-italic">β</span>-CD-NFs, determined using the ImageJ 1.53t software, based on at least 50 counts, (<b>e</b>) FT-IR spectrum and (<b>f</b>) XRD diffractogram of LAA (blue, stars in red color indicates sharp diffraction peaks), HP-<span class="html-italic">β</span>-CD (green), and LAA/HP-<span class="html-italic">β</span>-CD-NFs (orange).</p> "> Figure 4
<p>Thermal analysis representing overlay thermogram: (<b>a</b>) DSC, (<b>b</b>) TGA, and (<b>c</b>) DTG analyses of LAA (blue), HP-<span class="html-italic">β</span>-CD (green), and LAA/HP-<span class="html-italic">β</span>-CD-NFs (orange).</p> "> Figure 5
<p>Nuclear magnetic resonance spectroscopy characterization. (<b>a</b>) <sup>1</sup>H NMR of LAA, HP-<span class="html-italic">β</span>-CD in DMSO-d<sub>6</sub>, and LAA/HP-<span class="html-italic">β</span>-CD-NF in D<sub>2</sub>O, (<b>b</b>) 2-D NOESY spectrum of LAA/HP-<span class="html-italic">β</span>-CD-NF in D<sub>2</sub>O, demonstrating contour region (zoomed in region), revealing interaction of LAA protons with protons of HP-<span class="html-italic">β</span>-CD.</p> "> Figure 6
<p>(<b>a</b>) Graphical representation of concentration-dependent antioxidant performance (% DPPH radical scavenging) of LAA and LAA/HP-<span class="html-italic">β</span>-CD-NF. Visual representation of series of different concentrations of obtained solutions of (<b>b</b>) LAA and (<b>c</b>) LAA/HP-<span class="html-italic">β</span>-CD-NF, demonstrating change in color of sample solutions (due to scavenging of DPPH radical), from purple to yellow at highest concentration of LAA in LAA/HP-<span class="html-italic">β</span>-CD-NF (30 µM), indicating its antioxidant potential. The values are expressed as mean ± standard deviation (n = 3), and the statistical analysis at the significance level of * <span class="html-italic">p</span> < 0.05 was achieved by using one-way analysis of variance (ANOVA), followed by Tukey’s post hoc test, using GraphPad Prism 9 software.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Electrospinning Solution
2.3. Electrospinning of LAA/HP-β-CD Solution
2.4. Characterization and Measurements
2.4.1. Construction of Job Plot
2.4.2. Determination of Conductivity and Viscosity of Electrospinning Solution, and Entrapment Efficiency of LAA/HP-β-CD-NF
2.4.3. Morphological Analysis of Nanofibers
2.4.4. Fourier-Transform Infrared Spectroscopy (FT-IR) Analyses
2.4.5. Powder X-ray Diffractometry (PXRD) Analyses
2.4.6. Thermal Behavior Analysis
2.4.7. Nuclear Magnetic Resonance (NMR) Analyses
2.4.8. DPPH Antioxidant Radical Scavenging Assay
2.4.9. Statistical Analyses
3. Results and Discussion
3.1. Determination of Complex Stoichiometry via Job Plot
3.2. Measurement of Conductivity and Viscosity of the Electrospinning Solution, and Entrapment Efficiency of LAA/ HP-β-CD-NF
3.3. Surface Morphology of Nanofibers
3.4. Fourier-Transform Infrared Spectroscopy (FT-IR) Studies
3.5. Powder X-ray Diffractometry (PXRD) Analysis
3.6. Thermal Behavior Analyses
3.7. Nuclear Magnetic Resonance (NMR) Studies
