Genetic Variation and Heritability of Sensory and Artisan Bread Traits in a Set of SRW Wheat Breeding Lines
"> Figure 1
<p>Heritability estimates calculated from mean squares for all quality parameters under study and flour protein fractions from SE-HPLC. Red squares represent the broad-sense heritability estimate (h<sup>2</sup>), and horizontal error bars represent 90% confidence intervals (CI). The vertical dashed line represents h<sup>2</sup> = 0. “T_”: total SDS extractable and SDS unextractable protein fractions; UPP:TPP: SDS unextractable polymeric protein to total polymeric protein ratio.</p> "> Figure 2
<p>Principal component analysis biplot of 76 wheat genotypes for their quality parameters across the two harvest seasons. The numbers in parentheses on the axis labels refer to the proportion of variance explained by the PC. The red circle and triangle represent the ‘Edison’ cultivar from the harvest years 2020 and 2021, respectively. LD: loaf density; KH: predicted kernel hardness; GPC: grain protein concentration; SV: SDS sedimentation volume; LH: loaf height; DE: dough extensibility score; LV: loaf volume; Crust: texture of the bread crust; Aroma: aroma of the bread; Flavor: flavor of the bread; Crumb: texture of the bread crumb.</p> "> Figure 3
<p>Principal component analysis biplot of 76 wheat genotypes across the two harvest seasons, using the protein fraction parameters obtained through SE-HPLC, grain and flour protein concentration, predicted kernel hardness, and SDS sedimentation volume. The numbers in parenthesis on the axis labels refer to the proportion of variance explained by the PC. “T_”: total SDS extractable and SDS unextractable protein fractions; “U_”: SDS unextractable protein fractions; “E_”: SDS extractable protein fractions; UPP:TPP: SDS unextractable polymeric protein to total polymeric protein ratio; GPC: grain protein concentration; FPC: flour protein concentration; KH: predicted kernel hardness; SV: SDS sedimentation volume.</p> "> Figure 4
<p>Regression between actual loaf volume and predicted loaf volume from a principal component regression.</p> "> Figure 5
<p>Difference in (<b>a</b>) loaf volume, (<b>b</b>) crust texture, (<b>c</b>) dough extensibility score, (<b>d</b>) loaf height, (<b>e</b>) flour protein content, (<b>f</b>) SDS unextractable LMW-GS, (<b>g</b>) SDS unextractable HMW-GS, (<b>h</b>) SDS extractable gliadins, and (<b>i</b>) SDS extractable HMW-GS due to different allelic form on SNPs identified on average data with GWAS. Vertical lines indicate standard error. Different letters indicate significant differences between allelic forms (α = 0.05).</p> "> Figure 5 Cont.
<p>Difference in (<b>a</b>) loaf volume, (<b>b</b>) crust texture, (<b>c</b>) dough extensibility score, (<b>d</b>) loaf height, (<b>e</b>) flour protein content, (<b>f</b>) SDS unextractable LMW-GS, (<b>g</b>) SDS unextractable HMW-GS, (<b>h</b>) SDS extractable gliadins, and (<b>i</b>) SDS extractable HMW-GS due to different allelic form on SNPs identified on average data with GWAS. Vertical lines indicate standard error. Different letters indicate significant differences between allelic forms (α = 0.05).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grain Source
2.2. SDS Sedimentation Volume
2.3. Extraction and SE- HPLC Analysis of Protein Fractions
2.4. Bread Baking
2.5. Sensory Panel Evaluation
2.6. Data Analysis
2.7. SNP Calling and Genome-Wide Association Study (GWAS)
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Longin, F.; Beck, H.; Gütler, H.; Heilig, W.; Kleinert, M.; Rapp, M.; Philipp, N.; Erban, A.; Brilhaus, D.; Mettler-Altmann, T. Aroma and quality of breads baked from old and modern wheat varieties and their prediction from genomic and flour-based metabolite profiles. Food Res. Int. 2020, 129, 108748. [Google Scholar] [CrossRef]
- USDA—National Agricultual Statistics Service. 2022. Available online: https://quickstats.nass.usda.gov/ (accessed on 21 September 2022).
