Physiological Performance of Rabbits Administered Buffalo Milk Yogurts Enriched with Whey Protein Concentrate, Calcium Caseinate or Spirulina platensis
<p>Total antioxidant activity (%) of yogurt supplemented with 1% of whey protein concentrate (G1), calcium caseinate (G2) and Spirulina powder (G3) as compared to a positive control (Cl+; yogurt without additives). Different letters (a, b, c, and d) within a column mark significantly different value (<span class="html-italic">p < 0.05</span>).</p> "> Figure 2
<p>(<b>A</b>). Villus morphology and morphometry characteristics of the small intestine in the rabbits receiving yogurt fortified with 1% whey protein concentrate (G1), calcium caseinate (G2) and Spirulina powder (G3) as compared to that of non-supplemented yogurt (positive control: Cl+) or a yogurt-free diet (negative control (Cl−) (H & E X 100). The groups (G1–G3 and Cl+) received yogurt at a dose of 5 g/kg body weight/day. (<b>B</b>). Villus morphology and morphometry characteristics of the kidneys of rabbits receiving yogurt containing 1% whey protein concentrate (G1), calcium caseinate (G2), and Spirulina powder (G3) as compared to the non-supplemented yogurt (positive control: Cl+) or yogurt-free diet (negative control (Cl−) (H & E X 100). The groups (G1–G3 and Cl+) received yogurt at a dose of 5 g/kg body weight/day. (<b>C</b>). Villus morphology and morphometry examinations of the liver in rabbits receiving yogurt containing 1% whey protein concentrate (G1), calcium caseinate (G2) and Spirulina powder (G3) as compared the non-supplemented yogurt as a positive control (Cl+) or yogurt-free diet as a negative control (Cl−) (H & E X 100). The groups (G1–G3 and Cl+) received yogurt at a dose of 5 g/kg body weight/day.</p> "> Figure 2 Cont.
<p>(<b>A</b>). Villus morphology and morphometry characteristics of the small intestine in the rabbits receiving yogurt fortified with 1% whey protein concentrate (G1), calcium caseinate (G2) and Spirulina powder (G3) as compared to that of non-supplemented yogurt (positive control: Cl+) or a yogurt-free diet (negative control (Cl−) (H & E X 100). The groups (G1–G3 and Cl+) received yogurt at a dose of 5 g/kg body weight/day. (<b>B</b>). Villus morphology and morphometry characteristics of the kidneys of rabbits receiving yogurt containing 1% whey protein concentrate (G1), calcium caseinate (G2), and Spirulina powder (G3) as compared to the non-supplemented yogurt (positive control: Cl+) or yogurt-free diet (negative control (Cl−) (H & E X 100). The groups (G1–G3 and Cl+) received yogurt at a dose of 5 g/kg body weight/day. (<b>C</b>). Villus morphology and morphometry examinations of the liver in rabbits receiving yogurt containing 1% whey protein concentrate (G1), calcium caseinate (G2) and Spirulina powder (G3) as compared the non-supplemented yogurt as a positive control (Cl+) or yogurt-free diet as a negative control (Cl−) (H & E X 100). The groups (G1–G3 and Cl+) received yogurt at a dose of 5 g/kg body weight/day.</p> "> Figure 2 Cont.
<p>(<b>A</b>). Villus morphology and morphometry characteristics of the small intestine in the rabbits receiving yogurt fortified with 1% whey protein concentrate (G1), calcium caseinate (G2) and Spirulina powder (G3) as compared to that of non-supplemented yogurt (positive control: Cl+) or a yogurt-free diet (negative control (Cl−) (H & E X 100). The groups (G1–G3 and Cl+) received yogurt at a dose of 5 g/kg body weight/day. (<b>B</b>). Villus morphology and morphometry characteristics of the kidneys of rabbits receiving yogurt containing 1% whey protein concentrate (G1), calcium caseinate (G2), and Spirulina powder (G3) as compared to the non-supplemented yogurt (positive control: Cl+) or yogurt-free diet (negative control (Cl−) (H & E X 100). The groups (G1–G3 and Cl+) received yogurt at a dose of 5 g/kg body weight/day. (<b>C</b>). Villus morphology and morphometry examinations of the liver in rabbits receiving yogurt containing 1% whey protein concentrate (G1), calcium caseinate (G2) and Spirulina powder (G3) as compared the non-supplemented yogurt as a positive control (Cl+) or yogurt-free diet as a negative control (Cl−) (H & E X 100). The groups (G1–G3 and Cl+) received yogurt at a dose of 5 g/kg body weight/day.</p> "> Figure 2 Cont.