3.8. DPPH Antioxidant Radical Scavenging Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moritz, B.; Schmitz, A.E.; Rodrigues, A.L.S.; Dafre, A.L.; Cunha, M.P. The role of vitamin C in stress-related disorders. J. Nutr. Biochem. 2020, 85, 108459. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Jana, N.R. Enhanced Therapeutic Applications of Vitamin C via Nanotechnology-Based Pro-Oxidant Properties: A Review. ACS Appl. Nano Mater. 2022, 5, 4583–4596. [Google Scholar] [CrossRef]
- Rodrigues da Silva, M.; Schapochnik, A.; Peres Leal, M.; Esteves, J.; Bichels Hebeda, C.; Sandri, S.; Pavani, C.; Ratto Tempestini Horliana, A.C.; Farsky, S.H.P.; Lino-dos-Santos-Franco, A. Beneficial effects of ascorbic acid to treat lung fibrosis induced by paraquat. PLoS ONE 2018, 13, e0205535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comunian, T.; Babazadeh, A.; Rehman, A.; Shaddel, R.; Akbari-Alavijeh, S.; Boostani, S.; Jafari, S.M. Protection and controlled release of vitamin C by different micro/nanocarriers. Crit. Rev. Food Sci. Nutr. 2022, 62, 3301–3322. [Google Scholar] [CrossRef] [PubMed]
- Caritá, A.C.; Fonseca-Santos, B.; Shultz, J.D.; Michniak-Kohn, B.; Chorilli, M.; Leonardi, G.R. Vitamin C: One compound, several uses. Advances for delivery, efficiency and stability. Nanomed. Nanotechnol. Biol. Med. 2020, 24, 102117. [Google Scholar] [CrossRef]
- dos Santos, C.; Buera, P.; Mazzobre, F. Novel trends in cyclodextrins encapsulation. Applications in food science. Curr. Opin. Food Sci. 2017, 16, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez Pereira, A.; Carpena, M.; García Oliveira, P.; Mejuto, J.C.; Prieto, M.A.; Simal Gandara, J. Main Applications of Cyclodextrins in the Food Industry as the Compounds of Choice to Form Host-Guest Complexes. Int. J. Mol. Sci. 2021, 22, 1339. [Google Scholar] [CrossRef]
- Tian, B.; Xiao, D.; Hei, T.; Ping, R.; Hua, S.; Liu, J. The application and prospects of cyclodextrin inclusion complexes and polymers in the food industry: A review. Polym. Int. 2020, 69, 597–603. [Google Scholar] [CrossRef]
- Hosseini, H.; Jafari, S.M. Introducing nano/microencapsulated bioactive ingredients for extending the shelf-life of food products. Adv. Colloid Interface Sci. 2020, 282, 102210. [Google Scholar] [CrossRef]
- Núñez-Delicado, E.; Sánchez-Ferrer, A.; García-Carmona, F. Cyclodextrins as Secondary Antioxidants: Synergism with Ascorbic Acid. J. Agric. Food Chem. 1997, 45, 2830–2835. [Google Scholar] [CrossRef]
- Saha, S.; Roy, A.; Roy, K.; Roy, M.N. Study to explore the mechanism to form inclusion complexes of β-cyclodextrin with vitamin molecules. Sci. Rep. 2016, 6, 35764. [Google Scholar] [CrossRef] [Green Version]
- Zare, M.; Dziemidowicz, K.; Williams, G.R.; Ramakrishna, S. Encapsulation of Pharmaceutical and Nutraceutical Active Ingredients Using Electrospinning Processes. Nanomaterials 2021, 11, 1968. [Google Scholar] [CrossRef]
- Aman Mohammadi, M.; Dakhili, S.; Mirza Alizadeh, A.; Kooki, S.; Hassanzadazar, H.; Alizadeh-Sani, M.; McClements, D.J. New perspectives on electrospun nanofiber applications in smart and active food packaging materials. Crit. Rev. Food Sci. Nutr. 2022, 1–17. [Google Scholar] [CrossRef]
- Fadil, F.; Affandi, N.D.N.; Misnon, M.I.; Bonnia, N.N.; Harun, A.M.; Alam, M.K. Review on Electrospun Nanofiber-Applied Products. Polymers 2021, 13, 2087. [Google Scholar] [CrossRef]