- Rekik, F.; van Es, H.; Hernandez-Aguilera, J.N.; Gómez, M.I. Linking coffee to soil: Can soil health increase coffee cup quality in Colombia? Soil Sci. 2019, 184, 25–33. [Google Scholar] [CrossRef]
- Arnold, R.J.; Ochoa, A.; Kerth, C.R.; Miller, R.K.; Murray, S.C. Assessing the impact of corn variety and Texas terroir on flavor and alcohol yield in new-make bourbon whiskey. PLoS ONE 2019, 14, e0220787. [Google Scholar] [CrossRef] [Green Version]
- Starr, G.; Bredie, W.L.P.; Hansen, Å.S. Sensory profiles of cooked grains from wheat species and varieties. J. Cereal Sci. 2013, 57, 295–303. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Seitz, L.M.; Chambers, E., IV. Volatile flavor components of breads made from hard red winter wheat and hard white winter wheat. Cereal Chem. 1995, 72, 237–242. [Google Scholar]
- Laidig, F.; Hüsken, A.; Rentel, D.; Piepho, H.-P. Protein use efficiency and stability of baking quality in winter wheat based on the relation of loaf volume and grain protein content. Theor. Appl. Genet. 2022, 135, 1331–1343. [Google Scholar] [CrossRef] [PubMed]
- Starr, G.; Hansen, Å.S.; Petersen, M.A.; Bredie, W. Aroma of wheat porridge and bread-crumb is influenced by the wheat variety. LWT-Food Sci. Technol. 2015, 63, 590–598. [Google Scholar] [CrossRef]
- Guttieri, M.J.; Bowen, D.; Gannon, D.; O’Brien, K.; Souza, E. Solvent retention capacities of irrigated soft white spring wheat flours. Crop Sci. 2001, 41, 1054–1061. [Google Scholar] [CrossRef]
- Wang, Y.; Zhen, S.; Luo, N.; Han, C.; Lu, X.; Li, X.; Xia, X.; He, Z.; Yan, Y. Low molecular weight glutenin subunit gene Glu-B3h confers superior dough strength and breadmaking quality in wheat (Triticum aestivum L.). Sci. Rep. 2016, 6, 27182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajgain, P.; Sallam, A.H.; Annor, G.; Conley, E.; Steffenson, B.J.; Muehlbauer, G.J.; Anderson, J.A. Genetic characterization of flour quality and bread-making traits in a spring wheat nested association mapping population. Crop Sci. 2021, 61, 1168–1183. [Google Scholar] [CrossRef]
- Singh, N.; Donovan, R.; MacRitchie, F. Use of sonication and SE-HPLC in the study of wheat flour proteins. I. Dissolution of total proteins in the absence of reducing agents. Cereal Chem. 1990, 67, 150–161. [Google Scholar]
- Gupta, R.; Khan, K.; Macritchie, F. Biochemical basis of flour properties in bread wheats. I. Effects of variation in the quantity and size distribution of polymeric protein. J. Cereal Sci. 1993, 18, 23–41. [Google Scholar] [CrossRef]
- Ohm, J.B.; Ross, A.; Ong, Y.L.; Peterson, C. Using multivariate techniques to predict wheat flour dough and noodle characteristics from size-exclusion HPLC and RVA data. Cereal Chem. 2006, 83, 1–9. [Google Scholar] [CrossRef]
- Callejo, M.J. Present situation on the descriptive sensory analysis of bread. J. Sens. Stud. 2011, 26, 255–268. [Google Scholar] [CrossRef]
- Duizer, L.; Walker, S. The application of sensory science to the evaluation of grain-based foods. In Encyclopedia of Food Grains; Elsevier Ltd.: Oxford, UK, 2016; Volume 3–4. [Google Scholar]
- Herb, D.; Filichkin, T.; Fisk, S.; Helgerson, L.; Hayes, P.; Meints, B.; Jennings, R.; Monsour, R.; Tynan, S. Vinkemeier. Effects of barley (Hordeum vulgare L.) variety and growing environment on beer flavor. J. Am. Soc. Brew. Chem. 2017, 75, 345–353. [Google Scholar]
- Branlard, G.; Dardevet, M.; Saccomano, R.; Lagoutte, F.; Gourdon, J. Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica 2001, 119, 59–67. [Google Scholar] [CrossRef]
- Payne, P.I. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu. Rev. Plant Physiol. 1987, 38, 141–153. [Google Scholar] [CrossRef]
- Shewry, P.R.; Tatham, A.S.; Lazzeri, P. Biotechnology of wheat quality. J. Sci. Food Agric. 1997, 73, 397–406. [Google Scholar] [CrossRef]
- Soil Survey Staff, N.R.C.S.; United States Department of Agriculture (USDA). Web Soil Survey. 2022. Available online: http://websoilsurvey.sc.egov.usda.gov/ (accessed on 11 May 2023).