<p>(<b>A</b>). Villus morphology and morphometry characteristics of the small intestine in the rabbits receiving yogurt fortified with 1% whey protein concentrate (G1), calcium caseinate (G2) and Spirulina powder (G3) as compared to that of non-supplemented yogurt (positive control: Cl+) or a yogurt-free diet (negative control (Cl−) (H & E X 100). The groups (G1–G3 and Cl+) received yogurt at a dose of 5 g/kg body weight/day. (<b>B</b>). Villus morphology and morphometry characteristics of the kidneys of rabbits receiving yogurt containing 1% whey protein concentrate (G1), calcium caseinate (G2), and Spirulina powder (G3) as compared to the non-supplemented yogurt (positive control: Cl+) or yogurt-free diet (negative control (Cl−) (H & E X 100). The groups (G1–G3 and Cl+) received yogurt at a dose of 5 g/kg body weight/day. (<b>C</b>). Villus morphology and morphometry examinations of the liver in rabbits receiving yogurt containing 1% whey protein concentrate (G1), calcium caseinate (G2) and Spirulina powder (G3) as compared the non-supplemented yogurt as a positive control (Cl+) or yogurt-free diet as a negative control (Cl−) (H & E X 100). The groups (G1–G3 and Cl+) received yogurt at a dose of 5 g/kg body weight/day.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Manufacture of Yogurt
2.2.2. Animals and Experimental Design
2.2.3. Physicochemical Analysis
2.2.4. Microbiological Examinations
2.2.5. Growth Performance
2.2.6. Blood Biochemical Parameters
2.2.7. Villus Morphology and Morphometry
2.2.8. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Ingredients Used in Produced Yogurt
3.2. Physicochemical Properties of Yogurt
3.3. Total Antioxidant Activity of Yogurt
3.4. Microbiological Characteristics of Yogurt
3.5. Growth Performance
3.6. Carcass Traits
3.7. Serum Biochemical Properties
3.8. Villus Morphology and Morphometry
3.9. Meat Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kücükcetin, A. Effect of heat treatment and casein to whey protein ratio of skim milk on graininess and roughness of stirred yoghurt. Food Res. Int. 2008, 41, 165–171. [Google Scholar] [CrossRef]
- Deeth, H.; Tamime, A. Yogurt: Nutritive and therapeutic aspects. J. Food Prot. 1981, 44, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Trachoo, N.; Mistry, V. Application of ultrafiltered sweet buttermilk and sweet buttermilk powder in the manufacture of nonfat and low fat yogurts1. J. Dairy Sci. 1998, 81, 3163–3171. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Dietary Protein Quality Evaluation in Human Nutrition: Report of an FAO Expert Consultation, Auckland, New Zealand, 31 March–2 April 2011; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Khan, Z.; Bhadouria, P.; Bisen, P. Nutritional and therapeutic potential of Spirulina. Curr. Pharm. Biotechnol. 2005, 6, 373–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osman, A.; Abd-Elaziz, S.; Salama, A.S.A.; Eita, A.A. Health protective actions of phycocyanin obtained from an Egyptian isolate of Spirulina platensis on albino rats. EurAsian J. BioSci. 2019, 13, 105–112. [Google Scholar]
- Osman, A.; Salama, A.; Mahmoud, K.E.; Sitohy, M. Alleviation of carbon tetrachloride-induced hepatocellular damage and oxidative stress in rats by Anabaena oryzae phycocyanin. J. Food Biochem. 2021, 45, e13562. [Google Scholar] [CrossRef] [PubMed]
- Holman, B.; Kashani, A.; Malau-Aduli, A. Growth and body conformation responses of genetically divergent Australian sheep to Spirulina (Arthrospira platensis) supplementation. J. Exp. Agric. Int. 2012, 2, 160–173. [Google Scholar] [CrossRef]
