The Effects of Select Hydrocolloids on the Processing of Pâté-Style Canned Pet Food
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formulation of Canned Pet Foods
2.2. Analysis of Pre-Thermal Processing Batters of Canned Pet Food
2.3. Analysis of Processing Control Measures and Thermal Processing Calculations
2.4. Analysis of Processed Canned Pet Foods
2.5. Statistical Analysis
3. Results
3.1. Pre-Thermal Processing Batter Analyses
3.2. Processing Control Analysis and Thermal Processing Values
3.3. Physicochemical Quality of Processed Canned Cat Food
4. Discussion
4.1. Characteristics of Pre-Thermal Processing Batters of Canned Pet Food
4.2. Thermal Processing Controls and Characteristics of Canned Pet Food
4.3. Physicochemical Quality of Processed Canned Pet Food
4.4. Proposed Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- BeMiller, J.N. Carbohydrate Chemistry for Food Scientists, 3rd ed.; Woodhead Publishing: Swaston/Cambridge, UK, 2019. [Google Scholar]
- Phillips, G.O.; Williams, P.A. (Eds.) Handbook of Hydrocolloids, 2nd ed.; CRC Press LLC: Boca Raton, FL, USA, 2009. [Google Scholar]
- Casas, J.A.; Mohedano, A.F.; García-Ochoa, F. Viscosity of guar gum and xanthan/guar gum mixture solutions. J. Sci. Food Agric. 2000, 80, 1722–1727. [Google Scholar] [CrossRef]
- Kim, T.-K.; Shim, J.-Y.; Hwang, K.-E.; Kim, Y.-B.; Sung, J.-M.; Paik, J.-D.; Choi, Y.-S. Effect of hydrocolloids on the quality of restructured hams with duck skim. Poult. Sci. 2018, 97, 4442–4449. [Google Scholar] [CrossRef]
- Andrès, S.; Zaritzky, N.; Califano, A. The effect of whey protein concentrates and hydrocolloids on the texture and colour characteristics of chicken sausages. Int. J. Food Sci. Technol. 2006, 41, 954–961. [Google Scholar] [CrossRef]
- Demirci, Z.O.; Yılmaz, I.; Demirci, A.Ş. Effects of xanthan, guar, carrageenan and locust bean gum addition on physical, chemical and sensory properties of meatballs. J. Food Sci. Technol. 2014, 51, 936–942. [Google Scholar] [CrossRef] [Green Version]
- Kienzle, E.; Schrag, I.; Butterwick, R.; Opitz, B. Calculation of gross energy in pet foods: New data on heat combustion and fibre analysis in a selection of foods for dogs and cats. J. Anim. Physiol. Anim. Nutr. 2001, 85, 148–157. [Google Scholar] [CrossRef]
- Sunvold, G.D.; Fahey, G.C.; Merchen, N.R.; Bourquin, L.D.; Titgemeyer, E.C.; Bauer, L.L.; Reinhart, G.A. Dietary fiber for cats: In vitro fermentation of selected fiber sources by cat fecal inoculum and in vivo utilization of diets containing selected fiber sources and their blends. J. Anim. Sci. 1995, 73, 2329–2339. [Google Scholar] [CrossRef]
- Sunvold, G.D.; Fahey, G.C.; Merchen, N.R.; Titgemeyer, E.C.; Bourquin, L.D.; Bauer, L.L.; Reinhart, G.A. Dietary fiber for dogs: IV. In vitro fermentation of selected fiber sources by dog fecal inoculum and in vivo digestion and metabolism of fiber-supplemented diets. J. Anim. Sci. 1995, 73, 1099–1109. [Google Scholar] [CrossRef]
- Phillips-Donaldson, D. Pet Food Round-Up: Ingredients in the News. Petfood Industry Magazine. 15 December 2016. Available online: https://www.petfoodindustry.com/blogs/7-adventures-in-pet-food/post/6185-pet-food-round-up-ingredients-in-the-news (accessed on 20 September 2020).