- Herbek, J.; Lee, C. A comprehensive guide to wheat management in Kentucky. In Cooperative Extension Service; University of Kentucky College of Agriculture: Lexington, KY, USA; Kentucky State University: Frankfort, UK, 2009; pp. 6–12. [Google Scholar]
- Fuertes-Mendizábal, T.; Aizpurua, A.; González-Moro, M.B.; Estavillo, J.M. Improving wheat breadmaking quality by splitting the N fertilizer rate. Eur. J. Agron. 2010, 33, 52–61. [Google Scholar] [CrossRef]
- Cereals & Grains Association. AACC Approved Methods. In Method 56–70: Sodium Dodecyl Sulfate Sedimentation Test for Durum Wheat, 10th ed.; Cereals & Grains Association: St. Paul, MN, USA, 2000. [Google Scholar]
- Malalgoda, M.; Ohm, J.-B.; Meinhardt, S.; Simsek, S. Association between gluten protein composition and breadmaking quality characteristics in historical and modern spring wheat. Cereal Chem. 2018, 95, 226–238. [Google Scholar] [CrossRef]
- Ohm, J.B.; Hareland, G.; Simsek, S.; Seabourn, B. Size-exclusion HPLC of protein using a narrow-bore column for evaluation of breadmaking quality of hard spring wheat flours. Cereal Chem. 2009, 86, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Ohm, J.B.; Ross, A.; Peterson, C.; Ong, Y.L. Relationships of high molecular weight glutenin subunit composition and molecular weight distribution of wheat flour protein with water absorption and color characteristics of noodle dough. Cereal Chem. 2008, 85, 123–131. [Google Scholar] [CrossRef]
- Knapp, S.; Stroup, W.; Ross, W. Exact confidence intervals for heritability on a progeny mean basis 1. Crop Sci. 1985, 25, 192–194. [Google Scholar] [CrossRef]
- Baardseth, P.; Kvaal, K.; Lea, P.; Ellekjaer, M.; Færgestad, E. The effects of bread making process and wheat quality on French baguettes. J. Cereal Sci. 2000, 32, 73–87. [Google Scholar] [CrossRef]
- Martens, H.; Naes, T. Multivariate Calibration; John Wiley & Sons: Hoboken, NJ, USA, 1992. [Google Scholar]
- Verges, V.L.; Brown-Guedira, G.L.; Van Sanford, D.A. Genome-wide association studies combined with genomic selection as a tool to increase Fusarium head blight resistance in wheat. Crop Breed. Genet. Genom. 2021, 3, e210007. [Google Scholar]
- Poland, J.A.; Rife, T.W. Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 2012, 5, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, Z. GAPIT Version 3: Boosting power and accuracy for genomic association and prediction. Genom. Proteom. Bioinform. 2021, 19, 629–640. [Google Scholar] [CrossRef]
- Knott, C.A.; Van Sanford, D.A.; Souza, E.J. Genetic variation and the effectiveness of early-generation selection for soft winter wheat quality and gluten strength. Crop Sci. 2009, 49, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Souza, E.; Martin, J.; Guttieri, M.; O’Brien, K.; Habernicht, D.; Lanning, S.; McLean, R.; Carlson, G.; Talbert, L. Influence of genotype, environment, and nitrogen management on spring wheat quality. Crop Sci. 2004, 44, 425–432. [Google Scholar] [CrossRef]