- Holman, B.; Malau-Aduli, A. Spirulina as a livestock supplement and animal feed. J. Anim. Physiol. Anim. Nutr. 2013, 97, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Mirzaie, S.; Zirak-Khattab, F.; Hosseini, S.A.; Donyaei-Darian, H. Effects of dietary Spirulina on antioxidant status, lipid profile, immune response and performance characteristics of broiler chickens reared under high ambient temperature. Asian Australas. J. Anim. Sci. 2018, 31, 556. [Google Scholar] [CrossRef]
- Seyidoglu, N.; Galip, N.; Budak, F.; Uzabaci, E. The effects of Spirulina platensis (Arthrospira platensis) and Saccharomyces cerevisiae on the distribution and cytokine production of CD4+ and CD8+ T-lymphocytes in rabbits. Austral J. Vet. Sci. 2017, 49, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Seyidoglu, N.; Inan, S.; Aydin, C. A prominent superfood: Spirulina platensis. Superfood and Functional Food The Development of Superfoods and Their Roles as Medicine. Biology 2017, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Fouda, F.S.; Ismail, R.F. Effect of Spirulina platensis on reproductive performance of rabbit bucks. Egypt. J. Nutr. Feed. 2017, 20, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Liisberg, U.; Myrmel, L.S.; Fjære, E.; Rønnevik, A.K.; Bjelland, S.; Fauske, K.R.; Holm, J.B.; Basse, A.L.; Hansen, J.B.; Liaset, B.; et al. The protein source determines the potential of high protein diets to attenuate obesity development in C57BL/6J mice. Adipocyte 2016, 5, 196–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Lin, X.; Zhao, F.; Shi, X.; Li, H.; Li, Y.; Zhu, W.; Xu, X.; Li, C.; Zhou, G. Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Sci. Rep. 2015, 5, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smidt, H.; Lin, X.; Fan Zhao, X.S.; Li, H.; Li, Y.; Zhu, W.; Xu, X.; Li, C.; Zhou, G. The gut microbiota and host health: A new clinical frontier. Gut 2016, 65, 330–339. [Google Scholar]
- Gomes, A.C.; Hoffmann, C.; Mota, J.F. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes 2018, 9, 308–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zmora, N.; Suez, J.; Elinav, E. You are what you eat: Diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 35–56. [Google Scholar] [CrossRef] [PubMed]
- Zotte, D.A.; Szendrő, Z. The role of rabbit meat as functional food. Meat Sci. 2011, 88, 319–331. [Google Scholar] [CrossRef]
- Meineri, G.; Ingravalle, F.; Radice, E.; Aragno, M. Peiretti Effects of high fat diets and Spirulina Platensis supplementation in New Zealand White rabbit. J. Anim. Vet. Adv. 2009, 8, 2735–2744. [Google Scholar]
- Smith, S.; Casady, R.; Donefer, E. Nutrient requirements of rabbits. Nat. Acad. Sci. Nat. Res. Counc. Publ. 1966, 1194. [Google Scholar] [CrossRef]
- Williams, S. Official Methods of Analysis of the Association of Analytical Chemists; Association of Analytical Chemists: Washington, DC, USA, 1984. [Google Scholar]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Elliker, P.; Anderson, A.; Hannesson, G. An agar culture medium for lactic acid streptococci and lactobacilli. J. Dairy Sci. 1956, 39, 1611–1612. [Google Scholar] [CrossRef]
- Ryan, M.P.; Rea, M.C.; Hill, C.; Ross, R.P. An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl. Environ. Microbiol. 1996, 62, 612–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, R.T. Standard Methods for the Examination of Dairy Products; American Public Health Association: Washington, DC, USA, 1992. [Google Scholar]