- Zentek, J.; Kaufmann, D.; Pietrzak, T. Digestibility and effects on fecal quality of mixed diets with various hydrocolloid and water contents in three breeds of dogs. J. Nutr. 2002, 132, 1679S–1681S. [Google Scholar] [CrossRef] [Green Version]
- Karr-Lilienthal, L.; Merchen, N.R.; Grieshop, C.; Smeets-Peeters, M.; Fahey, G.C. Selected gelling agents in canned dog food affect nutrient digestibilities and fecal characteristics of ileal cannulated dogs. Arch. Tierernaehrung 2002, 56, 141–153. [Google Scholar] [CrossRef]
- Cohen, S.M.; Ito, N. A critical review of the toxicological effects of carrageenan and processed Eucheuma seaweed on the gastrointestinal tract. Crit. Rev. Toxicol. 2002, 32, 413–444. [Google Scholar] [CrossRef]
- Woodard, G.; Woodard, M.W.; McNeely, W.H.; Kovacs, P.; Cronin, M.T.I. Xanthan gum: Safety evaluation by two-year feeding studies in rats and dogs and a three-generation reproduction study in rats. Toxicol. Appl. Pharmacol. 1973, 24, 30–36. [Google Scholar] [CrossRef]
- Jackson, R.F.; Silsbee, C.G. The solubility of dextrose in water. Sci. Pap. Bur. Stand. 1992, 17, 715–724. [Google Scholar] [CrossRef]
- Lee, K.-Y.; Park, S.-M.; An, H.-W.; Cho, H.-D.; Han, B.-H. Prediction of thermal diffusivities of meat products containing fish meat. Bull. Korean Fish. Soc. 1993, 26, 26. [Google Scholar]
- Eliasson, A.-C. (Ed.) Carbohydrates in Food; Marcel Dekker, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Ahmad, M.N.; Kelly, B.P.; Magee, T.R.A. Measurement of heat transfer coefficients using stationary and moving particles in tube flow. Food Bioprod. Process. 1999, 77, 213–222. [Google Scholar] [CrossRef]
- Berry, M.R.; Bush, R.C. Establishing thermal processes for products with straight-line heating curves from data taken at other retort and initial temperatures. J. Food Sci. 1989, 54, 1040–1042. [Google Scholar] [CrossRef]
- Côté, C.; Germain, I.; Dufresne, T.; Gagnon, C. Comparison of two methods to categorize thickened liquids for dysphagia management in a clinical care setting context: The Bostwick consistometer and the IDDSI Flow Test. Are we talking about the same concept? J. Texture Stud. 2019, 50, 95–103. [Google Scholar] [CrossRef]
- Mouquet, C.; Greffeuille, V.; Treche, S. Characterization of the consistency of gruels consumed by infants in developing countries: Assessment of the Bostwick consistometer and comparison with viscosity measurements and sensory perception. Int. J. Food Sci. Nutr. 2006, 57, 459–469. [Google Scholar] [CrossRef]
- Singh, R.P.; Heldman, D.R. Introduction to Food Engineering, 5th ed.; Elsevier: London, UK, 2014; ISBN 9780123985309. [Google Scholar]
- Hendriks, W.H.; Emmens, M.M.A.; Trass, B.; Pluske, J.R. Heat processing changes the protein quality of canned cat foods as measured with a rat bioassay. J. Anim. Sci. 1999, 77, 669–676. [Google Scholar] [CrossRef] [Green Version]
- Morris, S.A. Food and Package Engineering, 1st ed.; Wiley-Blackwell: Oxford, UK, 2011; ISBN 9781119949794. [Google Scholar]
- Toledo, R.T.; Singh, R.K.; Kong, F. Fundamentals of Food Process Engineering, 4th ed.; (Food Science Text Series); Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-90097-1. [Google Scholar]
- Molnar, L.M.; Donadelli, R.A.; Aldrich, C.G. 238 The effect of container size and type on lethality values during production of thermally processed wet pet foods. J. Anim. Sci. 2017, 95, 117. [Google Scholar] [CrossRef] [Green Version]
- Jauregui, C.A.; Regenstein, J.M.; Maker, R.C. A simple centrifugal method for measuring expressible moisture, a water-binding property of muscle foods. J. Food Sci. 1981, 46, 1271–1273. [Google Scholar] [CrossRef]
- Hagen-Plantinga, E.A.; Orlanes, D.F.; Bosch, G.; Hendriks, W.H.; van der Poel, A.F.B. Retorting conditions affect palatability and physical characteristics of canned cat food. J. Nutr. Sci. 2017, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Black, D.G.; Barach, J.T. (Eds.) Canned Foods: Principles of Thermal Process Control, Acidification and Container Closure Evaluation, 8th ed.; GMA Science and Education Foundation: Washington, DC, USA, 2015; ISBN 978-0-937774-23-6. [Google Scholar]
- Singh, A.; Pratap Singh, A.; Ramaswamy, H.S. A controlled agitation process for improving quality of canned green beans during agitation thermal processing. J. Food Sci. 2016, 81, E1399–E1411. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food and Drug Administration (FDA). 21 Code of Federal Regulations. Part 113—Thermally Processed Low-Acid Foods Packaged in Hermetically Sealed Containers. Available online: https://www.ecfr.gov/cgi-bin/text-idx?SID=d961c4db3fc4f8bba567269da74fcf90&mc=true&node=pt21.2.113&rgn=div5 (accessed on 11 December 2020).