- Halloran, G.; Lee, J. Plant nitrogen distribution in wheat cultivars. Aust. J. Agric. Res. 1979, 30, 779–789. [Google Scholar] [CrossRef]
- Monaghan, J.M.; Snape, J.W.; Chojecki, A.J.S.; Kettlewell, P.S. The use of grain protein deviation for identifying wheat cultivars with high grain protein concentration and yield. Euphytica 2001, 122, 309–317. [Google Scholar] [CrossRef]
- Rapp, M.; Beck, H.; Gütler, H.; Heilig, W.; Starck, N.; Römer, P.; Cuendet, C.; Uhlig, F.; Kurz, H.; Würschum, T.; et al. Spelt: Agronomy, quality, and flavor of its breads from 30 varieties tested across multiple environments. Crop Sci. 2017, 57, 739–747. [Google Scholar] [CrossRef]
- Longin, C.F.H.; Sieber, A.-N.; Reif, J.C. Combining frost tolerance, high grain yield and good pasta quality in durum wheat. Plant Breed. 2013, 132, 353–358. [Google Scholar] [CrossRef]
- Arata, A.F.; Rogers, W.J.; Tranquilli, G.E.; Arrigoni, A.C.; Rondanini, D.P. Nitrogen–sulfur fertilisation effects on gluten composition and industrial quality in Argentinean bread wheat cultivars differing in apparent sulfur recovery. Crop Pasture Sci. 2021, 72, 183–196. [Google Scholar] [CrossRef]
- López-Bellido, L.; Fuentes, M.; Castillo, J.E.; López-Garrido, F.J. Effects of tillage, crop rotation and nitrogen fertilization on wheat-grain quality grown under rainfed Mediterranean conditions. Field Crops Res. 1998, 57, 265–276. [Google Scholar] [CrossRef]
- Kaltsikes, P.; Evans, L.; Bushuk, W. Durum-type wheat with high bread-making quality. Science 1968, 159, 211–213. [Google Scholar] [CrossRef]
- Kerber, E.; Tipples, K. Effects of the D genome on milling and baking properties of wheat. Can. J. Plant Sci. 1969, 49, 255–263. [Google Scholar] [CrossRef]
- Liu, C.Y.; Shepherd, K.W.; Rathjen, A.J. Improvement of durum wheat pastamaking and breadmaking qualities. Cereal Chem. 1996, 73, 155–166. [Google Scholar]
- Shewry, P.R.; Halford, N.G.; Tatham, A.S. High molecular weight subunits of wheat glutenin. J. Cereal Sci. 1992, 15, 105–120. [Google Scholar] [CrossRef]
- DeWitt, N.; Louisiana State University, Baton Rouge, LA, USA. Personal communication, 2022.
- Anderson, O.; Rausch, C.; Moullet, O.; Lagudah, E. The wheat D-genome HMW-glutenin locus: BAC sequencing, gene distribution, and retrotransposon clusters. Funct. Integr. Genom. 2003, 3, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Appels, R.; Eversole, K.; Stein, N.; Feuillet, C.; Keller, B.; Singh, N.K.; International Wheat Genome Sequencing Consortium. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361, eaar7191. [Google Scholar]