- Gadaga, T.; Mutukumira, A.; Narvhus, J. Enumeration and identification of yeasts isolated from Zimbabwean traditional fermented milk. Int. Dairy J. 2000, 10, 459–466. [Google Scholar] [CrossRef]
- Morgenstern, S.; Oklander, M.; Auerbach, J.; Kaufman, J.; Klein, B. Automated determination of serum glutamic oxaloacetic transaminase. Clin. Chem. 1966, 12, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhu, C.; Zhanga, Y.; Li, Y.; Sun, J. Immunomodulatory and antioxidant effects of pomegranate peel polysaccharides on immunosuppressed mice. Int. J. Biol. Macromol. 2019, 137, 504–511. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT Software: Changes and Enhancements for Release 6.12; SAS Institute: Cary, NC, USA, 1996. [Google Scholar]
- Guzmán-González, M.; Morais, F.; Ramos, M.; Amigo, L. Influence of skimmed milk concentrate replacement by dry dairy products in a low fat set-type yoghurt model system. I: Use of whey protein concentrates, milk protein concentrates and skimmed milk powder. J. Sci. Food Agric. 1999, 79, 1117–1122. [Google Scholar] [CrossRef]
- Remeuf, F.; Mohammed, S.; Sodini, I.; Tissierb, J.P. Preliminary observations on the effects of milk fortification and heating on microstructure and physical properties of stirred yogurt. Int. Dairy J. 2003, 13, 773–782. [Google Scholar] [CrossRef]
- Agustini, T.; Soetrisnanto, D.; Ma’ruf, W. Study on chemical, physical, microbiological and sensory of yoghurt enriched by Spirulina platensis. Int. Food Res. J. 2017, 24, 367–371. [Google Scholar]
- Lee, W.-J.; Lucey, J. Formation and physical properties of yogurt. Asian Australas. J. Anim. Sci. 2010, 23, 1127–1136. [Google Scholar] [CrossRef]
- Atallah, A.A.; Morsy, O.M.; Gemiel, D.G. Characterization of functional low-fat yogurt enriched with whey protein concentrate, Ca-caseinate and spirulina. Int. J. Food Prop. 2020, 23, 1678–1691. [Google Scholar] [CrossRef]
- Ismaiel, M.M.S.; El-Ayouty, Y.M.; Piercey-Normore, M. Role of pH on antioxidants production by Spirulina (Arthrospira) platensis. Braz. J. Microbiol. 2016, 47, 298–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barkallah, M.; Dammak, M.; Louati, I.; Hentati, F.; Hadrich, B.; Mechichi, T.; Ayadi, M.A.; Fendri, I.; Attia, H.; Abdelkafi, S. Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. LWT 2017, 84, 323–330. [Google Scholar] [CrossRef]
- Juárez-Oropeza, M.A.; Mascher, D.; Torres-Durán, P.V.; Farias, J.M.; Paredes-Carbajal, M.C. Effects of dietary Spirulina on vascular reactivity. J. Med. Food 2009, 12, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Grawish, M.E.; Zaher, A.R.; Gaafar, A.I.; Nasif, W.A. Long-term effect of Spirulina platensis extract on DMBA-induced hamster buccal pouch carcinogenesis (immunohistochemical study). Med. Oncol. 2010, 27, 20–28. [Google Scholar] [CrossRef]
- Dartsch, P.C. Antioxidant potential of selected Spirulina platensis preparations. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2008, 22, 627–633. [Google Scholar]
- Park, H.J.; Lee, Y.J.; Ryu, H.K.; Kim, M.H.; Chung, H.W.; Kim, W.Y. A randomized double-blind, placebo-controlled study to establish the effects of spirulina in elderly Koreans. Ann. Nutr. Metab. 2008, 52, 322–328. [Google Scholar] [CrossRef]
- Boirie, Y.; Dangin, M.; Gachon, P.; Vasson, M.; Maubois, J.; Beaufrère, B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. USA 1997, 94, 14930–14935. [Google Scholar] [CrossRef] [Green Version]
- Frühbeck, G.; Jebb, S.; Prentice, A. Leptin: Physiology and pathophysiology. Clin. Physiol. 1998, 18, 399–419. [Google Scholar] [CrossRef]