- Avizheh, L.; Peirouvi, T.; Diba, K.; Fathi-Azarbayjani, A. Electrospun wound dressing as a promising tool for the therapeutic delivery of ascorbic acid and caffeine. Ther. Deliv. 2019, 10, 757–767. [Google Scholar] [CrossRef]
- Najafi-Taher, R.; Derakhshan, M.A.; Faridi-Majidi, R.; Amani, A. Preparation of an ascorbic acid/PVA–chitosan electrospun mat: A core/shell transdermal delivery system. RSC Adv. 2015, 5, 50462–50469. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Wang, X.-X.; Yu, G.-F.; Zhang, J.; Yu, M.; Ramakrishna, S.; Long, Y.-Z. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog. Mater. Sci. 2021, 115, 100704. [Google Scholar] [CrossRef]
- Leidy, R.; Maria Ximena, Q.-C. Use of electrospinning technique to produce nanofibres for food industries: A perspective from regulations to characterisations. Trends Food Sci. Technol. 2019, 85, 92–106. [Google Scholar] [CrossRef]
- Celebioglu, A.; Uyar, T. Antioxidant Vitamin E/Cyclodextrin Inclusion Complex Electrospun Nanofibers: Enhanced Water Solubility, Prolonged Shelf Life, and Photostability of Vitamin E. J. Agric. Food Chem. 2017, 65, 5404–5412. [Google Scholar] [CrossRef]
- Celebioglu, A.; Uyar, T. Design of polymer-free Vitamin-A acetate/cyclodextrin nanofibrous webs: Antioxidant and fast-dissolving properties. Food Funct. 2020, 11, 7626–7637. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, S.; Valipouri, A.; Hosseini Ravandi, S.A.; Kouhi, M.; Ghasemi Mobarakeh, L. Fabrication, characterization, and drug release study of vitamin C–loaded alginate/polyethylene oxide nanofibers for the treatment of a skin disorder. Polym. Adv. Technol. 2019, 30, 2447–2457. [Google Scholar] [CrossRef]
- Wu, X.-M.; Branford-White, C.; Yu, D.; Chatterton, N.; Zhu, L.-M. Preparation of core-shell PAN nanofibers encapsulated α-tocopherol acetate and ascorbic acid 2-phosphate for photoprotection. Colloids Surf. B Biointerfaces 2011, 82, 247–252. [Google Scholar] [CrossRef]
- Yildiz, Z.I.; Kilic, M.E.; Durgun, E.; Uyar, T. Molecular Encapsulation of Cinnamaldehyde within Cyclodextrin Inclusion Complex Electrospun Nanofibers: Fast-Dissolution, Enhanced Water Solubility, High Temperature Stability, and Antibacterial Activity of Cinnamaldehyde. J. Agric. Food Chem. 2019, 67, 11066–11076. [Google Scholar] [CrossRef] [Green Version]
- Celebioglu, A.; Uyar, T. Development of ferulic acid/cyclodextrin inclusion complex nanofibers for fast-dissolving drug delivery system. Int. J. Pharm. 2020, 584, 119395. [Google Scholar] [CrossRef]
- Celebioglu, A.; Tekant, D.; Kilic, M.E.; Durgun, E.; Uyar, T. Orally Fast-Disintegrating Resveratrol/Cyclodextrin Nanofibrous Films as a Potential Antioxidant Dietary Supplement. ACS Food Sci. Technol. 2022, 2, 568–580. [Google Scholar] [CrossRef]
- Aytac, Z.; Uyar, T. Antioxidant activity and photostability of α-tocopherol/β-cyclodextrin inclusion complex encapsulated electrospun polycaprolactone nanofibers. Eur. Polym. J. 2016, 79, 140–149. [Google Scholar] [CrossRef]
- Celebioglu, A.; Wang, N.; Kilic, M.E.; Durgun, E.; Uyar, T. Orally Fast Disintegrating Cyclodextrin/Prednisolone Inclusion-Complex Nanofibrous Webs for Potential Steroid Medications. Mol. Pharm. 2021, 18, 4486–4500. [Google Scholar] [CrossRef]
- Coban, O.; Aytac, Z.; Yildiz, Z.I.; Uyar, T. Colon targeted delivery of niclosamide from β-cyclodextrin inclusion complex incorporated electrospun Eudragit® L100 nanofibers. Colloids Surf. B Biointerfaces 2021, 197, 111391. [Google Scholar] [CrossRef]