- Bietz, J.; Shepherd, K.; Wall, J. Single-kernel analysis of glutenin: Use in wheat genetics and breeding. Cereal Chem. 1975, 52, 513–532. [Google Scholar]
- Liu, S.; Chao, S.; Anderson, J.A. New DNA markers for high molecular weight glutenin subunits in wheat. Theor. Appl. Genet. 2008, 118, 177–183. [Google Scholar] [CrossRef]
- Gómez-Becerra, H.F.; Abugalieva, A.; Morgounov, A.; Abdullayev, K.; Bekenova, L.; Yessimbekova, M.; Sereda, G.; Shpigun, S.; Tsygankov, V.; Zelenskiy, Y. Phenotypic correlations, G× E interactions and broad sense heritability analysis of grain and flour quality characteristics in high latitude spring bread wheats from Kazakhstan and Siberia. Euphytica 2010, 171, 23–38. [Google Scholar] [CrossRef]
- Dhaka, V.; Khatkar, B. Effects of gliadin/glutenin and HMW-GS/LMW-GS ratio on dough rheological properties and bread-making potential of wheat varieties. J. Food Qual. 2015, 38, 71–82. [Google Scholar] [CrossRef]
- Field, J.M.; Shewry, P.R.; Miflin, B.J. Solubilisation and characterisation of wheat gluten proteins: Correlations between the amount of aggregated proteins and baking quality. J. Sci. Food Agric. 1983, 34, 370–377. [Google Scholar] [CrossRef]
- Shewry, P.R.; Halford, N.G.; Belton, P.S.; Tatham, A.S. The structure and properties of gluten: An elastic protein from wheat grain. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2002, 357, 133–142. [Google Scholar] [CrossRef]
Quality Parameter | Units | Entry Means | Mean Squares | |||||
---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Year | Genotype | Genotype × Year | Error | ||
Aroma | 1–7 scale † | 3.10 | 5.20 | 4.0 | 4.72 | 1.57 * | 1.23 | 1.24 |
Flavor | 1–7 scale † | 3.10 | 5.20 | 4.0 | 10.47 | 1.75 ** | 1.06 | 1.28 |
Texture: Crumb | 1–7 scale † | 2.70 | 5.10 | 3.70 | 7.04 | 2.47 *** | 1.11 | 1.17 |
Texture: Crust | 1–7 scale † | 3.20 | 5.10 | 4.10 | 1.58 | 2.17 *** | 1.13 | 1.07 |
Grain Protein Concentration | % | 9.12 | 14.64 | 11.27 | 12.43 | 1.67 *** | 1.19 | 0.09 |
Kernel Hardness | % | 7.32 | 31.12 | 19.36 | 40.22 | 30.20 *** | 24.02 | 2.72 |
SDS Sedimentation Volume | cm3 | 4.75 | 15.25 | 9.25 | 1548.39 | 5.71 *** | 2.69 | 0.17 |
Loaf Volume | cm3 | 400 | 625 | 502 | 3517.66 | 1875.86 *** | 602.08 | |
Loaf Density | gr/cm3 | 0.41 | 0.74 | 0.53 | 6.15 × 10−7 | 0.0021 ns | 0.002 | |
Loaf Height | cm | 5.4 | 8.9 | 6.9 | 2.73 | 0.33 ** | 0.20 | |
Dough extensibility score | 1–7 scale ‡ | 1.00 | 7.00 | 3.30 | 35.03 | 3.31 ** | 2.15 | |
Flour Protein Concentration | % | 8.28 | 15.07 | 10.87 | 0.93 ns | 0.76 | ||
T_HMW-GS | A% | 21.33 | 31.59 | 26.46 | 5.18 *** | 0.79 | ||
T_LMW-GS | A% | 10.21 | 16.03 | 13.06 | 0.98 *** | 0.18 | ||
T_Gli | A% | 35.35 | 45.14 | 39.34 | 5.85 *** | 1.18 | ||