- Sindayikengera, S.; Xia, W.-s. Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex. J. Zhejiang Univ. Sci. B 2006, 7, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Chobert, J.M.; Sitohy, M.; Whitaker, J.R. Specific limited hydrolysis and phosphorylation of food proteins for improvement of functional and nutritional properties. J. Am. Oil Chem. Soc. 1987, 64, 1704–1711. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.; Goda, H.A.; de Gobba, C.; Jenssen, H.; Osman, A. Antibacterial activity of papain hydrolysed camel whey and its fractions. Int. Dairy J. 2016, 61, 91–98. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.; Osman, A.; El-Hadary, A.; Romeih, E.; Sitohy, M.; Li, L. Hepatoprotective action of papain-hydrolyzed buffalo milk protein on carbon tetrachloride oxidative stressed albino rats. J. Dairy Sci. 2020, 103, 1884–1893. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.; Romeih, E.; Saporito, P.; Osman, A.; Mateiu, R.V.; Mojsoska, B.; Jenssen, H. Camel milk whey hydrolysate inhibits growth and biofilm formation of Pseudomonas aeruginosa PAO1 and methicillin-resistant Staphylococcus aureus. Food Control. 2020, 111, 107056. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.; Otte, J.; de Gobba, C.; Osman, A.; Hamada, E. Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins. Int. Dairy J. 2017, 66, 91–98. [Google Scholar] [CrossRef]
- Kishawy, A.T.; Amer, S.A.; Osman, A.; Elsayed, S.A.M.; El-Hack, M.E.A.; Swelum, A.A.; Ba-Awadh, H.; Saadeldin, M.I. Impacts of Supplementing Growing Rabbit Diets with Whey Powder and Citric Acid on Growth Performance, Nutrient Digestibility, Meat and Bone Analysis, and Gut Health. AMB Express 2018, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Ashour, E.A.; El-Hack, M.E.A.; Alagawany, M.; Swelum, A.A.; Osman, A.O.; Saadeldin, I.M.; Abdel-Hamid, M.; Hussein, E.O.S. Use of whey protein concentrates in broiler diets. J. Appl. Poult. Res. 2019, 28, 1078–1088. [Google Scholar] [CrossRef]
- Osman, A.; El-Hadary, A.; Korish, A.A.; AlNafea, H.M.; Alhakbany, M.A.; Awad, A.A.; Abdel-Hamid, M. Angiotensin-I Converting Enzyme Inhibition and Antioxidant Activity of Papain-Hydrolyzed Camel Whey Protein and Its Hepato-Renal Protective Effects in Thioacetamide-Induced Toxicity. Foods 2021, 10, 468. [Google Scholar] [CrossRef]
- Karkos, P.; Leong, S.C.; Karkos, C.D.; Sivaji, N.; Assimakopoulos, D.A. Spirulina in clinical practice: Evidence-based human applications. Evid.-Based Complement. Altern. Med. 2011, 2011, 531053. [Google Scholar] [CrossRef] [Green Version]
- Dalle Zotte, A.; Sartori, A.; Bohatir, P.; Rémignon, H.; Riccia, R. Effect of dietary supplementation of Spirulina (Arthrospira platensis) and Thyme (Thymus vulgaris) on growth performance, apparent digestibility and health status of companion dwarf rabbits. Livest. Sci. 2013, 152, 182–191. [Google Scholar] [CrossRef]
- Gerencser, A.A.; Chinopoulos, C.; Birket, M.J.; Jastroch, M.; Vitelli, C.; Nicholls, D.G.; Brand, M.D. Quantitative measurement of mitochondrial membrane potential in cultured cells: Calcium-induced de-and hyperpolarization of neuronal mitochondria. J. Physiol. 2012, 590, 2845–2871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Desoky, G.E.; Bashandy, S.A.; Alhazza, I.M.; Al-Othman, Z.A.; Aboul-Soud, M.A.M.; Yusuf, K. Improvement of mercuric chloride-induced testis injuries and sperm quality deteriorations by Spirulina platensis in rats. PLoS ONE 2013, 8, e59177. [Google Scholar] [CrossRef] [PubMed]