- Ordiz, M.I.; Ryan, K.N.; Cimo, E.D.; Stoner, M.E.; Loehnig, M.E.; Manary, M.J. Effect of emulsifier and viscosity on oil separation in ready-to-use therapeutic food. Int. J. Food Sci. Nutr. 2015, 66, 642–648. [Google Scholar] [CrossRef]
- Vercruysse, M.C.M.; Steffe, J.F. On-line viscometry for pureed baby food: Correlation of Bostwick consistometer readings and apparent viscosity data. J. Food Process Eng. 1989, 11, 193–202. [Google Scholar] [CrossRef]
- Institute for Thermal Processing Specialists (IFTPS). Guidelines for Conducting Thermal Processing Studies. Available online: http://iftps.org/wp-content/uploads/2017/12/Retort-Processing-Guidelines-02-13-14.pdf (accessed on 20 September 2020).
- MacNaughton, M.S.; Whiteside, W.S.; Rieck, J.R.; Thomas, R.L. The effects of residual air and viscosity on the rate of heat penetration of retort food simulant in pouch when using static and oscillating motions. J. Food Sci. 2018, 83, 922–928. [Google Scholar] [CrossRef]
- Davidson, M. Thiamin deficiency in a colony of cats. Vet. Rec. 1992, 130, 94–97. [Google Scholar] [CrossRef]
- Loew, F.M.; Martin, C.L.; Dunlop, R.H.; Mapletoft, R.J.; Smith, S.I. Naturally-occurring and experimental thiamin deficiency in cats receiving commercial cat food. Can. Vet. J. 1970, 11, 109–113. [Google Scholar]
- Polo, J.; Rodríguez, C.; Ródenas, J.; Morera, S.; Saborido, N. The use of spray-dried animal plasma in comparison with other binders in canned pet food recipes. Anim. Feed Sci. Technol. 2009, 154, 241–247. [Google Scholar] [CrossRef]
- Hsu, C.; He, F.; Mangian, H.; White, B.; Lambrakis, L.; de Godoy, M.R.C. 77 Chemical composition, texture and color analyses, and true metabolizable energy of green banana flour in retorted diets for domestic cats. J. Anim. Sci. 2020, 98, 57. [Google Scholar] [CrossRef]
- Mallick, A.K.; Srunuvasa Gopal, T.K.; Ravishankar, C.N.; Vijayan, P.K.; Geethalakshmi, V. Changes in instrumental and sensory properties of Indian white shrimp in curry medium during retort pouch processing at different F0 values. J. Texture Stud. 2010, 41, 611–632. [Google Scholar] [CrossRef]
- Benjakul, S.; Chantakun, K.; Karnjanapratum, S. Impact of retort process on characteristics and bioactivities of herbal soup based on hydrolyzed collagen from seabass skin. J. Food Sci. Technol. 2018, 55, 3779–3791. [Google Scholar] [CrossRef]
- Takeda, Y.; Shimada, M.; Ushida, Y.; Saito, H.; Iwamoto, H.; Okawa, T. Effects of sterilization process on the physicochemical and nutritional properties of liquid enteral formula. Food Sci. Technol. Res. 2015, 21, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, D. Broiler breast meat color variation, pH, and texture. Poult. Sci. 1999, 78, 1323–1327. [Google Scholar] [CrossRef]
- Andrés-Bello, A.; Barreto-Palacios, V.; García-Segovia, P.; Mir-Bel, J.; Martínez-Monzó, J. Effect of pH on color and texture of food products. Food Eng. Rev. 2013, 5, 158–170. [Google Scholar] [CrossRef]
- Kranen, R.W.; Van Kuppevelt, T.H.; Goedhart, H.A.; Veerkamp, C.H.; Lambooy, E.; Veerkamp, J.H. Hemoglobin and myoglobin content of muscles of broiler chickens. Poult. Sci. 1999, 78, 467–476. [Google Scholar] [CrossRef]
- Phillips, G.O.; Wedlock, D.J.; Williams, P.A. (Eds.) Gums and Stabilisers for the Food Industry 5; Oxford University Press: New York, NY, USA, 1990. [Google Scholar]
- Wang, Y.; Yuan, C.; Cui, B.; Liu, Y. Influence of cations on texture, compressive elastic modulus, sol-gel transition and freeze-thaw properties of kappa-carrageenan gel. Carbohydr. Polym. 2018, 202, 530–535. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Dogs and Cats; The National Academies Press: Washington, DC, USA, 2006.