T_HMW:LMW | - | 1.50 | 2.44 | 2.04 | 0.02 * | 0.01 | ||
T_Gli:Glu | - | 0.79 | 1.36 | 1.00 | 0.02 *** | 0.002 | ||
UPP:TPP | - | 0.34 | 0.59 | 0.47 | 0.002 *** | 0.001 |
Flavor | Crumb | Crust | GPC | KH | SV | LH | DE | LV | LD | FPC | T_HMW | T_LMW | T_Gli | T_HMW: LMW | T_Gli: Glu | UPP:TPP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aroma | 0.4 ** | 0.43 *** | 0.35 * | 0.15 ns | −0.01 ns | 0.39 ** | 0.28 * | 0.51 *** | 0.32 * | −0.18 ns | 0.16 ns | 0.13 ns | −0.01 ns | 0.14 ns | 0.16 ns | −0.1 ns | 0.21 ns |
Flavor | 0.58 *** | 0.4 *** | 0.04 ns | −0.1 ns | 0.36 * | 0.31 * | 0.34 * | 0.26 * | −0.12 ns | −0.01 ns | 0.23 ns | 0.02 ns | −0.2 ns | 0.25 * | −0.17 ns | 0.24 ns | |
Crumb | 0.66 *** | 0.08 ns | −0.16 ns | 0.32 * | 0.3 * | 0.44 *** | 0.34 * | −0.37 * | 0.12 ns | 0.18 ns | −0.02 ns | −0.09 ns | 0.22 ns | −0.09 ns | 0.29 * | ||
Crust | 0.18 ns | −0.02 ns | 0.45 *** | 0.39 ** | 0.45 *** | 0.4 ** | −0.35 * | 0.17 ns | 0.19 ns | −0.12 ns | −0.12 ns | 0.35 * | −0.08 ns | 0.49 *** | |||
GPC | 0.5 *** | 0.51 *** | 0.27 * | 0.39 ** | 0.21 ns | −0.12 ns | 0.81 *** | −0.27 * | −0.39 ** | 0.28 * | 0.13 ns | 0.32 ** | 0.23 * | ||||
KH | 0.2 ns | 0.07 ns | −0.05 ns | −0.09 ns | 0.14 ns | 0.31 * | −0.33 * | −0.23 ns | 0.32 * | −0.12 ns | 0.33 ** | 0.11 ns | |||||
SV | 0.57 *** | 0.6 *** | 0.5 *** | −0.33 * | 0.47 *** | 0.29 * | −0.1 ns | −0.24 ns | 0.45 *** | −0.23 ns | 0.63 *** | ||||||
LH | 0.47 *** | 0.66 *** | −0.45 *** | 0.27 * | 0.29 * | −0.1 ns | −0.24 ns | 0.45 *** | −0.21 ns | 0.58 *** | |||||||
DE | 0.54 *** | −0.46 *** | 0.4 ** | 0.14 ns | −0.11 ns | −0.19 ns | 0.41 ** | 0.16 ns | 0.25 * | ||||||||
LV | −0.76 *** | 0.1 ns | 0.06 ns | −0.24 * | −0.07 ns | 0.32 * | 0.01 ns | 0.53 *** | |||||||||
LD | −0.08 ns | −0.02 ns | 0.15 ns | −0.01 ns | −0.18 ns | −0.02 ns | −0.4 * | ||||||||||
FPC | −0.08 ns | −0.18 ns | 0.12 ns | 0.14 ns | 0.11 ns | 0.06 ns | |||||||||||
T_HMW | 0.63 *** | −0.91 *** | 0.49 *** | −0.96 *** | 0.1 ns | ||||||||||||
T_LMW | −0.65 *** | −0.38 ** | −0.76 *** | −0.34 * | |||||||||||||
T_Gli | −0.36 * | 0.97 *** | −0.09 ns | ||||||||||||||
T_HMW:LMW | −0.29 * | 0.49 *** | |||||||||||||||
T_Gli:Glu | 0.01 ns |
Trait | SNP | Chr | Position | Environment | Model | Effect (%) | FDR Adj. p-Value |
---|---|---|---|---|---|---|---|
CRUST TEXTURE | S1D_414898399 | 1D | 414898399 | ENV 1 (2020) | FARMCPU | 0.35 | 4.7 × 10−2 |
ENV 3 (AVERAGE) | BLINK | 0.24 | 9.3 × 10−3 | ||||
LOAF HEIGHT | S1B_659387140 | 1B | 659387140 | ENV 3 (AVERAGE) | BLINK | 0.26 | 6.2 × 10−2 |
FARMCPU | 0.21 | 1.6 × 10−3 | |||||
ENV 4 (BLUPS) | BLINK | 0.15 | 2.8 × 10−3 | ||||
FARMCPU | 0.12 | 3.6 × 10−4 | |||||
GLM | 0.19 | 4.5 × 10−2 | |||||
S1D_411189520 | 1D | 411189520 | ENV 1 (2020) | BLINK | −0.32 | 6.3 × 10−5 | |