- Landy, D.; Tetart, F.; Truant, E.; Blach, P.; Fourmentin, S.; Surpateanu, G.; Chemistry, M. Development of a competitive continuous variation plot for the determination of inclusion compounds stoichiometry. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 409–413. [Google Scholar] [CrossRef]
- Ribeiro, C.M.C.M.; da Silva, A.J.; Filho, C.A.A.; Azevedo, E.P.d.P.; Costa, M.M.A.; Maciel, M.I.S. Validation of a HPLC-DAD method for quantification of ascorbic acid in mixed juice powder of acerola and seriguela/Validação de um método HPLC-DAD para quantificação de ácido ascórbico de suco misto em pó de acerola e seriguela. Braz. J. Dev. 2022, 8, 38404–38420. [Google Scholar] [CrossRef]
- Emerine, R.; Chou, S.-F. Fast delivery of melatonin from electrospun blend polyvinyl alcohol and polyethylene oxide (PVA/PEO) fibers. AIMS Bioeng. 2022, 9, 178–196. [Google Scholar] [CrossRef]
- Rajbanshi, B.; Saha, S.; Das, K.; Barman, B.K.; Sengupta, S.; Bhattacharjee, A.; Roy, M.N. Study to Probe Subsistence of Host-Guest Inclusion Complexes of α and β-Cyclodextrins with Biologically Potent Drugs for Safety Regulatory Dischargement. Sci. Rep. 2018, 8, 13031. [Google Scholar] [CrossRef]
- Gibaud, S.; Zirar, S.B.; Mutzenhardt, P.; Fries, I.; Astier, A. Melarsoprol-cyclodextrins inclusion complexes. Int. J. Pharm. 2005, 306, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Sid, D.; Baitiche, M.; Elbahri, Z.; Djerboua, F.; Boutahala, M.; Bouaziz, Z.; Le Borgne, M. Solubility enhancement of mefenamic acid by inclusion complex with β-cyclodextrin: In silico modelling, formulation, characterisation, and in vitro studies. J. Enzym. Inhib. Med. Chem. 2021, 36, 605–617. [Google Scholar] [CrossRef]
- Celebioglu, A.; Uyar, T. Electrospun formulation of acyclovir/cyclodextrin nanofibers for fast-dissolving antiviral drug delivery. Mater. Sci. Eng. C 2021, 118, 111514. [Google Scholar] [CrossRef]
- Ye, P.; Wei, S.; Luo, C.; Wang, Q.; Li, A.; Wei, F. Long-Term Effect against Methicillin-Resistant Staphylococcus aureus of Emodin Released from Coaxial Electrospinning Nanofiber Membranes with a Biphasic Profile. Biomolecules 2020, 10, 362. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.; Haque, A.; Bhattacharyya, S.; Patra, P.; Plaisier, J.R.; Perissinotto, F.; Bal, J.K. Vitamin C/Stearic Acid Hybrid Monolayer Adsorption at Air–Water and Air–Solid Interfaces. ACS Omega 2018, 3, 15789–15798. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Wang, Y.; Xue, Q.; Wu, X. Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem. 2011, 13, 900–904. [Google Scholar] [CrossRef]
- Khan, N.; Kumar Bhardwaj, V.; Ruchika; Purohit, R.; Saneja, A. Deciphering the interactions of genistein with β-cyclodextrin derivatives through experimental and microsecond timescale umbrella sampling simulations. J. Mol. Liq. 2023, 374, 121295. [Google Scholar] [CrossRef]
- Mohamed, E.; Ali, A.; Salem, H.; Abdelrahman, A. In vitro/in vivo evaluation of an optimized fast dissolving oral film containing olanzapine co-amorphous dispersion with selected carboxylic acids. Drug Deliv. 2016, 23, 3088–3100. [Google Scholar] [CrossRef] [Green Version]