Ingredient, % w/w | D | DG | KCG | LBG | XGG |
---|---|---|---|---|---|
Mechanically separated chicken | 56.00 | 56.00 | 56.00 | 56.00 | 56.00 |
Water | 38.35 | 38.35 | 38.35 | 38.35 | 38.35 |
Brewer’s rice | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
Potassium chloride | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Spray-dried egg white | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Sunflower oil | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Vitamin premix 2 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Trace mineral premix 3 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Dextrose | 1.00 | 0.50 | - | - | - |
Guar gum | - | 0.50 | 0.50 | 0.50 | 0.50 |
Kappa carrageenan | - | - | 0.50 | - | - |
Locust bean gum | - | - | - | 0.50 | - |
Xanthan gum | - | - | - | - | 0.50 |
Measurement | D | DG | KCG | LBG | XGG | SEM | p-Value |
---|---|---|---|---|---|---|---|
Consistency, cm/30 s | 23.64 a | 6.60 b | 1.69 c | 3.63 c | 2.94 c | 0.719 | <0.0001 |
pH | 5.90 | 5.93 | 5.95 | 5.94 | 5.97 | 0.081 | 0.7411 |
Water activity | 0.984 | 0.996 | 0.992 | 0.987 | 0.992 | 0.0067 | 0.2528 |
Measurement | D | DG | KCG | LBG | XGG | SEM | p-Value |
---|---|---|---|---|---|---|---|
Number of thermocouples | 12 | 12 | 11 | 11 | 11 | - | - |
Initial internal can temperature, °C | 55.32 | 56.13 | 58.51 | 55.01 | 53.40 | 1.768 | 0.2038 |
Can fill weight, g | 404.6 | 404.9 | 405.1 | 404.3 | 404.0 | 0.54 | 0.3900 |
Gross headspace, mm | 14.83 | 14.53 | 13.29 | 13.17 | 13.53 | 0.350 | 0.4248 |
Post-processing can vacuum, kPa | −12.4 | −11.9 | −16.0 | −12.7 | −11.4 | 1.76 | 0.4605 |
Measurement, min | D | DG | KCG | LBG | XGG | SEM | p-Value |
---|---|---|---|---|---|---|---|
Total lethality | 20.24 a | 18.63 b | 18.27 b | 18.33 b | 18.26 b | 0.470 | 0.0121 |
Heating lethality | 12.08 a | 9.71 b | 9.25 b | 8.74 b | 8.66 b | 0.566 | 0.0177 |
Cooling lethality | 8.17 b | 8.92 ab | 9.01 ab | 9.59 a | 9.61 a | 1.714 | 0.0428 |
Total C100 | 201.90 | 196.41 | 195.19 | 196.42 | 195.56 | 2.923 | 0.2307 |
Heating C100 | 137.01 a | 120.67 b | 118.84 b | 115.38 b | 114.06 b | 3.870 | 0.0196 |
Cooling C100 | 64.90 b | 75.74 a | 76.36 a | 81.04 a | 81.50 a | 9.233 | 0.0099 |
Measurement | D | DG | KCG | LBG | XGG | SEM | p-Value |
---|---|---|---|---|---|---|---|
pH | 5.95 c | 5.97 c | 6.38 a | 6.27 b | 6.24 b | 0.080 | <0.0001 |
Total moisture, % | 79.37 a | 79.04 a | 77.83 ab | 77.30 b | 77.28 b | 0.798 | 0.0418 |
EM 2, % of sample | 49.91 a | 26.93 b | 23.59 b | 15.92 c | 17.16 c | 1.905 | <0.0001 |
Firmness, N | 9.03 c | 8.47 c | 27.00 a | 16.30 b | 14.87 b | 2.673 | <0.0001 |
Toughness, N·mm | 67 d | 117 c | 370 a | 245 b | 225 b | 32.5 | <0.0001 |
L* 3 | 53.61 c | 56.88 b | 57.59 ab | 59.09 a | 58.65 ab | 1.044 | 0.0023 |
a* 4 | 8.18 a | 8.56 a | 4.03 b | 4.68 b | 4.51 b | 1.244 | 0.0108 |
b* 5 | 21.40 a | 22.69 a | 14.64 b | 15.93 b | 15.59 b | 1.511 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dainton, A.N.; Dogan, H.; Aldrich, C.G. The Effects of Select Hydrocolloids on the Processing of Pâté-Style Canned Pet Food. Foods 2021, 10, 2506. https://doi.org/10.3390/foods10102506
Dainton AN, Dogan H, Aldrich CG. The Effects of Select Hydrocolloids on the Processing of Pâté-Style Canned Pet Food. Foods. 2021; 10(10):2506. https://doi.org/10.3390/foods10102506
Chicago/Turabian StyleDainton, Amanda N., Hulya Dogan, and Charles Gregory Aldrich. 2021. "The Effects of Select Hydrocolloids on the Processing of Pâté-Style Canned Pet Food" Foods 10, no. 10: 2506. https://doi.org/10.3390/foods10102506
APA StyleDainton, A. N., Dogan, H., & Aldrich, C. G. (2021). The Effects of Select Hydrocolloids on the Processing of Pâté-Style Canned Pet Food. Foods, 10(10), 2506. https://doi.org/10.3390/foods10102506