GLM | −0.33 | 7.2 × 10−2 | |||||
ENV 3 (AVERAGE) | GLM | −0.21 | 1.5 × 10−2 | ||||
S1D_411312538 | 1D | 411312538 | ENV 1 (2020) | GLM | −0.33 | 7.2 × 10−2 | |
ENV 3 (AVERAGE) | GLM | −0.27 | 4.9 × 10−3 | ||||
ENV 4 (BLUPS) | GLM | −0.13 | 4.5 × 10−2 | ||||
S1D_411312546 | 1D | 411312546 | ENV 1 (2020) | GLM | 0.33 | 7.2 × 10−2 | |
ENV 3 (AVERAGE) | BLINK | 0.25 | 5.3 × 10−6 | ||||
FARMCPU | 0.20 | 8.8 × 10−6 | |||||
GLM | 0.27 | 4.9 × 10−3 | |||||
ENV 4 (BLUPS) | BLINK | 0.12 | 1.0 × 10−4 | ||||
FARMCPU | 0.09 | 3.5 × 10−4 | |||||
GLM | 0.13 | 4.5 × 10−2 | |||||
LOAF VOLUME | S1D_411312538 | 1D | 411312538 | ENV 1 (2020) | FARMCPU | −22.37 | 1.5 × 10−2 |
ENV 4 (BLUPS) | FARMCPU | −12.50 | 7.0 × 10−2 | ||||
S1D_411312546 | 1D | 411312546 | ENV 1 (2020) | FARMCPU | 20.21 | 3.4 × 10−2 | |
ENV 4 (BLUPS) | FARMCPU | 12.50 | 7.0 × 10−2 | ||||
S1D_413406182 | 1D | 413406182 | ENV 1 (2020) | BLINK | −21.08 | 2.2 × 10−4 | |
FARMCPU | −21.08 | 1.5 × 10−2 | |||||
S1D_415646908 | 1D | 415646908 | ENV 1 (2020) | FARMCPU | 19.75 | 2.5 × 10−2 | |
ENV 3 (AVERAGE) | BLINK | 17.41 | 2.1 × 10−4 | ||||
FARMCPU | 9.07 | 3.0 × 10−2 | |||||
ENV 4 (BLUPS) | FARMCPU | 12.41 | 5.5 × 10−2 | ||||
S1D_416355573 | 1D | 416355573 | ENV 1 (2020) | FARMCPU | −19.31 | 4.2 × 10−2 | |
ENV 4 (BLUPS) | FARMCPU | −12.94 | 5.5 × 10−2 | ||||
S1D_416403815 | 1D | 416403815 | ENV 1 (2020) | FARMCPU | 22.50 | 2.2 × 10−2 | |
ENV 4 (BLUPS) | FARMCPU | 12.95 | 5.5 × 10−2 | ||||
DOUGH EXTENSIBILITY | S5A_511963647 | 5A | 511963647 | ENV 1 (2020) | BLINK | 1.17 | 3.7 × 10−6 |
FARMCPU | 0.63 | 6.6 × 10−2 | |||||
ENV 3 (AVERAGE) | BLINK | 0.75 | 4.4 × 10−7 | ||||
FARMCPU | 0.58 | 9.9 × 10−6 | |||||
ENV 4 (BLUPS) | BLINK | 0.30 | 6.9 × 10−5 | ||||
FARMCPU | 0.22 | 1.6 × 10−4 | |||||
FLOUR PROTEIN | S3B_10656866 | 3B | 10656866 | ENV 1 (2020) | BLINK | 0.87 | 1.7 × 10−3 |
FARMCPU | 0.87 | 4.6 × 10−2 | |||||
E_GLIADIN | S1A_590142135 | 1A | 590142135 | ENV 2 (2021) | BLINK | 0.87 | 6.6 × 10−3 |
FARMCPU | 0.70 | 5.0 × 10−4 | |||||
ENV 3 (AVERAGE) | FARMCPU | 0.55 | 1.2 × 10−2 | ||||
ENV 4 (BLUPS) | FARMCPU | 0.42 | 7.1 × 10−3 | ||||
S1B_15439623 | 1B | 15439623 | ENV 1 (2020) | BLINK | 2.52 | 8.6 × 10−10 | |
FARMCPU | 2.30 | 2.4 × 10−19 | |||||
GLM | 2.59 | 2.4 × 10−3 | |||||
ENV 2 (2021) | BLINK | 2.43 | 5.8 × 10−11 | ||||
FARMCPU | 2.35 | 1.6 × 10−12 | |||||
GLM | 2.35 | 7.2 × 10−4 | |||||
ENV 3 (AVERAGE) | BLINK | 2.50 | 4.0 × 10−12 | ||||
FARMCPU | 2.10 | 1.3 × 10−13 | |||||
GLM | 2.46 | 1.2 × 10−4 | |||||
ENV 4 (BLUPS) | BLINK | 2.05 | 3.3 × 10−12 | ||||
FARMCPU | 1.91 | 3.6 × 10−15 | |||||
GLM | 2.02 | 1.2 × 10−4 | |||||
E_HMW | S1B_15439623 | 1B | 15439623 | ENV 1 (2020) | BLINK | −1.07 | 6.0 × 10−3 |