- Sugibayashi, K.; Yoshida, Y.; Suzuki, R.; Yoshizawa, K.; Mori, K.; Itakura, S.; Takayama, K.; Todo, H. Physical Properties of an Ionic Liquid Composed of Two Water-Soluble Vitamins and Enhanced Skin Permeation of Both Vitamins. Pharmaceutics 2020, 12, 427. [Google Scholar] [CrossRef]
- Longo, A.; Palomba, M.; Carotenuto, G. Gel-Phase Reduction of Graphene Oxide Coatings by L-Ascorbic Acid. Mater. Proc. 2020, 4, 7783. [Google Scholar]
- Juhász, M.; Kitahara, Y.; Takahashi, S.; Fujii, T. Thermal stability of vitamin C: Thermogravimetric analysis and use of total ion monitoring chromatograms. J. Pharm. Biomed. Anal. 2012, 59, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Zhong, J.; Li, J.; Liu, X.; Wang, Y.; Qin, X. Interaction mechanism of cholesterol/β-cyclodextrin complexation by combined experimental and computational approaches. Food Hydrocoll. 2022, 130, 107725. [Google Scholar] [CrossRef]
- Canbolat, M.F.; Celebioglu, A.; Uyar, T. Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloids Surfaces B Biointerfaces 2014, 115, 15–21. [Google Scholar] [CrossRef]
- Narayanan, G.; Boy, R.; Gupta, B.S.; Tonelli, A.E. Analytical techniques for characterizing cyclodextrins and their inclusion complexes with large and small molecular weight guest molecules. Polym. Test. 2017, 62, 402–439. [Google Scholar] [CrossRef]
- Gao, S.; Jiang, J.; Li, X.; Ye, F.; Fu, Y.; Zhao, L. An environmentally safe formulation with enhanced solubility and fungicidal activity: Self-assembly and characterization of Difenoconazole-β-CD inclusion complex. J. Mol. Liq. 2021, 327, 114874. [Google Scholar] [CrossRef]
- Mura, P. Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review. J. Pharm. Biomed. Anal. 2015, 113, 226–238. [Google Scholar] [CrossRef]
- Chakraborty, A.; Jana, N.R. Vitamin C-Conjugated Nanoparticle Protects Cells from Oxidative Stress at Low Doses but Induces Oxidative Stress and Cell Death at High Doses. ACS Appl. Mater. Interfaces 2017, 9, 41807–41817. [Google Scholar] [CrossRef]
- Garnero, C.; Longhi, M. Study of ascorbic acid interaction with hydroxypropyl-beta-cyclodextrin and triethanolamine, separately and in combination. J. Pharm. Biomed. Anal. 2007, 45, 536–545. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, N.; Singh, A.K.; Saneja, A. Preparation, Characterization, and Antioxidant Activity of L-Ascorbic Acid/HP-β-Cyclodextrin Inclusion Complex-Incorporated Electrospun Nanofibers. Foods 2023, 12, 1363. https://doi.org/10.3390/foods12071363
Khan N, Singh AK, Saneja A. Preparation, Characterization, and Antioxidant Activity of L-Ascorbic Acid/HP-β-Cyclodextrin Inclusion Complex-Incorporated Electrospun Nanofibers. Foods. 2023; 12(7):1363. https://doi.org/10.3390/foods12071363
Chicago/Turabian StyleKhan, Nabab, Amit Kumar Singh, and Ankit Saneja. 2023. "Preparation, Characterization, and Antioxidant Activity of L-Ascorbic Acid/HP-β-Cyclodextrin Inclusion Complex-Incorporated Electrospun Nanofibers" Foods 12, no. 7: 1363. https://doi.org/10.3390/foods12071363
APA StyleKhan, N., Singh, A. K., & Saneja, A. (2023). Preparation, Characterization, and Antioxidant Activity of L-Ascorbic Acid/HP-β-Cyclodextrin Inclusion Complex-Incorporated Electrospun Nanofibers. Foods, 12(7), 1363. https://doi.org/10.3390/foods12071363