- RaMadaN, M.F.; Selim aSkeR, M.M. Functional bioactive compounds and biological activities. Czech J. Food Sci. 2008, 26, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Blé-Castillo, J.; Rodríguez-Hernández, A.; Miranda-Zamora, R.; Juárez-Oropeza, M.A.; Díaz-Zagoya, J.C. Arthrospira maxima prevents the acute fatty liver induced by the administration of simvastatin, ethanol and a hypercholesterolemic diet to mice. Life Sci. 2002, 70, 2665–2673. [Google Scholar] [CrossRef]
- Torres-Duran, P.V.; Ferreira-Hermosillo, A.; Juarez-Oropeza, M.A. Antihyperlipemic and antihypertensive effects of Spirulina maxima in an open sample of Mexican population: A preliminary report. Lipids Health Dis. 2007, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Howe, P.; Meyer, B.; Record, S.; Baghurst, K. Dietary intake of long-chain ω-3 polyunsaturated fatty acids: Contribution of meat sources. Nutrition 2006, 22, 47–53. [Google Scholar] [CrossRef]
- Vonshak, A. Spirulina Platensis Arthrospira: Physiology, Cell-Biology and Biotechnology; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Kaur, K.; Sachdeva, R.; Grover, K. Effect of supplementation of Spirulina on blood glucose and lipid profile of the non-insulin dependent diabetic male subjects. J. Dairy. Foods Home Sci. 2008, 27, 202–208. [Google Scholar]
- Abdel-Daim, M.M.; Abuzead, S.M.; Halawa, S.M. Protective role of Spirulina platensis against acute deltamethrin-induced toxicity in rats. PLoS ONE 2013, 8, e72991. [Google Scholar] [CrossRef] [Green Version]
- Seyidoglu, N.; Gurbanli, R.; Köşeli, E.; Cengiz, F. The effects of Spirulina (Arthrospira) platensis on morphological and hematological parameters evoked by social stress in male rats. J. Istanb. Vet. Sci. 2019, 3, 21–27. [Google Scholar] [CrossRef]
- Ha, E.; Zemel, M.B. Functional properties of whey, whey components, and essential amino acids: Mechanisms underlying health benefits for active people. J. Nutr. Biochem. 2003, 14, 251–258. [Google Scholar] [CrossRef]
- Peiretti, P.; Meineri, G. Effects of diets with increasing levels of Spirulina platensis on the performance and apparent digestibility in growing rabbits. Livest. Sci. 2008, 118, 173–177. [Google Scholar] [CrossRef]
- Imbabi, T.; Hassan, A.; Ahmed-Farid, O.; El-Garhy, O.; Sabeq, I.; Moustafa, M.; Mohammadein, A.; Hassan, N.; Osman, A.; Sitohyg, M. Supplementing rabbit diets with butylated hydroxyanisole affects oxidative stress, growth performance, and meat quality. Animal 2021, 15, 100339. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.; Imbabi, T.A.; El-Hadary, A.; Sabeq, I.I.; Edris, S.N.; Merwad, A.; Azab, E.; Gobouri, A.A.; Mohammadein, A.; Sitohy, M. Health Aspects, Growth Performance, and Meat Quality of Rabbits Receiving Diets Supplemented with Lettuce Fertilized with Whey Protein Hydrolysate Substituting Nitrate. Biomolecules 2021, 11, 835. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Content |
---|---|
Ingredients (g/kg) | |
Alfalfa hay | 350 |
Yellow corn | 200 |
Soybean meal | 96 |
Wheat bran | 300 |
Corn stover | 30 |
Di-calcium phosphate | 12.5 |
L-Lysine HCl | 2.1 |
DL-Methionine | 2 |
Sodium chloride | 5 |
Vitamin/mineral premix * | 1.5 |
Total | 1000.0 |
Calculated analysis (g/kg on dry matter basis) | |
Digestible energy (MJ/kg) | 11.6 |
Crude protein (g/kg) | 179 |
Crude fiber (g/kg) | 125 |
Crude fat (g/kg) | 32.0 |
Ca (g/kg) | 10.9 |
Available P (g/kg) | 5.9 |
Methionine (g/kg) | 4.2 |
Lysine (g/kg) | 9.0 |
Ingredients | Moisture % | Protein % | Fat % | Acidity % | Total CHO * % | pH Value |