ENV 2 (2021) | BLINK | −1.28 | 8.8 × 10−6 | ||||
FARMCPU | −1.06 | 1.1 × 10−7 | |||||
GLM | −1.58 | 8.2 × 10−3 | |||||
ENV 3 (AVERAGE) | BLINK | −1.13 | 7.5 × 10−6 | ||||
FARMCPU | −1.23 | 4.9 × 10−9 | |||||
GLM | −1.41 | 5.9 × 10−3 | |||||
ENV 4 (BLUPS) | BLINK | −0.82 | 2.8 × 10−6 | ||||
FARMCPU | 0.59 | 3.7 × 10−8 | |||||
GLM | −1.07 | 7.2 × 10−3 | |||||
S1D_416132802 | 1D | 416132802 | ENV 2 (2021) | GLM | 1.03 | 8.2 × 10−3 | |
ENV 3 (AVERAGE) | GLM | 0.96 | 5.4 × 10−3 | ||||
ENV 4 (BLUPS) | BLINK | 0.59 | 1.0 × 10−6 | ||||
FARMCPU | −0.81 | 4.0 × 10−8 | |||||
GLM | 0.71 | 7.2 × 10−3 | |||||
S1D_416356089 | 1D | 416356089 | ENV 2 (2021) | BLINK | −0.89 | 8.8 × 10−6 | |
FARMCPU | −1.03 | 1.6 × 10−10 | |||||
GLM | −1.11 | 8.2 × 10−3 | |||||
ENV 3 (AVERAGE) | BLINK | −0.74 | 1.1 × 10−5 | ||||
FARMCPU | −0.61 | 1.6 × 10−4 | |||||
GLM | −0.98 | 5.4 × 10−3 | |||||
ENV 4 (BLUPS) | GLM | −0.71 | 7.2 × 10−3 | ||||
S6A_546620773 | 6A | 546620773 | ENV 3 (AVERAGE) | BLINK | 1.12 | 1.5 × 10−2 | |
FARMCPU | 0.84 | 1.0 × 10−1 | |||||
S6D_6274375 | 6D | 6274375 | ENV 2 (2021) | FARMCPU | −1.18 | 2.0 × 10−4 | |
ENV 4 (BLUPS) | BLINK | −0.97 | 1.1 × 10−3 | ||||
FARMCPU | −0.90 | 3.5 × 10−3 | |||||
U_HMW | S1B_159912958 | 1B | 159912958 | ENV 1 (2020) | BLINK | 0.96 | 3.4 × 10−2 |
FARMCPU | 1.23 | 2.2 × 10−2 | |||||
S2B_732056487 | 2B | 732056487 | ENV 1 (2020) | BLINK | −0.97 | 3.4 × 10−2 | |
FARMCPU | −1.37 | 3.7 × 10−2 | |||||
S4A_629489197 | 4A | 629489197 | ENV 3 (AVERAGE) | BLINK | −1.05 | 1.9 × 10−4 | |
ENV 4 (BLUPS) | BLINK | −0.75 | 1.1 × 10−3 | ||||
S7A_27004902 | 7A | 27004902 | ENV 3 (AVERAGE) | BLINK | −0.84 | 3.5 × 10−3 | |
ENV 4 (BLUPS) | BLINK | −0.60 | 1.2 × 10−2 | ||||
U_LMW | S1B_15439623 | 1B | 15439623 | ENV 1 (2020) | BLINK | −0.46 | 1.4 × 10−6 |
FARMCPU | −0.44 | 4.4 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellari, M.P.; Simsek, S.; Ohm, J.-B.; Perry, R.; Poffenbarger, H.J.; Phillips, T.D.; Jacobsen, K.L.; Van Sanford, D.A. Genetic Variation and Heritability of Sensory and Artisan Bread Traits in a Set of SRW Wheat Breeding Lines. Foods 2023, 12, 2617. https://doi.org/10.3390/foods12132617
Castellari MP, Simsek S, Ohm J-B, Perry R, Poffenbarger HJ, Phillips TD, Jacobsen KL, Van Sanford DA. Genetic Variation and Heritability of Sensory and Artisan Bread Traits in a Set of SRW Wheat Breeding Lines. Foods. 2023; 12(13):2617. https://doi.org/10.3390/foods12132617
Chicago/Turabian StyleCastellari, Maria P., Senay Simsek, Jae-Bom Ohm, Robert Perry, Hanna J. Poffenbarger, Timothy D. Phillips, Krista L. Jacobsen, and David A. Van Sanford. 2023. "Genetic Variation and Heritability of Sensory and Artisan Bread Traits in a Set of SRW Wheat Breeding Lines" Foods 12, no. 13: 2617. https://doi.org/10.3390/foods12132617