---|---|---|---|---|---|---|
Buffalo milk | 87.86 a | 3.35 d | 1.20 c | 0.14 b | 5.35 c | 6.81 a |
Whey protein concentrate (WPC) | 8.38 c | 68.91 b | 4.23 b | 1.65 a | 13.24 b | 3.74 b |
Calcium caseinate (Ca-CN) | 9.12 b | 81.75 a | 0.85 c | 0.15 b | 1.19 d | 6.83 a |
Spirulina | 5.23 d | 61.86 c | 6.15 a | 0.11 b | 19.25 a | 6.81 a |
p-value | 0.006 | 0.003 | 0.007 | 0.005 | 0.004 | 0.004 |
SEM | 0.022 | 0.382 | 0.073 | 0.007 | 0.417 | 0.017 |
Yogurt Groups | Moisture % | Protein % | Fat % | Acidity % | Total CHO * % | pH Value |
---|---|---|---|---|---|---|
Yogurt without any supplements as a positive control (Cl+) | 86.87 a | 3.72 b | 1.37 ab | 0.74 a | 5.69 d | 4.39 a |
Yogurt with 1% WPC (G1) | 86.01 c | 4.53 a | 1.30 b | 0.72 a | 6.76 a | 4.34 a |
Yogurt with 1% Ca-CN (G2) | 86.39 b | 4.65 a | 1.37 ab | 0.71 a | 6.25 c | 4.34 a |
Yogurt with 1% Spirulina (G3) | 86.00 c | 4.31 a | 1.531 a | 0.70 a | 6.41 b | 4.40 a |
p-value | 0.008 | 0.006 | 0.002 | 0.452 | 0.0001 | 0.453 |
SEM | 0.152 | 0.023 | 0.012 | 0.022 | 0.040 | 0.107 |
Yogurt Groups | Lactic Acid Bacteria | Str. thermophilus | Lb. delbrueckii Subsp. bulgaricus |
---|---|---|---|
Yogurt without any supplements as a positive control (Cl+) | 8.16 c | 7.91 c | 8.01 c |
Yogurt with 1% WPC (G1) | 8.57 a | 8.03 ab | 8.38 a |
Yogurt with 1% Ca-CN (G2) | 8.30 b | 8.08 a | 8.20 b |
Yogurt with 1% Spirulina (G3) | 8.51 a | 8.12 a | 8.31 a |
p-value | 0.008 | 0.009 | 0.006 |
SEM | 0.117 | 0.104 | 0.092 |
Growth Parameters | Groups | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
Cl+ | Cl− | G1 | G2 | G3 | |||
BW 4 (g) | 564.16 | 565.93 | 563.36 | 566.80 | 568.73 | 35.105 | 0.9997 |
BW 8 (g) | 1041.63 b | 839.46 d | 1159.90 a | 1161.63 a | 956.36 c | 13.733 | 0.0001 |
BW 12 (g) | 1655.63 d | 1545.06 e | 2050.60 a | 1765.13 b | 1692.40 c | 16.801 | 0.0001 |
ADG 4–8 (g/d) | 17.05 b | 9.76 d | 21.29 a | 21.24 a | 13.84 c | 1.616 | 0.0001 |
ADG 8–12 (g/d) | 21.93 c | 25.20 b | 31.81 a | 21.55 c | 26.28 b | 0.625 | 0.0001 |
ADG 4–12 (g/d) | 19.49 c | 17.48 d | 26.55 a | 21.40 b | 20.06 cb | 0.762 | 0.0001 |
Parameters | Groups | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
Cl+ | Cl− | G1 | G2 | G3 | |||
Live body weight (g) | 1655.63 d | 1545.06 e | 2050.53 a | 1765.13 b | 1692.40 c | 16.78 | 0.0001 |
Carcass rate (%) | 53.89 a | 52.92 a | 55.58 a | 53.07 a | 55.15 a | 1.72 | 0.28 |
Fore legs rate (%) | 14.15 a | 14.29 a | 14.12 a | 14.24 a | 14.46 a | 0.57 | 0.95 |
Saddle rate (%) | 22.46 ab | 20.97 c | 22.70 ab | 22.18 bc | 23.70 a | 0.70 | 0.01 |
Hind legs rate (%) | 36.94 bc | 35.56 c | 38.76 a | 38.16 ab | 37.29 b | 0.75 | 0.004 |
Thoracical neck rate (%) | 10.05 ab | 9.49 b | 11.44 a | 9.81 b | 10.76 ab | 0.76 | 0.06 |
Kidney index (%) | 1.48 ab | 1.55 a | 1.16 c | 1.40 b | 1.43 b | 0.05 | 0.0001 |
Lung index (%) | 1.32 a | 1.31 a | 1.63 a | 1.31 a | 1.30 a | 0.17 | 0.17 |
Heart index (%) | 0.62 a | 0.67 a | 0.70 a | 0.64 a | 0.76 a | 0.11 | 0.63 |
Liver index (%) | 6.71 ab | 4.92 c | 7.01 ab | 6.52 b | 7.65 a | 0.54 | 0.01 |
Spleen index (%) | 0.10 a | 0.07 b | 0.10 a | 0.07 b | 0.10 a | 0.01 | 0.005 |
Head index (%) | 12.22 a | 13.06 a | 10.22 b | 13.09 a | 12.47 a | 0.85 | 0.01 |
Neak rate (%) | 9.86 b | 9.26 b | 11.75 a | 10.91 a | 9.14 b | 0.57 | 0.001 |
Blood Parameters | Groups | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
Cl+ | Cl− | G1 | G2 | G3 | |||
Total protein (g/dL) | 7.90 b | 7.03 c | 9.36 a | 8.06 b | 8.13 b | 0.28 | 0.0001 |
Globulin (g/dL) | 2.46 a | 1.53 b | 2.56 a | 1.70 ab | 2.20 ab | 0.44 | 0.06 |
Albumin (g/dL) | 6.40 b | 5.50 b | 6.70 a | 6.03 ab | 5.96 b | 0.36 | 0.01 |
LDL-c (mg/dL) | 89.33 b | 101.00 a | 81.66 b | 87.00 b | 55.66 c | 5.98 | 0.0001 |
HDL-c (mg/dL) | 48.66 ab | 43.33 b | 66.66 a | 57.00 ab | 66.66 a | 11.77 | 0.12 |
Triglyceride (mg/dL) | 105.33 a | 74.00 b | 114.00 a | 109.33 a | 82.00 b | 9.44 | 0.0001 |
Cholesterol (mg/dL) | 157.33 a | 111.33 a | 165.00 a | 150.33 a | 120.66 a | 30.58 | 0.20 |
Creatinine (mg/dL) | 1.26 b | 0.84 c | 1.60 a | 1.50 ab | 1.66 a | 0.12 | 0.0001 |
Urea (mg/dL) | 38.33 b | 29.00 c | 48.33 a | 47.66 a | 49.66 a | 3.01 | 0.0001 |
AST (IU/L) | 65.00 a | 60.66 a | 64.00 a | 62.66 a | 67.00 a | 7.17 | 0.85 |
ALT (IU/L) | 59.00 a | 56.33 a | 59.66 a | 57.66 a | 62.66 a | 7.95 | 0.89 |
IgG (mg/mL) | 993.66 b | 950.00 b | 1010.00 b | 980.00 b | 1082.33 a | 36.73 | 0.01 |
IgA (mg/mL) | 226.66 b | 220.00 b | 249.66 ab | 245.33 ab | 276.66 a | 22.65 | 0.07 |
IgM (mg/mL) | 133.33 b | 129.00 b | 162.00 a | 133.66 b | 156.33 a | 7.93 | 0.0001 |
Parameters (µm) | Groups | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
Cl+ | Cl− | G1 | G2 | G3 | |||
No. of villin section (NVIC) | 47.14 b | 90.57 a | 53.20 b | 54.00 b | 55.80 b | 12.62 | 0.0001 |
Villus width (VW) | 102.75 bc | 89.25 c | 129.00 a | 116.25 ab | 130.50 a | 24.94 | 0.0005 |
Villus length (VL) | 367.58 c | 397.50 c | 555.00 a | 474.58 b | 540.33 a | 69.29 | 0.0001 |
Musclaris thickness (MTh) | 64.50 b | 70.50 b | 194.83 a | 73.50 b | 88.50 b | 40.77 | 0.0001 |
Goblet lining cells (G Cell) | 19.91 a | 16.00 b | 16.91 ab | 20.25 a | 20.08 a | 3.83 | 0.01 |
Treatments | Moisture % | Protein % | Ash % | pH Value |
---|---|---|---|---|
Cl+ | 74.567 b | 16.417 d | 1.690 a | 6.680 c |
Cl− | 74.923 a | 16.160 e | 1.642 a | 6.733 b |
G1 | 72.807 e | 16.980 c | 1.693 a | 6.767 a |
G2 | 73.460 d | 18.260 a | 1.607 a | 6.617 e |
G3 | 73.837 c | 17.420 b | 1.640 a | 6.633 d |
p-value | 0.0001 | 0.0001 | 0.614 | 0.0001 |
SEM | 0.392 | 0.047 | 0.609 | 0.030 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atallah, A.A.; Osman, A.; Sitohy, M.; Gemiel, D.G.; El-Garhy, O.H.; Azab, I.H.E.; Fahim, N.H.; Abdelmoniem, A.M.; Mehana, A.E.; Imbabi, T.A. Physiological Performance of Rabbits Administered Buffalo Milk Yogurts Enriched with Whey Protein Concentrate, Calcium Caseinate or Spirulina platensis. Foods 2021, 10, 2493. https://doi.org/10.3390/foods10102493
Atallah AA, Osman A, Sitohy M, Gemiel DG, El-Garhy OH, Azab IHE, Fahim NH, Abdelmoniem AM, Mehana AE, Imbabi TA. Physiological Performance of Rabbits Administered Buffalo Milk Yogurts Enriched with Whey Protein Concentrate, Calcium Caseinate or Spirulina platensis. Foods. 2021; 10(10):2493. https://doi.org/10.3390/foods10102493
Chicago/Turabian StyleAtallah, Atallah A., Ali Osman, Mahmoud Sitohy, Dalia G. Gemiel, Osams H. El-Garhy, Islam H. El Azab, Nadia. H. Fahim, Abdelmoniem M. Abdelmoniem, Amir E. Mehana, and Tharwat A. Imbabi. 2021. "Physiological Performance of Rabbits Administered Buffalo Milk Yogurts Enriched with Whey Protein Concentrate, Calcium Caseinate or Spirulina platensis" Foods 10, no. 10: 2493. https://doi.org/10.3390/foods10102493
APA StyleAtallah, A. A., Osman, A., Sitohy, M., Gemiel, D. G., El-Garhy, O. H., Azab, I. H. E., Fahim, N. H., Abdelmoniem, A. M., Mehana, A. E., & Imbabi, T. A. (2021). Physiological Performance of Rabbits Administered Buffalo Milk Yogurts Enriched with Whey Protein Concentrate, Calcium Caseinate or Spirulina platensis. Foods, 10(10), 2493. https://doi.org/10.3390/foods10102493